
OMID 2022 Team Description

Mohammad Hossein Zolfaghari Abir1, Farhan Daemi Mojdehi2, Kevin babakhanluo3,

Hashem Khan mohammadi4, Farhad Najafi1, Omid Mahdizadeh5, Vahid Akbari5,
Alireza Sahebi6, Mohammad hossein Zahedi7, Javad Rahmani8

1 Department of Biomedical Engineering of Shahed University of Tehran, Iran
2 Department of Electrical Engineering of IKI University of Ghazvin, Iran

3 Department of Mechanic Engineering of Amirkabir University of Tehran, Iran
4 Department of Electrical Engineering of Shahed University of Tehran, Iran

5 Department of Electrical Engineering of Khaje Nasir University of Tehran, Iran
6 Department of Bioinformatics of Sharif University of Tehran, Iran

7 Department of Electrical Engineering of Tehran University of Tehran, Iran
8 Department of Electrical Engineering Islamic Azad University Science and Research

Branch

 http://www.omidrobotics.ir
omid.robotics.ssl@gmail.com

Abstract. This paper represents recent technical improvements of the OMID robotic team
in Robocup 2022 Small Size League, Bangkok, Thailand. In this paper we are talking
about changes in mechanics, the new mechanic in 2020 wasn’t good enough and now we
design some new parts, in the electronic we implemented gyroscope sensors to improve
robot control and tools to debug FPGA VHDL code and the final part, software and
strategy are about new algorithms in ER-Force simulator and changes in our
communication protocols between robots and our main server.

1. Introduction

Omid Robotics Team(ORT) began as a small size team in 2007. ORT has participated
in competitions since 2007 as a branch of the robotics society of the Department of
Electrical Engineering of Shahed University, Tehran, Islamic Republic of Iran. This
paper focuses on three general topics: mechanics, electronics, and software. The second

http://www.omidrobotics.ir/
mailto:omid.robotics.ssl@gmail.com

section following the introduction discusses our new mechanical platform and some
changes improving robot’s movement. By using gyro sensors, the robots have the
ability to correct their movements in real-time, which is discussed in section three. Also,
new algorithms and strategies are explained in section four.

2. Mechanical system

In this section, we will explain improvements to our design of the Omid team’s small-
size robots and the problems of the previous version. The design has changed entirely
in the motor and wheel configuration. In sections 2.1-2.5, more explanations are
accessible.

2.1 Motor improvement and configuration

In the previous version, we improved the motors with brushless 50watt motors and
installed the motor at a greater height than the wheels[3]. Before corona, we had made
a primary model to test these changes. The results were worse than expected; at high
speed, robots play very badly and often rollover at high speeds.

So we decided to change the motor height back to the former motor configuration. The
wheels have a 90-degree difference compared to each other, and motors are installed at
the lowest level possible achieve the minimum center of mass.

Fig. 1. Selected encoder and Motor

2.2 Wheel layout configuration

In order to decrease the height of the motors, we change the back gear to an interior
one, keeping the number of sub-wheels (22 sub-wheels) and diameter (50mm)[3].

2.3 Capacitor and battery layout design

The capacitor was placed vertically near the motors to prevent the COM1 height from
rising like the previous version. Still, there isn’t any place for a battery behind the robot,

so we put the battery in the second layer near the shooting board.

Fig. 2. Capacitor and battery placement

2.4 Spinback

In this version, we designed a simple and small spin back system. We have a roller and
a system to set up the distance between roller, ball, and ground. The design details are
visible in figure3.

1 Center Of Mass

Fig. 3. Spin back system

2.5 Conclusion

After assembling the parts in SolidWorks, the final robot body was achieved. It is
presented in figure 4. We are still working on the mechanic, and the next step is
designing the damper system.

Fig. 4. Assembled Robot parts

3. Electrical System

This section explains two subjects: implemented gyroscope sensors to improve robot
control and tools to debug FPGA VHDL code.

3.1 FPGA Debugging

We used the ISE software Chip scope and simulated it in FPGA to simulate and
accurately see the motor signals coming into the MOSFETs. We improved engine
performance [1]. In the robot shoot section, the code and the pulse width and pulse
bandwidth modifications were made dramatically. We optimized the switching
frequency in various ways to have the most firepower and maximum power available.

3.2 Adding Gyro

Due to vision delay and Extra rotations of the robot, we decided to use a separate vision
system to complete rotation information. Compass did not meet our needs because of
the high noise generated by the shoot, so we used the GY 9250 Model. According to
tests, this model is more precise and faster than other models, as well as nine axials,
and gives us linear acceleration so that we can further modify the robot's motion using
linear acceleration [2]. It has a lower price tag than other models.

3.3 Calculating Angle

With the integral, we get the angle of acceleration. Still, due to the accumulation of
errors, the purpose of this is to reduce the amount of error by using the camera frame. t
defines the time interval between each gyro data, and 200 is the vision framerate.

Placement (2) in (3) calculates the Angular acceleration array.

θi define gyro data in between 1-n and With the addition data new data Alternatives old
data.

θ defines the real angle of the robot and calculates it in (4)

Fig. 5. The block diagram of robot hardware

NRF sends the robot’s angle to the Arm. Arm calculates data then returns the speed
value to FPGA [3]. For decrees error we used a low filter for gyro data; if the data has
a low value, we will consider zero.

4. Software

4.1 Alterations

As the Robocup 2021 competition was decided to be held virtually and the regulations
of the Robocup Small Size League was changed, holding matches in the ER-Force
simulator, we have changed almost all of our communication protocols between the
robots and our main server. One of the main alterations that we made to our robots’

communication was adjusting the data size which we send to each robot. To be more
specific, we now send the robot a linear 2-dimensional velocity vector as a moving
command instead of sending four separate motor speeds. Then the robots will calculate
the required speeds for each motor using their ARM and FPGA processors and give it
to each motor using a PID feedback control system. We are using linear speeds because
we can control robots better this way because when we reduce the size of sending data,
the processing speed and sending bit rate will be increased. Before we made this change,
we had been losing a significant amount of data that we were about to receive from the
vision server. This data loss was due to the time of sending data to robots, making a
very big timeout or delay in the whole processing system. Another change that we made
in our data sending process is that we now send the robot’s angle from the vision server

to the robots. This will give the robots the ability to correct themselves if it is at the
wrong angle.

4.2 Strategy

The strategy of playing a game in small size soccer robots is to score a goal without
making a foul. In order to do this, we need to pay attention to all playing modes received
from the Referee. These commands will let us know the current state of the game. Our
base C++ code contains the main thread, which is supposed to do all the AI processing
and calculations. In this thread, we check all the specific commands that the referee
gives us and make the best robot decision. First of all, to score a goal, we need the
closest robot to the ball to go behind the ball. After we find the nearest robot to the ball,
we need to calculate the exact position that the robot should be in. So we have some
geometry calculations. We calculate the coordinates of the cross point of a line crossing
a circle around the robot. More details are shown in figure 6.

Fig. 6. Goal mid point line crossing ball circle

After we find the exact position that the robot can score a goal from, the robot will go
to this position using the robot navigation algorithm. Then we need to consider if the
goal is wide open or if there are obstacles in the ball path to the goal. To do this we can
draw a cone from the ball to goals top and bottom points. Then we will check all the
opponent robots if they are inside this cone or not. Next we find the biggest angle
between all the robots inside this cone and of course this angle must be greater than ball
diameter, so that the ball can pass easily through it. There is an exception when the
opponent robots are covering the whole area or there might be a possibility that they
will cover the whole goal area in future. In this case we cannot score a goal or in other
words the possibility of scoring a goal will be decreased. So we need to call another
algorithm to pass the ball to another robot which has a better position to score a goal.

Fig. 7. Cone from ball to goal top and bottom points

To pass the ball into a specific direction that the other robot is able to receive, we have
an algorithm that first of all defines the sender and receiver. The sender robot is the one
that is closer to the ball than the others. The receiver robot is the one that has a better
position to score a goal than the others. After choosing the sender and receiver for a

pass we need to define a position that the receiver robot should be in. In order to do this
we draw two lines from sender to receiver that will cover the whole area between them
that might be covered by an opponent or a teammate robot. If it is covered, we need to
change the receiver's position. It's better to choose a position that is closer to the
opponent's goal and also is more clear of other robots. Whenever the receiver arrives in
the right position, the sender can make the pass and shoot the ball through the receiver.
So the main strategy will be continued as mentioned.

4.3 Ball Placement

Ball placement used to be done by a human referee in previous competitions. Since
Robocup 2021 the robots must have the ability to place the ball in the position given by
the referee as a BALL_PLACEMENT command. To do this we added one more play
mode in our cases as a ball placement mode. In this mode the robot will move behind
the ball and turn on it’s spinback. Then it will approche to the ball slowly until it gets
the ball inside the kicker. Now it can move to the position given by the referee and
releases the ball there and at the end it returns back to its formation.

Reference

1. Xilinx: Spartan-6 FPGA Family datasheet
2. Specification: MPU 9250 datasheet
3. Omid Robotics Team.: OMID 2019 Team Description paper. Technical report, ECE

Department, Shahed University of Tehran, 2020.
4. LE, Chap T.; EBERLY, Lynn E. Introductory biostatistics. John Wiley & Sons, 2016

