
MCT Susano Logics 2016 Team Description

Shota Aoki, Taihei Degawa, Kazuhiro Fujihara, Yuta Notsu, Toshiyuki Beppu

National Institute of Technology, Matsue College, 14-4, Nishi-Ikuma, Matsue,
Shimane, 690-8518, Japan

beppu[at]matsue-ct.jp
http://www.matsue-ct.ac.jp/

Abstract. In the RoboCup Small Size League (SSL), teams of six robots which
are autonomously controlled by a team AI play soccer games using an orange
colored golf ball. In SSL games, an image processing system (SSL-Vision) re-
ceives images from four cameras which are installed 4 meters above the field
surface, identifies the robots and ball positions. Because the SSL-Vision identi-
fies the robots and the ball positions from all camera images, multiple position
coordinates are computed in overlapping regions of the images. A multi-particle
filter was developed to determine the ball position in the overlapping regions,
and to minimize the discontinuity of the moving ball locus across the regions.
The multi-particle filter consists of 4 particle filters and a particle binder esti-
mates the position of the ball from the median point of a combined distribution.
In an experimental setup, the multi-particle filter smoothly connected two ball
locus vectors with a distance of 17 mm. The distances between each sample of
the filtered outputs were almost the same as both sets of data from the two cam-
eras.

Keywords. Particle Filter, SSL-Vision.

1 Introduction

From RoboCup 2014 João Pessoa, Brazil, a “large field” of nominal size 9000 mm *
6000 mm was partially adopted for SSL games. At RoboCup 2015 Hefei, China, all
SSL games were played on the large field.

In SSL games, an image processing system (SSL-Vision) [1] identifies the robots
and the ball positions at a speed of 60 frames per second from images taken by four
cameras installed at 4 meters above the field surface. The SSL-Vision calculates the
coordinates of the robots and the ball, and sends position data to the team’s AI comput-

ers. Because the SSL-Vision identifies the robots and the ball from all camera images,
multiple position coordinates are computed in overlapping regions at boundaries be-
tween camera images (Fig. 1).

At the game kickoff, a ball was placed on the center of the field, where four cameras
capture images and the SSL-Vision outputs four coordinates of the ball simultaneously.
Our team AI vacillated between position data and therefore, could not control the kicker

http://www.matsue-ct.ac.jp/

robot accurately. Furthermore, the overlapping region across the goal caused fluctua-
tions in our AI’s predicted ball locus and resulted in the poor defense of our goalkeeper.

A multi-particle filter for the ball position estimation was developed to determine the
coordinates of the ball in the overlapping regions, and to minimize the discontinuity of
the moving ball locus across the boundaries.

Fig. 1. Overlapped region of camera images on the SSL field

2 Multi-Particle Filter

2.1 Particle Filter

A Particle Filter (PF) is a set of genetic-type particle Monte Carlo methodologies to solve
the filtering problem [2]. Each particle in the PF has the state vector. The PF estimates
the posterior density of the state vectors from given observation vectors.

Figure 2 shows the process of the PF [3]. The PF consists of three calculation steps
of estimation, update and resampling. At the start of the loop of the process, the PF
generates a set of particles based on the uniform distribution or the normal distribution.
From the second loop, the PF uses the anterior filtered distribution of the system to esti-
mate the current state. The samples from the distribution are represented by a set of
particles.

The PF estimates a state distribution at time t (xt|t-1) from that of t - 1 (xt-1|t-1), utilizing
the system model in the estimation step. In the update step, the PF receives an observa-
tion vector yt and sets a probability density function. Then the PF evaluates a probable
weight of each particle that represents the probability of that particle being sampled from
the function (x~t|t). In the resampling step, the PF adjusts the distribution to the obser-
vation by weighted random sampling of the particles with the probable weights from the
estimated distribution at time t. After the resampling step, the particle distribution (xt|t)

shows the filtered distribution at time t. The PF outputs the median point of the filtered
distribution 𝑥�̂� as the estimated state of the system.

Fig. 2. Process of the particle filter

2.2 Particle Filter for SSL-Vision

A two-dimensional state vector xt indicates the coordinates of the ball position [Pxt , Pyt].

 𝒙𝑡 = [𝑝𝑥𝑡，𝑝𝑦𝑡] (1)

An observation vector yt is the coordinates of the ball position received from the
SSL-Vision. Observation noise w is the normal distribution with a standard deviation
of 2 millimeters. This value was decided experimentally.

 𝒚𝑡 = 𝒙𝑡 + 𝒘
𝒘~𝑁(𝟎, 𝑹)
𝑹 = 𝑑𝑖𝑎𝑔(4.0,4.0)

(2)

A velocity vector st is calculated from the PF output of 𝑥�̂� and �̂�𝑡−1, and the sampling
period of the SSL-Vision Δt.

 𝒔𝑡 = (𝒙𝑡 – 𝒙𝑡−1) / 𝛥𝑡 (3)

A system model is defined as follows.

 𝒙𝑡 = 𝒙𝑡−1 + 𝒔𝑡−1 ∗ 𝛥𝑡 + 𝒗
𝒗~𝑁(𝟎, 𝑸)
𝑸 = 𝑑𝑖𝑎𝑔(1.0,1.0)

(4)

An inaccuracy of the ball motion is expressed as system noise v. This system noise
conforms to the normal distribution with a standard deviation of 0.5 millimeter.

The probable weights of the particles 𝝎𝒕 are calculated from a normal distribution
with the state vector xt and the observation vector yt.

𝜔𝑡 =
1

√2𝜋𝑹
𝑒𝑥𝑝 (−

(𝒙𝑡−𝒚𝑡)𝑇𝑹−1(𝒙𝑡−𝒚𝑡)

2
) (5)

2.3 Multi-Particle Filter

The SSL-Vision identifies the robots and the ball position from all camera images and
therefore, multiple position coordinates are computed in the overlapping regions of the
images. A multi-particle filter (MPF) was developed to determine the ball position in
the overlapping regions, and to reduce the data discontinuity of the moving ball, which
goes across the boundary between camera areas.

Figure 3 shows the process of the MPF. The MPF consists of four PFs and a particle
binder. Each PF is assigned to a designated camera. The SSL-Vision sends the ball
position data with camera IDs. The MPF identifies the data from the ID number and
each PF calculates a particle distribution for the camera independently. The particle
binder combines the filtered distributions and outputs the median point of the combined
distribution 𝑥�̂� as the estimated ball position.

When the ball is in a camera area, a PF for the received data executes the filtering
process (estimation, update and resampling) as shown in Fig. 3. The PFs with contin-
uously missing data will not execute the filtering steps. The particle binder copies the
particle distribution from the executed PF to the combined distribution and calculates
the median point. Then the particle binder sends the distribution to other PFs of con-
tinuously missing data as the anterior distribution for the next filtering. This technique
reduces fluctuations of the estimated ball position for the time of the ball entry to the
overlapping region.

Fig. 3. Operation of the MPF with a ball data

The PFs of received data execute the filter and the filtered distributions are collected
into the combined distribution when the ball is in the overlapping region (Fig. 4). The
particle binder calculates the median point from the combined distribution, which indi-
cates the average of the all estimated distributions.

Fig. 4. Operation of the MPF with four ball data

When the ball goes out of the overlapping region and data from a camera is missed
occasionally, the PF of occasional data missing outputs the particle distribution with
the estimation step only (Fig. 5). In case of data continuously being missed, the prob-
ability of estimation deteriorates gradually because the distribution will not be corrected
with the observed positions. At this time, the number of calculated particles from the
PF of occasional data missing (pNum) is reduced in proportion to the number of missing
cycles (missingCount).

 𝑝𝑁𝑢𝑚 = 𝑝𝑀𝐴𝑋 ∗ (1 −
𝑚𝑖𝑠𝑠𝑖𝑛𝑔𝐶𝑜𝑢𝑛𝑡

𝑚𝑖𝑠𝑠𝑖𝑛𝑔𝑀𝐴𝑋
) (6)

Where pMAX is the number of particles used for a PF, missingMAX is the maximum
number of cycles that the PF executes the estimation without observations.

The median point of the combined distribution 𝑥�̂� is calculated from the average with
reduced particles from the data missing PF.

𝑜𝑢𝑡𝑝𝑢𝑡𝑋 =
∑ ∑ 𝒙𝑐

[𝑖]𝑝𝑁𝑢𝑚𝑐
𝑖=0

𝑐𝑎𝑚𝑒𝑟𝑎𝑁𝑢𝑚
𝑐=0

∑ 𝑝𝑁𝑢𝑚𝑐
𝑐𝑎𝑚𝑒𝑟𝑎𝑁𝑢𝑚
𝑐=0

 (7)

The position fluctuations of the filtered output at the moment from when the ball in
the overlapping region moves to a single camera region will be diminished by the parti-
cle reduction with (6) and (7)

Fig. 5. Operation of the MPF with an occasional data missing

2.4 Experimental Result of the MPF

Two cameras (AVT Stingray F046C, 780 x 580 pixels) at a distance of 3 meters in-
stalled 3.4 meters above the surface of the field monitored a field of 6 by 4.5 meters
with an overlapping region of 620 millimeters in width. A ball, which went across the
overlapping region at a speed of 1.9 meters per second was captured by cameras. The
MPF outputs were calculated offline. The number of total particles, pMAX, was set to
300, and the maximum calculating cycles of data missing, missingMAX, was set to 15.

Figure 6 shows the camera captured coordinates and the estimated position of the
MPF. The distance of the ball locus vectors of camera 1 and 2 is about 17 millimeters.
The MPF estimation connects the locus smoothly. The distances between each sample
were 32 ± 15 (Camera 0), 28 ± 9 (Camera 1), and 28 ± 6 (MPF) millimeters in this trial.

Fig. 6. Observed ball position and the MPF outputs

3 Implementation of MPF to the Team AI

Figure 7 shows the software structure of MCT Susano Logics. Packet Reader receives
vision packets from the SSL-Vision and sends the ball position with camera ID to the
MPF. The estimated position is sent to both AI and Robots Controller. The software
was developed by C++ (GCC 4.9). The process time of the MPF with 250 particles is
2.41 ± 0.37 milliseconds on Dell Inspiron 15 5000 (CPU: Intel Core i7-5500U
2.4GHz, memory size: 8GB) with Linux OS (Xubuntu 14.04). The speed of the MPF
is adequate for our needs and we will implement it into our team AI.

Fig. 7. Software structure with MPF

References

1. S. Zickler, T. Laue, O. Birbach, M. Wongphati, M. Veloso. SSL-Vision: The
Shared Vision System for the RoboCup Small Size League. 2009. http://isites.har-
vard.edu/fs/docs/icb.topic859418.files/papers/sslvision2009-new.pdf

2. P. Del Moral. Non Linear Filtering: Interacting Particle Solution. Markov Processes
and Related Fields 2 (4): 555–580, 1996.

3. T. Ikoma. Sequential Monte Carlo method and Particle Filter (in Japanese). Chap-
ter 11, Statistical Science in 21th. Century, Japan Statistical Society. 2008.
http://ebsa.ism.ac.jp/ebooks/sites/default/files/ebook/1881/pdf/vol3_ch11.pdf

http://ebsa.ism.ac.jp/ebooks/sites/default/files/ebook/1881/pdf/vol3_ch11.pdf

