
RoboTeam Twente
Extended Team Description Paper 2020

Lukas Bos, Yuhanun Citgez, Haico Dorenbos, Aaron Eichler, Rolf van der
Hulst, Luuk Klein Nagelvoort, Timo van der Kuil, Jordi Luong, Lars Poort,

Finn Prinsenberg, Casper de Regt, Luc Schoot Uiterkamp, Rik Schrijver, Emiel
Steerneman, Paul Vacariu, Jesse van Werven, Sabine van der Werff, and Selina

Zwerver

RoboTeam Twente
University of Twente (UT), Enschede, the Netherlands

De Hems 10, Bastille 304, 7522NL, Enschede, the Netherlands
Website: https://roboteamtwente.nl
Contact: info@roboteamtwente.nl

Abstract. Roboteam Twente is an interdisciplinary student team from
the University of Twente, competing in the Small Size League (SSL) for
Robot Soccer. This paper presents the teams plans to be realized before
the Robocup of 2020 in Bordeaux. The paper focuses on mechanical
changes to improve position control on short distances, maintainability
and durability in both software and electronics, as well as a team-wide
effort to incorporate robots with different physical specifications into the
team in an efficient manner.

https://roboteamtwente.nl

2 RoboTeam Twente

Fig. 1: One of the robots that went to the Robocup of 2019 in Sydney.

1 Introduction

Roboteam Twente is a multi-disciplinary team with students from the University
of Twente and the University of Applied Sciences Saxion. The team was founded
back in 2016 by a group of students striving to challenge themselves in the fields
of robotics and AI. Now, three teams later, it is up to us to improve upon their
design and to further innovate the SSL robots they built. Our teamgoal is to
innovate and to inspire in the fields of robotics and AI.
Our technical team is subdivided into 4 subteams; Mechanics, Electronics, Con-
trol and AI.

Mechanics is concerned with the physical build and model of the robot. They
design and build every part of the robot that is not a circuit board and are in
charge of the mechanical maintenance of the current robots.

The electronics team designs and assembles our electronic circuit boards. They
are also in charge of repairing any possible damage to the circuit boards.

The control team designs the robot control systems, which make sure that the
robot can execute low-level behaviour. These low-level behaviours include for
example following a path without straying out of the desired zone.

Finally, the AI team works on the high-level decision making of the system. They
design our AI, creating strategies and conditions for their execution.

Extended Team Description Paper 2020 3

2 Robot Specifications

Table 1: Robot Specifications.
Robot 4.0

Dimension �179 x 149 mm
Weight 2750 gram
Ball coverage 20%

Driving motor Maxon EC-45 flat 30 Watt
Maxon EC-45 flat 50 Watt

Dribbling motor Maxon DCX 19s
Wheel diameter 55 mm
Wheel gear ratio 2:5
Encoder driving motors MILE 1024 CPT
Dribbling bar diameter 10 mm
Dribbling bar length 73 mm
Microcontroller STM32F417VGTx
Ball sensor zForce AIR Touch
Motor controller ROHM BD63002AMUV
Inertial measurement unit Xsens MTi-3-8a7g6t

Battery 3S3P 11.1V LiPo
6S1P 22.2V LiPo

4 RoboTeam Twente

3 Electronics

3.1 Circuit boards

Our electronics design consists of four different circuit boards, which we have
named according to their position. Their names and functions are as follows:

– The topboard. The topboard consists of the processor, a communications
chip, an accelerometer/gyroscope and a memory circuit. It handles all logic
that has to be performed on the robot itself and communicates with the
computer.

– The bottomboard. The bottomboard handles everything related to kicking
and chipping, it contains a capacitor charging circuit and a large capacitor
that supplies power to the respective solenoids.

– The backboard. The backboard supplies the power from the battery to
the topboard and bottomboard, it also checks whether the battery is empty.
The backboard also functions as a bridge for signals between the topboard
and bottomboard.

– The motordrivers. The motordrivers are connected to the topboard and
are four identical circuits that each respectively control a single motor.

3.2 Changes

The electrical design from last was largely performing sufficiently. There was
only one relatively major issue that was experienced while using the old circuit
boards. Namely that the motordrivers would burn out too often and were not re-
liable enough. More specifically, the MOSFET’s that supply power to the motor
would heat up significantly after extended amounts of playtime, with tempera-
tures reaching 50 degrees Celsius. Due to this lack of reliability and durability
the motordrivers had to be redesigned. There were also some changes resulting
from this years adoption of motors that operate at a voltage of 24V and the
consequential usage of 22.2V batteries.

Motordrivers To fix the motordriver issue, they were just redesigned com-
pletely. The PCB dimensions were retained, however, as changing those would
result in more unnecessary changes. One adaptation that will be made specif-
ically is that a different motor pre-driver Integrated Circuit (IC) will be used,
which will be able to withstand a higher voltage (up to 26.4V). This will mean
that the motordrivers will be able to deal with the higher voltages and will also
have a higher longevity. The IC concerned is the ROHM BD63002AMUV. This
chip also has a lower external component count and is therefore easier to inter-
face on a PCB.

The old MOSFET’s have been upgraded to be able to supply more power. They

Extended Team Description Paper 2020 5

can now handle a higher current, partly due to a lower RDS,on, the RDS,on being
the internal resistance of the MOSFET and thus also the factor that causes the
MOSFET heating up. The new RDS,on is as low as 1.9Ω, which means that
the new MOSFET’s should barely heat up with the currents the motordriver is
dealing with. Also, the old circuit board contained three packages of two MOS-
FET’s, whereas now it uses six MOSFET’s with their own respective packages.
This does increase the footprint of the MOSFET’s on the PCB, but should dra-
matically remedy the thermal problems we experienced. In practice there were
immediate results, the old motordrivers always felt hot to the touch, but the
new motordrivers do not seem to heat up at all, even after an hour of play.

Higher voltage As stated above, we will be using 22.2V batteries for our system
this year. Since our previous circuits are only compatible with 11.1V battery
input some of the circuits will have to be changed in order to work with a higher
voltage input. The majority of the changes will occur on the bottomboard; the
capacitor charge controller IC will be swapped out with a LT3751 chip, which
is a more flexible controller. On the backboard we will then be changing the
battery empty detection circuit and on the topboard there will only be a couple
of component swap outs. This is because the microcontroller and peripherals all
work at either 3.3V or 5V, so only a few components in the voltage conversion
will have to be changed.

6 RoboTeam Twente

4 Mechanical Design

Regarding the mechanical design of the robots, the focus was mainly on improv-
ing the driving capabilities and ball handling. The first part will be accomplished
by implementing a different wheel configuration and higher power motors. The
latter entails a redesign of the front end of the robot, including the chipping and
dribbling mechanisms.

4.1 Wheel Configuration

The first design of the robot, from 2017 until 2019, saw its wheels placed in a
30-30 angle configuration with respect to the robot’s driving direction. Figure 2
shows the bottom plate with a 30-30 wheel configuration and how those angles
are defined.

Fig. 2: Definition of wheel configuration angles on the bottom plate. Shown above
is the 30-30 wheel configuration.

The main advantage of this set-up was that it allowed us to drive forwards and
backwards at very high speeds. When driving sideways, however, the configu-
ration proved to work insufficiently. This was a problem especially whenever

Extended Team Description Paper 2020 7

accurate positioning was needed for ball receival. For this reason, the decision
was made to alter the wheel configuration.

Four prototypes with different wheel configurations were laser cut and tested.
The new configurations up for testing were 45-45, 30-60 and 30-45. The 30-30
configuration was used for comparison and was also laser cut to compensate for
the material difference in our original robots. The criteria used for the tests were
short distance sideways driving, long distance sideways driving and forward and
backwards driving. The most important criteria were accuracy of positioning and
velocity. We also took into account the receiving area that each configuration
would allow.

Hypothetically, in that case, the 45-45 wheel configuration would be optimal
for driving, since friction forces would cancel each other out making the move-
ment of the robot more predictable [1]. The tests showed, however, that there
was a negligible difference in driving performance between the 30-60 configura-
tion and 45-45 configuration. The criterion on which to compare the two would
then have to be the receiving area, which would be much larger in the 30-60
configuration. It was therefore decided to change the wheel configuration from
30-30 to 30-60.

4.2 50 Watt Motors

Since the field size may increase this year and we will also need to improve our
positioning accuracy when moving across small distances, we will be implement-
ing higher power motors in our robots this year. Up until now, the Maxon EC-45
flat 30 Watt motors were used. At the RoboCup 2020, a hybrid team will be
used, where some of the robots will be equipped with Maxon EC-45 flat 50 Watt
motors.

This means that the code will have to be compatible with different robots, which
is a feature that will be increasingly useful in the coming years. It also provides
us with the ability to test and analyze the performance of new designs during
matches. In this way a clear conclusion can be obtained, which shows whether
the new design is a significant improvement.

In the new design, the changing positions of the wheels in the back interfere
with the position of the Geneva mechanism. Additionally, the 50 Watt motors
are 5 millimeters thicker than the 30 Watt motors, which means that there is
even less space for the Geneva mechanism. Since both of these adjustments in
the design are thought to be a significant improvement on the robot functional-
ity and since the Geneva mechanism did not give us a major advantage at the
RoboCup 2019, it was chosen to remove the Geneva mechanism from the robot
this year.

8 RoboTeam Twente

4.3 Chipping Mechanism

With the introduction of the larger 50 Watt motors, there was less space for the
chipper. To compensate, the chipper was redesigned to be 12 millimeters less
wide. This does not really influence the functionality, since the chipper will still
make full contact with the ball independent of the ball’s position on the dribbler.

Additionally, the mechanism used for the chipper at the RoboCup 2019 was
not performing adequately, as it did not chip that far. This was due to a small
range of motion as well as the fact that part of this motion was blocked by the
dribbler. Changes were made by changing the location of the rotation point of
the chipper (Figure 3 and Figure 4), which allowed the chipper a larger range
of motion and longer contact with the ball. This also meant that the dribbler
would no longer be in the way.

Fig. 3: Old Chipper with original ro-
tation point.

Fig. 4: New chipper with adapted ro-
tation point.

4.4 Dribbling Mechanism

Looking at last years competition, there were a lot of areas in which it was
evident that we could improve the front end significantly. The main focus points
were the redesign of the damping system and a different shape of the dribbler
bar.

Damping The hinges of the previous dribbler assembly each had two S-shaped
cut-outs in the front, shown in Figure 5, that were to act as a spring and enable
the dribbler bar to move backwards in order to dampen the speed of an incom-
ing ball. In practice, it appeared that the construction was too rigid to move

Extended Team Description Paper 2020 9

backwards at lower ball speeds. At high ball speeds, the dribbler assembly was
able to move backwards, but even then there was not enough damping and the
mechanism basically acted like a spring, re-transferring the energy right back
into the ball. Both issues caused the ball to bounce of the dribbler as soon as the
robot received it, which meant that receiving was problematic. Another draw-
back of the cut-outs was that the hinges were not able to withstand any large
impact, such as collisions with other robots, causing the hinges to break at the
S-shapes.

Fig. 5: Previous design of the drib-
bler hinges.

Fig. 6: New design of the dribbler
hinges.

To overcome the aforementioned difficulties, the hinges were redesigned and
damping was added, as shown in Figure 6. The new hinges have a rotational joint
at the bottom and damping will be added at the back them. During backward
motion, the hinges will run into the foam padding, such that the major part
of the kinetic energy of the ball can be dissipated. Since the hinges are able to
rotate freely, this system is also applicable to lower ball speeds. The support for
the redesigned hinges also attaches to the battery holders. This is done to allow
for easier assembly of the front and the battery holders, but also to increase the
durability of the battery holders. Maintaining and regaining of the equilibrium
position of the hinges will be done by limiting the forward motion in the front
and creating a spring-damper system behind the hinge.
To validate the new set-up of the dribbler hinges, tests need to be carried out.

Dribbler bar Currently, a straight dribbler bar is used, which consists of a
metal shaft as core and a silicon tube as outer layer. The latter provides grip

10 RoboTeam Twente

on the ball and a little additional damping, and is hard and durable enough to
still enable good ball control. The problem, however, is that the dribbler has no
way to actively center the ball. This means that the ball would always be in a
different position when shooting, resulting in inconsistent straight kicks and chip
kicks.

To improve the consistency of both kicks, several different dribbler bars are
being tested. The tested shapes are an hourglass shape, a straight bar with a
thread and a crowned pulley, all with slight variations in, amongst others, thread
pitch or taper angle. The designs are shown in Figure 7, 8 and 9, respectively.

The hourglass-shaped dribbler bar proved to be ineffective in centering the ball
both in practice and in theory. It was found that the ball was driven to the sides,
instead of taking position in the centre of the dribbler bar. This can be explained
as follows: the dribbler bar has a variable radius, r, introducing an increasing
circumferential velocity along the dribbler bar from the center to either side,
given by

v = rω. (1)

This increasing velocity profile along the dribbler bar imposes an outward spin
on the ball, causing it to move away from the center, which was undesirable.
One could consider this as a cascade reaction, forcing the ball fully outward
eventually.

The dribbler bar designs of a straight bar with a thread and the crowned pul-
ley both need extended testing. An improved design of the dribbler bar will be
implemented at the RoboCup 2020.

Fig. 7: An hourglass shaped dribbler
bar.

Fig. 8: A straight dribbler bar with
thread.

Extended Team Description Paper 2020 11

Fig. 9: A crowned pulley dribbler
bar.

5 Control

5.1 Wheels control

In order to control the robot, it is necessary to transform its desired velocity
into the required speed of each of the wheels and vice versa. The situation of the
new asymmetrical wheel configuration is shown in Figure 10.

Fig. 10: Definitions of asymmetrical wheel configuration

12 RoboTeam Twente

The transformation [1] from robot velocity to wheel speeds is given by
ωRF
ωRB
ωLB
ωLF

 = [bodyToWheels]

uv
ω

 (2)

[bodyToWheels] =
1

r


cos(φ) sin(φ) R
cos(θ) −sin(θ) R
−cos(θ) −sin(θ) R
−cos(φ) sin(φ) R


in which r denotes the radius of the wheels and R the radius of the robot. On the
robots the last column, angular velocity, is not included. The reason for this is
that the robot control is separated into translational velocity control and angle
control. Therefore, the reference angular velocity does not have to be accounted
for by the wheel speed references.

The transformation from wheel speeds to robot velocity can then be determined
by taking the pseudo-inverse of [bodyToWheels] [1]. The pseudo-inverse is used
because the matrix [bodyToWheels] is non-square and gives a generalization of
the inverse matrix. This results in

uv
ω

 = [bodyToWheels]+


ωRF
ωRB
ωLB
ωLF

 (3)

[bodyToWheels]+ =

r


cos(φ)

2(cos2(φ)+cos2(θ))
cos(θ)

2(cos2(φ)+cos2(θ))
−cos(θ)

2(cos2(φ)+cos2(θ))
−cos(φ)

2(cos2(φ)+cos2(θ))
1

2(sin(φ)+sin(θ))
−1

2(sin(φ)+sin(θ))
−1

2(sin(φ)+sin(θ))
1

2(sin(φ)+sin(θ))
sin(θ)

2R(sin(φ)+sin(θ))
sin(φ)

2R(sin(φ)+sin(θ))
sin(φ)

2R(sin(φ)+sin(θ))
sin(θ)

2R(sin(φ)+sin(θ))


Also the forces that the wheels exert on the ground can likewise be transformed
to forces on the body of the robot [1].

FxFy
Fθ

 = [forceCoupling]


f1
f2
f3
f3

 (4)

[forceCoupling] =

cos(φ) cos(θ) −cos(θ) −cos(φ)
sin(φ) −sin(θ) −sin(θ) sin(φ)
R R R R

 (5)

Extended Team Description Paper 2020 13

5.2 State estimation

It is important to know the state of the game in order to decide what to do and to
control the robots to execute what is expected of them. For this the states have
to be estimated, which is done using Kalman filters. On the computer the state
of all robots and the ball are estimated. Additionally, there is a state estimation
on each robot. The current Kalman filters are relatively simple, however, and
the estimations are not always accurate enough. By improving and extending the
filters, the performance of the robots could be improved. This section explains
several of the additions to make the state estimations more accurate and more
detailed. Some generally known methods will also be taken into consideration,
but these will not be further explained. The relative methods include for example
implementing a two phase ball model[2, 3] and control input in the Kalman
filters.

Feedback Feedback from the robot to the computer has been introduced in
the TDP of 2018[4]. In Table 2 the feedback packet that will be used this year
is shown. To improve the state estimation, the acquired information could be
helpful. By taking into account the velocity of the robot as an observation in
the Kalman filter, the estimated state no longer solely relies on vision data. This
will result in more accurate state prediction in case the robot data from vision
is either not optimal or unavailable.

Table 2: Feedback packet sent from robots to computer
0 1 2 3 4 5 6 7

robot ID
A B BS HB ball position

ρ

ρ angle
angle θ

θ

WB signal strength

Accelerometer calibrated Accelerometer on the robot is calibrated
Battery low Battery on the robot is low
Ball Sensor working Ball sensor on the robot is working
Has Ball Robot has the ball
Wheels Braking Wheels are in braking mode
ρ and θ Velocity of the robot in polar coordinates

14 RoboTeam Twente

Robot model For improvement of the control of the robot and making design
choices, it is useful to have a mathematical model of the robots. The robots can
be seen as a body with four independent motors.

Fig. 11: Schematic of the model

The electrical part of the motor model consists of a voltage input Vin (applied as
a PWM signal) and a coil. The motor behavior itself is modeled using its speed
and torque constants which are defined by Gm = ω

e and Km = T
i respectively

where ω is the output speed of the motor, e the voltage drop across the motor,
T the torque delivered by the motor and i the current through the motor. The
coil can be modeled as an inductance L and a resistor R in series (since the coil
is essentially a long wire, its resistivity will play a role). The mechanical part
can be seen as a shaft with an inertia J (the inertias of the gears and wheels
are included in this inertia), a damper dwheel to simulate friction of the motor,
gears and wheels and gears (g = ωmotor

ωwheel
) to translate speeds and torques from

the motor to the wheels.

The inductance can be described as:

L
di

dt
= eL (6)

Using Kirchhoff’s voltage law:

L
di

dt
= Vin − eR − emotor (7)

Using the motor equations and Ohm’s law:

L
di

dt
= Vin − iR−

ωmotor
Gm

(8)

The angular velocity of the motor can be transformed to the angular velocity of
the wheels using:

ωmotor = (−)gωwheel (9)

Extended Team Description Paper 2020 15

The minus sign in this expression will be omitted from this point on since the
rotation of the motor can also be defined to turn the other way around without
consequence. This yields a set of 4 equations, describing the state of the current
through the motors:

L{din
dt
} = {Vin,n} −R{in} −

g

Gm
{ωwheel,n} (10)

The mechanical side of the motor can be described as:

J
dωmotor
dt

= Tmotor − Td,wheel − Tout (11)

Where Tout is the torque that the motor delivers for driving the robot, as seen
from the motor side of the gears. Using the motor equations and shifting the
loads to the wheel side of the gears yield a set of four equations describing the
angular velocity of the wheels:

Jg{dωwheel,n
dt

} = Km{in} − gdwheel{ωwheel,n} −
1

g
{Twheel,n} (12)

Using the steady state solution of the above sets of equations and with no load
applied (i.e. wheels are off the ground) yields a solution for the friction coefficient
of the motor model:

dwheel =
Km

gRωwheel
(Vin −

gωwheel
Gm

) (13)

The dynamic behavior of the body of the robot can be described with the equa-
tions:

m
dvx
dt

=
∑

Fwheels,x − dxvx

m
dvy
dt

=
∑

Fwheels,y − dyvy

I
dΩ

dt
=

∑
Fwheels,θ − dθΩ (14)

Where dnvn is the friction friction force experienced in its respective driving
direction due to for example field roughness. These equations can be combined
in matrix format:

[M]{dvn
dt
} = {

∑
Fn} − [D]{vn} (15)

The forces that the motor delivers to the body are coupled via:

{
∑

Fn} = [forceCoupling]{fwheel,n} (16)

16 RoboTeam Twente

Where fwheel,n is the force that the respective wheels apply to the ground in the
direction of the wheel. These forces are converted to torques delivered by the
wheels using:

r{fwheel,n} = {Twheel,n} (17)

Where r is the radius of the wheels. Using this result in the body dynamics:

[M]{dvn
dt
} = 1

r
[forceCoupling]{Twheel,n} − [D]{vn} (18)

Equation 12 can be rewritten as:

{Twheel,n} = gKm{in} − g2dwheel{ωwheel,n} − g2J{
dωwheel,n

dt
} (19)

Putting this result in equation 18

[M]{dvn
dt
} =1

r
[forceCoupling](gKm{in} − g2dwheel{ωwheel,n}

− g2J{dωwheel,n
dt

})− [D]{vn} (20)

Converting wheel speeds to velocities of the body of the robot yields:

[M]{dvn
dt
} =1

r
[forceCoupling](gKm{in} − g2dwheel[bodyToWheels]{vn}

− g2J [bodyToWheels]{dvn
dt
})− [D]{vn} (21)

Rearranging the terms:

([M]+
g2J

r
[forceCoupling][bodyToWheels]){dvn

dt
} = gKm

r
[forceCoupling]{in}

− (
g2dwheel

r
[bodyToWheels] + [D]){vn} (22)

The accelerations of the body of the robot can be found by taking the inverse
of the matrix on the left-hand side of the equation:

{dvn
dt
} = ([M] +

g2J

r
[forceCoupling][bodyToWheels])−1

(
gKm

r
[forceCoupling]{in} − (

g2dwheel
r

[bodyToWheels] + [D]){vn}) (23)

With the help of equation 8, which can be rewritten to:

Extended Team Description Paper 2020 17

{din
dt
} = 1

L
({Vin,n} −R{in}

− g

Gm
[bodyToWheels{vn}) (24)

With equations 23 and 24 the state of the robot (the four currents through the
motor and the three velocities of the body of the robot) is described and can be
predicted using an integration scheme such as the forward Euler method. Fur-
thermore, the friction coefficients of the body can be determined by combining
the steady state solutions of equations 23 and 24:

[D]{vn} =
gKm

Rr
[forceCoupling]{Vin} − (

g2Km

RrGm
[forceCoupling]

+
g2dwheel

r
)[bodyToWheels]{vn} (25)

These can be solved easily for the elements of matrix D since the input voltage
is known and the velocities are measurable states (note that wheels speeds and
velocities can be converted forwards and backwards using [bodyToWheels] and
[bodyToWheels]+) and D is a diagonal matrix.

Accelerometer filter The accelerometer on the robots is introduced in the
TDP of 2018 [4]. This sensor, of type Xsens MTi-3-8a7g6t, is mounted on the
robot and measures, amongst others, accelerations and rotations. It has been
primarily used to estimate the yaw of the robot very accurately, making it less
reliant on computer and vision data. The yaw measured by the sensor has a
standard deviation of 0.0011 rad/s in rest and 0.037 rad/s while driving. The
accelerations had a standard deviation of 0.025 m/s2 in rest and 2.5 m/s2 while
driving. The accuracy of the accelerations while driving is not enough to be
reliable in the state estimation. This is most likely due to vibrations of the
robot during movement. The other measurements used for state estimation are
the wheel encoders, which give the velocity of the robot transformed from the
speed of each individual wheel. However, when a wheel slips, the speed that the
encoders measure will be inaccurate. This then also results in an inaccurate es-
timated velocity. Using the accelerations measured with the accelerometer, this
situation will not occur and therefore including this data in the state estimation
is beneficial.

The issues with the accelerometer of previous years were the offset of the mea-
surements, low frequency noise (drift) and high frequency noise. The offset was
eliminated by reading out the free acceleration instead of the actual acceleration.
This eliminates the z-component of the acceleration, the gravity, if the robot is
not standing fully horizontal. For the high frequency noise, a low-pass filter was
considered, but appeared to be an insufficient solution. When driving, the robot

18 RoboTeam Twente

behaves at unpredictable frequencies, introducing the possibility of removing
useful data, when eliminating fixed frequencies. Therefore, the high frequency
noise is suppressed by post processing the data with a moving average. This kind
of filter takes the average of the last few data points on every time step. This
results in a smoother signal, making the acceleration pattern clear and usable.
The moving average does, however, introduce a delay to the measurements since
data of the past is used to calculate the acceleration. As a result, the number of
data points used in the average should be chosen optimally. On the one hand,
there is a risk of using too many data points, which introduces a larger delay
on the signal, makes the computations slower and smoothes out the signal too
much. On the other hand, too few data points might not be sufficient to remove
the high frequency noise.

By implementing a moving average the variance of the acceleration data was
decreased. The standard deviation of the data while driving is reduced from 2.5
m/s2 to a much better preliminary value of 0.4 m/s2. The data can now be used
in the Kalman filter more accurately. To verify the performance of the applied
moving average, several tests were executed. This was done with robots with
the old wheel configuration, driving in straight lines in both x-direction and y-
direction, with reference velocities of 0.5 m/s and 1.0 m/s. The output of the
Kalman filter without moving average is shown in Figure 12, the output of the
Kalman filter with moving average is shown in Figure 13.

In order to quantify the performance of both Kalman filters, the average stan-
dard deviation of the estimated velocities in driving direction has been calcu-
lated. The results can be found in Table 3. It shows that the standard deviation
for the Kalman filter with the applied moving average on the IMU data is lower
in all cases, which is also visualised in the graphs. This indicates an overall im-
proved performance of the Kalman filter if a moving average is applied.

Drifting of the measurements might be calibrated when it will become a problem.

Table 3: The average standard deviation of the estimated velocity of the robot
with and without a moving average applied to velocity output of the IMU.
Driving direction x-direction x-direction y-direction y-direction
Reference velocity [m/s] 0.5 1.0 0.5 1.0
Without moving average 0.034 0.050 0.061 0.080
With moving average 0.025 0.037 0.053 0.059

Extended Team Description Paper 2020 19

Fig. 12: Estimation of the velocity in x- and y-direction without moving average
applied.

Fig. 13: Estimation of the velocity in x- and y-direction with moving average
applied.

20 RoboTeam Twente

6 AI

6.1 Knowledge Transfer

At RoboTeam Twente, each year the team is filled with an almost completely
new team of full-time AI developers. Most of these AI developers are in the
later stages of their studies and will most likely not be present for more than
3 years after they finish their fulltime year at the Roboteam. This means they
will not always be around to explain their code to new generations, as they will
be studying or working. For this reason, a higher emphasis will be put on the
maintainability and readability of the system: though it may still be helpful,
well written code does not need someone to explain it, it explains itself through
documentation and clear design.

One of the priorities this year is redesigning and documenting parts of our system
that are unintuitive and unmaintainable. This will make it easier for new software
developers to get familiar with the codebase, so they can start contributing as
quickly as possible. A major part of this plan is the pipelining of the AI.

6.2 Pipelining our AI

The AI code is currently not centralized. Calculations are done in a lot of places,
sometimes very low level in the process and sometimes very high level. Addition-
ally, virtually all decisions are made in the Behaviour Tree of a strategy, which
makes these trees complex, and makes it very difficult to communicate between
robots as the communication is not possible between nodes on the same tree
level. This problem was previously solved by introducing global coaches that a
tree could ask for advice, but these global variables introduced a lot of mainte-
nance problems as it was not clear when they were being used and where they
were being used, making it very difficult to reproduce behaviour. To solve this,
a pipeline will be built in our AI so there is a clear, reproducible sequence of
decisions, and it is also clear where the decisions are made.

Additionally, the abstraction levels of the strategies are not always intuitive. For
example, some skills we have are very low-level and make no decisions themselves,
but there are also some skills that encompass a lot of behaviour and decision-
making, making them very complex.
Our redesigned system is largely inspired by the skill-tactic-play design from
CMDragons[5] and the adapted version from TU Eindhoven [6], with some mod-
ifications. We will give a short summary of the program design below:

There will be a set of Plays. The play is a sequence of tactics. In a tactic, multi-
ple robots cooperate to achieve a common goal, for example 2 robots performing
a pass and play. Each robot then also has a set of skills, which are low-level
behaviours like driving to a location, or shooting.

Extended Team Description Paper 2020 21

Play Checker Each play has a set of invariants and preconditions. Invariants
are conditions that must be true at all times. When a play is in action, and one
of its invariant becomes false, the play becomes invalid for use. The Play Checker
checks whether each play is feasible for the current situation, and returns all of
the plays that are approved.

Play Decider These plays are then given to a Play Decider, which looks at all
the plays and scores all of them based on how relevant they are to the current
game state. In this module plays are evaluated based on the state of the world,
but also a more reward based analysis is done here. For example, if the Roboteam
is losing 1-0, then in the last 5 minutes of the game we might decide on a more
aggressive strategy because we want to score an equalizing goal.

Play Executor The Play Executor is concerned with gathering all the neces-
sary information for the play to execute. For example, if we are doing a pass
play, then it needs to be decided which robot is the best robot to pass to, and
whether it should be a deep, shallow, or normal pass.

Finally, all of this information will be given to the behaviour tree associated with
the play and this tree will then be executed. This marks a major difference with
the current system: rather than calculating a lot of information in the behaviour
trees/skills, all of the strategic information is calculated before the strategy is
executed. The specific implementation of which part of the opponent’s goal a
robot should shoot at is still calculated in the tree. Thus, the behaviour tree
acts as the body and the AI as the brain.

The previous system architecture did not support specific decision making mod-
ules, rather, it became one large strategy that could handle almost any situation,
but the strategy being played was almost always the same. With this architec-
ture, the AI is more actively choosing which strategy they want to use each tick,
hopefully resulting in more efficient behaviour as specific plays can be found that
best match a certain situation.

Finally, by making this process very pipelined, it is easy to see where you should
make adjustments if something goes wrong, because each module has a clear
responsibility and has only one responsibility. This will greatly help new devel-
opers contribute to the system. It is expected that this new design will make
the code easier to understand, modify and maintain, as well as keeping the code
modular.

6.3 Hybrid team

This year the team will work on building specialized robots that will be respon-
sible for specialized tasks. The process will commence by introducing several
robots that have stronger motors, allowing them to accelerate faster. This makes
these robots a valuable commodity and they must be allocated efficiently.

22 RoboTeam Twente

Robot Assignment Problem With a homogenous set of robots, assigning
robots to tasks is dominated by the locations of the robots and how long it takes
them to go somewhere. This gives rise to a linear program which is currently
solved with the Hungarian algorithm[7].

However, when the team is no longer homogenous, we run into the issue that
some robots are better at doing something. We therefore need to look at the
cost of a robot going somewhere versus the reward for the robot performing this
action, and with certain robots the reward will be higher based on their physical
configuration. Additionally, we need to make a distinction about which task is
the most important to perform, so we get the best robots performing the most
important tasks. This will be simplified by using heuristics.

Currently, the assignment problem has been implemented as follows. Let A be
the set of robots that need assignments, and let B be the set of possible roles
for the robots. In our assignment problem, all robots are fit to do each task,
so the resulting graph becomes a complete bipartite graph. The standard linear
assignment problem looks as follows:

min
∑

i,j∈A,B
xi,jwi,j (26)

The cost is currently based on the distance from the robot to its destination.
However, it needs to be extended to take into account that there are different
kinds of robots in the team.

Each edge in the graph will be evaluated based on the cost of robot i moving to
the location role j indicates, and the cost of robot i executing role j multiplied
by the proficiency P of the robot at executing this task, and the importance I
of the task.

This cost metric will have this form:

wi,j = Cmove
i,j + Cdo

i,jPi,j ∗ I2 (27)

In order to find a good cost function for this, trial and error can be used. How-
ever, the cost function can also be learned.

By creating several scenarios and corresponding correct and incorrect assign-
ments, it is expected the cost functions can be scored. This provides a more
formal manner of determining the cost function.

6.4 Simulator

Although we were reasonably satisfied with the usage of grSim [8], the team
decided after the previous RoboCup that a new simulator was necessary. The

Extended Team Description Paper 2020 23

reasoning for this was primarily that there were multiple issues with the physics
library used by grSim, Open Dynamics Engine (ODE).

Although our design is distinctly different in some places, the internal simulator
used by ER-Force [9] and grSim were big inspirations for us. For the team the
purpose of a simulator is both to test out new strategies and tactics, but also to
do tests.
There are three main reasons for using a new physics library. First and foremost,
due to the way the physics engine works, grSim scales quite badly to a larger
amount of robots. This is because ODE’s accurate solution method solution time
scales cubically with the amount of objects in the world. With the SSL’s ambi-
tion to move to 11 robots, it was noted that on many of our developers’ system
the desirable framerate of at least 60 Hz was no longer obtainable. There are
quick (linear) methods which sacrifice accuracy for speed, also in ODE. However,
these suffer from many accuracy problems. Other libraries which are tuned to
use these linear methods typically give much better performance.
It was then attempted to integrate the simulator into our existing software archi-
tecture, but the team ran into issues with this as grSim is not easily portable as
a library. Another issue is that in ODE a lot of post-hoc damping and smoothing
is necessary to produce ’physical-movement’ due to the system-matrix formula-
tion. In grSim very high parameters for constraint force mixing (CFM) are used
to resolve this. There were also problems with accurately simulating the control
on our robots, specifically the rotational (yaw) control using the Xsens IMU as
detailed in our previous ETDP[4]. This was mostly due to the high forces and
small timescales involved in robot control.
The decision fell on Bullet1 as the library to be used for physics simulation.
Bullet is a physics library that is under active development. It supports many
useful features, and has an easy to use and Object Oriented C++ API. Below
is a description of some features of our new simulator.

– Situations were incorporated, that are a complete and easy to create descrip-
tion of the state of the game. These situations can then be saved as files and
loaded into the simulator.

– The simulator is deterministic, so that given the same input, the simulation
will return exactly the same results. This allows for rigid testing. The future
goal is also to add an network-interface so that it’s possible to easily create
integration tests for software using these situations.

– Time scale can be adjusted to run faster/slower than real time or the library
can be used in a machine learning project manually to simulate as fast as
possible.

– The friction parameters conforming to the two-stage ball model as described
by the FU-fighters [2] are also implemented. This turned out to be a lot

1 Bullet physics library

http://bulletphysics.org

24 RoboTeam Twente

more accurate than the model used by grSim, allowing for more realistic
simulation.

– Just like grSim, robot and world settings can easily be loaded from files.
Similarly, we also have options for simulating noise and delays.

– One new feature is that we simulate camera settings using parameters used
at the RoboCup. This way the offset at the middle line is simulated, as well
as the nonlinear trajectories the ball follows when in parabolic flight. Also
rough pixel positions can be determined.

– One of the nicer features of Bullet is convex hull support. This makes ball-
robot collisions a lot more realistic and prevents the ball ending up inside of
the robots, as sometimes happened in grSim.

Note that at the moment of writing this simulator is still under active develop-
ment. It is publicly available as an open-source project: roboteam_mimir

6.5 Replacing ROS with Google Protobuffers

During previous years the Robotic Operating System (ROS) was used as under-
lying framework for the software. ROS was used for interprocess communication
between data processing, decision making and message transmission. Using the
ROS parameter server settings were shared between the different processes. By
using ROS and the accompanying rosmsgs library it was easy to monitor values
that where sent over the network. On the other hand, understanding the infras-
tructure of ROS takes some time for new developers. Another disadvantage of
ROS was that installing it would take a long time and a lot of disk space. This
would cost a considerable amount of compile time as well as a relatively large
hit on runtime performance. Another disadvantage of ROS is the fact that it is
only supported on Linux operating systems.

Because RoboTeam Twente has an annual cycle of switching team members,
new developers have to be trained every year. This means that the steep learn-
ing curve of ROS, as well as the installation effort outweighs the advantages
that ROS has to bring for RoboTeam Twente. Therefore it was decided to find
a replacement.

ROS provided to following utilties:

– Interprocess communication using the rosmsgs package
– Shared settings using the rosparams package
– Plotting data packets using PlotJuggler
– Monitoring time in the system using ros::time

https://github.com/RoboTeamTwente/roboteam_mimir

Extended Team Description Paper 2020 25

Interprocess communication and global settings For each of these utilities
a replacement needed to be found. A replacement for the interprocess commu-
nication was found in Google Protobuffers, which are used by the SSL league
as well. A library was created to mimic the messaging library rosmsgs such that
it could be easily replaced with protobuf messages. This uses the publisher-
subscriber pattern to provide clear communication between the different appli-
cations, and communcation is easily shared over computers using TCP.
As the ROS params were not available anymore, a channel was created for the
settings that would use the same publisher subscriber model. This heavily in-
creased the speed of which settings could be applied and is more consistent with
the other parts of the system. The roboteam_ai repository is responsible for
publishing these settings, as roboteam_ai shows a complete visualization of the
system and already deploys a configurable user interface.

Replacing ros::time ros::time could be easily replaced with the default std::chrono
library. Using some self-written functionality this easily replaces the utilities pro-
vided by ROS.

Plotting data As PlotJuggler is not usable without ROS a replacement needed
to be found. The control team does rely on charts from the data sent to the robots
so a good plotting application is rather important. As no proper replacement
was found, a new application is created just for this purpose, which we call
roboteam_monitor.
roboteam_monitor takes the roboteam_proto library to get the message defini-
tions. In the roboteam_proto library these definitions are given, auto-generated
and there is also a specification as to which messages can be found on which TCP
channel. Roboteam_monitor can then listen to these TCP channels as well and,
using the Google Protobuf Reflection methods, decode the message sent over the
channel.
Roboteam_monitor makes the user create a chart with one or more series. Every
series can represent an input of data, which can be filtered. A user can therefore
create a chart where simultaneously the velocity of robot 0 and 1 is plotted,
while it also plots the ball velocity from another channel.
Plot configurations can be stored to a json file, so a user does not need to
constantly configure the chart, but can just use preconfigured settings. For the
future, the idea is to add more mathematical functions to roboteam_monitor,
as well as a dashboard to support multiple chart configurations in one view as
well.

26 RoboTeam Twente

References

[1] Raul Rojas and Alexander Gloye Förster. “Omnidirectional Control”.
In: KI - Künstliche Intelligenz (2005).

[2] R. Rojas and M. Simon. Like a rolling ball.
retrieved at http://robocup.mi.fu-berlin.de/buch/rolling.pdf on the 7th of
January 2020.

[3] ER-Force. ER-Force Extended Team Description Paper Robocup 2016.
Tech. rep. 2016.

[4] RoboTeam Twente. RoboTeam Twente 2018 Team Description Paper.
Tech. rep. 2018.

[5] Brett Browning et al. “STP: Skills, tactics, and plays for multi-robot
control in adversarial environments”.
In: Proceedings of the Institution of Mechanical Engineers, Part I: Journal
of Systems and Control Engineering 219.1 (2005), pp. 33–52.

[6] Lotte de Koning et al. “Skills, tactics and plays for decentralized
multi-robot control in adversarial environments”.
In: Submitted to AMAAS 172 (2017).

[7] Wikipedia. “The Hungarian Algorithm”.
In: (). retrieved at https://en.wikipedia.org/wiki/Hungarianalgorithm.

[8] Valiallah Monajjemi, Ali Koochakzadeh, and Saeed Shiry Ghidary.
“grSim – RoboCup Small Size Robot Soccer Simulator”.
In: RoboCup 2011: Robot Soccer World Cup XV.
Ed. by Thomas Röfer et al.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 450–460.
isbn: 978-3-642-32060-6.

[9] Michael Bleier et al Florian Bauer Peter Blank.
ER-Force Extended Team Description Paper Robocup 2011. Tech. rep.
2011.

	RoboTeam Twente Extended Team Description Paper 2020

