
RoboDragons 2014 Team Description

Yuji Nunome, Tomonori Hibino, Akifumi Hosino, Shohei Yokota,
Yusuke Adachi, Masahide Ito, Kunikazu Kobayashi,

Kazuhito Murakami and Tadashi Naruse

Aichi Prefectural University, Nagakute city, Aichi, 480-1198 JAPAN

Abstract. This paper describes a system configuration of RoboDrag-
ons, a team of Aichi Prefectural University, Japan. The robots were newly
developed last year. The features of the robot are to use a 50 watt DC
blushless motor for driving an omni-wheel, an improved chip-kicker, a
simple proximity sensor, and a wireless LAN for communication. Soft-
ware on the RoboDragons’ system is almost the same as the one used
last year. However, we improved the estimation method of moving-time
of the robot. We describe it in this paper. We propose a method to esti-
mate the ball’s state of spin. It is useful for estimating the speed of the
ball after chip-kicked with strong spin and bounced. It is desired to be
implemented in the shared vision system.

1 Introduction

In the team description paper (TDP) of RoboDragons 2014, we summarize the
hardware and the software architecture of our system and then describe in detail
the improvement of the software done this year.

For the hardware, we developed a new robot last year. Features of the
new robot are dimension with 125mm height and 178mm diameter cylinder,
a 50watts DC brushless motor for driving an omni-wheel, an improved chip-
kicker, a simple proximity sensor, and a wireless LAN for communication. The
detail is written in RoboDragons 2013 TDP [1].

Software development is crucial for the performance of the robot system.
Though we use almost the same software as the 2012 system which we described
in RoboDragons 2012 TDP [2], we improved the method of estimating the arrival
time of the robot to the given destination. This paper shows it in detail. Moreover
we propose an estimation method of the rotational speed of the spinning ball.
It helps teams estimate the ball speed after bouncing when a chip-kick is taken.
We hope the method will be build in the shared vision system.

2 Robot Hardware

In this section, we briefly describe our current robot. We show that the robot
with/without cover in Figure 1. The features of our robot are shown as follows.

– Cylinder with dimensions of 125mm height and 178mm diameter.

– Weight : 2.3 kg.
– Maximum percentage of the ball coverage : about 18%.
– Motor : 50watt DC brushless motor for driving a wheel.
– Simple proximity sensor.
– Wireless LAN for communication.

Fig. 1: Current robot developed in 2012
(Left: without cover, Right: with cover)

2.1 Components of the robot

All devices attached to the robot are shown in Fig. 2. The description of each
device are presented in Table 1. The details are written in RoboDragons 2013
TDP [1].

2.2 Robot control program

The block diagram of the robot control program is shown in Figure 3. In the
figure, each box named module is a thread program which run independently
and other boxes are hardware which are controlled by modules. Basic control
method is the same as the robot developed in 2010 [6].

2.3 Configuration of communication packet

Thanks to the fast communication ability of the radio system, we redefined the
communication packet configuration. The packet consists of 20 byte header, 49
byte packet body and 2 byte footer. The packet body consists of 8 byte command
for each robot and 1 byte common command for all robots.

The 8 byte command is shown in Table 2. Basic idea of the command is that
we give the moving vector and the angular velocity of the robot. In the 6th and
7th bytes, we give the kick command. “gggg” field selects kicker (straight/chip)

Table 1: Summary of the robot

Device Description

Control Unit CPU: SH2A processor (Renesas Electronics Corporation)
operated with 196MHz clock. Peripheral circuits (except
analog circuits) are almost in the Xilinx’s Sparta-6 FPGA.

Boost Converter Convert from 18.5V DC to 150V - 200V DC.
Condenser has a capacity of 4400µF.
Charging time is about 2 s (when output voltage is 200V).

Motor Maxon “EC 45 flat 50W”.
Gear reduction ratio between motor and omni-wheel is 21:64.

Wheel 4 omni-wheels, each has 20 small tires in circumference.
Diameter: omni-wheel 55mm, small tire 12.4mm.

Dribble Device Dribble roller: 16mm in diameter and 73mm in length, made of
aluminum shaft with silicon rubber. Motor is Maxon “EC 16 30W”.

Ball Sensor Infra-red light emission diode and photo diode pair.

Kicker Kick bar is made of 7075 aluminum alloy.

Solenoid is a coil winding 0.6mmϕ enameled wire.
Straight kicker kicks a ball with over 10m/s velocity at maximum.
Chip-kicker kicks a ball as far as 4m distance at maximum.

Communication IEEE 802.11g wireless LAN.

Control unit Boost converter Dribble device Motor

Omniwheel Kick bars and coil Radio system

Fig. 2: All devices

modem
communication
 module

command
module

motor control
 module

command

voltage
booster

IR sensor

wheel speed

motor

packet

signal signal

signal

Fig. 3: Software configuration of robot

Table 2: Command for each robot
Config. Description

1st byte aaaabbbb aaaa: Robot ID, bbbb: Robot velocity
2nd byte bbbbbbbb bbbbbbbb: Robot velocity, 0 - 4095 (mm/s)
3rd byte cccccccc cccccccc: Moving direction, Resolution is 2π/512 radian
4th byte 000cdeee c: Moving direction, d: Rotation direction, 0:cw, 1:ccw

eee: Angular velocity
5th byte eeeeeeee eeeeeeee: Angular velocity, 0 - 2047 (deg/s)
6th byte ffffffff ffffffff: Kick force, 256 levels
7th byte gggghhhh gggg: Normal/Forced kick, hhhh: Dribble velocity, 8 levels

for each rotation direction (cw, ccw)
8th byte iiiiiiii iiiiiiii: CRC code

and kicking mean (normal/forced). The normal means to kick when the ball
sensor detects the ball while the forced means to kick just after the command is
issued.

The 1 byte command for all robots is mainly used for debug purpose.

3 Software System

3.1 Overview of the software system

In this section, we show how our software system in host computer is composed
and relates to the information from real world. The overview of our software
system is shown in Figure 4.

Real World

Cameras Robots

SSL-Vision

Computer

RServer

Tracker world

Soccer

View

Radio

Fig. 4: Overview of software system

The host computer is a commercial one. CPU is Intel Core i7 4700MQ and
main memory is 4GB. OS is Ubuntu 13.10/Linux. Three main modules are
running, each of which is composed as follows.

(1) The Rserver module receives SSL-Vision data and uses tracker submodule
to predict the ball and robots positions by using Kalman Filter. They are
stored in memory as world date, which are shared by viewed Soccer module.
To send a command to each robot, a radio submodule is used.

(2) The View module is used to see the simulated image of real world so that
they are easy to understand the situation. To do so, users set the number
of robots and team color.

(3) The Soccer module makes an action command for each robot. By using the
world data, the module chooses the best strategy, gives a role to each robot,
and calculates a moving path for each robot.

3.2 Improvement of arrival time estimation

After the path planning for given destination, the estimation of moving-time to
destination is necessary in many cases. Examples are the case finding the fastest
robot to get to the destination, the case preventing an opponent robot from
getting the ball, and so on.

We use the RRT algorithm [7] for path generation. However, in our system,
the estimation of moving-time is quite simple, i.e. estimating it as the moving-
time on the straight line connecting the current position and the destination
under the predefined motion profile as shown in Figure 5.

In case that obstacles are in the field, as shown in Fig. 6, the path is not
straight line. An actual path and a motion profile will be given by Figs. 6(a) and
6(b), respectively. Above approximation results in big error.

����
�����

��

(a) A path for estimating moving-time

Time

V
el

oc
ity

Estimated moving-time

Max Velocity

�
�

(b) Motion profile

Fig. 5: Estimation of moving-time

To reduce estimation error with keeping the real time computation, we adopted
intermediate points method. The number of intermediate points being used de-
pends on the situation. We use one intermediate point here. An example is shown
in Figure 7. In the figure, a green line is a path generated by RRT. The inter-
mediate point is given by the farthest point on the RRT line that the robot
can move straight without colliding the obstacle. The estimated moving-time is
given by the moving-time on the two straight black lines (current position - in-
termediate point and intermediate point - goal) under the motion profile shown
in Fig. 7(b). We assume the velocity reduces to zero at the intermediate point.

With this estimation, we can reduce the approximation error by 51%.

����

�����

�����	
�

��

(a) Actual path

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140 160 180

sp
ee

d

frame

(b) Motion profile

Fig. 6: Actual path and motion profile

����
�����

������	
	��� ��	��

(a) Approximation by two lines

Estimated moving-time

Max Velocity

Time

V
el

oc
ity

�

��

�

��

�
�

(b) Motion profile

Fig. 7: Use intermediate point

4 A Method to Estimate Ball’s State of Spin by Image
Processing

In RoboCup 2013, there were a few teams that a robot chip-kicked the ball with
strong spin. When a ball is chip-kicked with strong spin, the spinned ball varies
its speed after the ball bounced off the floor. This makes it difficult to predict
the locus of the ball. If the ball’s state of spin is obtained in advance, for example
by image processing, it will be very useful to prevent disadvantageous situation
[8].

4.1 Image processing target

In the RoboCup SSL, orange golf ball is used as an official ball. There are many
dimples on the surface of the ball. These dimples cause the changes of reflection
and this reflection changes according to the degree of blur. Figure 8 shows the
differences of the images. Fig. 8(a) is a static ball’s image and some highlight
regions exist in it, on the other hand Fig. 8(b) is a spinning ball’s image and it
looks like a smoothed image. It will be possible to estimate the ball’s state of
spin by analyzing the distribution of reflection.

(a) Static ball
(b) Spinning ball

Fig. 8: Differences of the zoomed up images

4.2 Image processing method to estimate ball’s state of spin

Our system is composed of three parts of image processing. First, the ball’s
region is extracted, then co-occurrence matrix and inertia feature are calculated
in the ball’s region, and finally the ball’s state of spin is estimated.

The inertia feature Ine was calculated by

Ine =

n−1∑
i=0

n−1∑
j=0

(i− j)2Pδ(i, j), (1)

here Pδ(i, j) is a co-occurrence matrix, Dx and Dy are the differences of x- and
y-coordinates of two pixels, respectively, and δ = (Dx, Dy) denotes the vector of
them.

Figure 9 shows an example of the changes of the inertia feature for an im-
age sequence in which the ball repeats spinning and stopping. (In Fig. 9, the
rotational speed of the ball is constant.) It is known from the figure that Ine is
changed largely between the ball’s state is spinning and stopping.

Figure 10 shows that the relation between Ine value and rotational speed. It
is shown from Fig. 10 that the value of inertia feature Ine decreases according to
the increase of the rotational speed of the ball, so it will be possible to estimate
the rotational speed of the ball. The spinning ball varies its speed after the ball
bound off the floor. Thus if the rotation speed of the ball can be estimated,
the trajectory of the ball after the bound off the floor will be predicted more
accurately.

Static State

Threshold1

Spinning State

Threshold2

�

��

��

��

��

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

v
a
lu

e
 o

f
fe

a
t
u

r
e
 I
n
e

frame number of image sequence

Fig. 9: The changes of the inertia feature for an image sequence

2.5

3.5

4.5

5.5

6.5

7.5

0 5 10 15 20 25 30 35

va
lu

e
of

 fe
at

ur
e I

ne

rotational speed(rps)

Fig. 10: Result of the image processing method to estimate ball’s state

5 Conclusion

This paper described the summary of the robot and software system of Robo-
Dragons 2014 and described an improved method of estimating the moving-time
of the robot when a path is given. Moreover, this paper proposed a method
to estimate the ball’s state of spin. This method could be implemented in the
shared vision system.

References

1. Kotaro Yasui, Yuji Nunome, Shinya Matsuoka, Yusuke Adachi, Kengo Atomi,
Masahide Ito, Kunikazu Kobayashi, Kazuhito Murakami and Tadashi Naruse “Ro-
boDragons 2013 Team Description”, RoboCup 2013 symposium CDROM, 2013

2. Kotaro Yasui, Taro Inagaki, Hajime Sawaguchi, Yuji Nunome, Hiroaki Sasai, Yuki
Tsunoda, Shinya Matsuoka, Naoto Kawajiri, Togo Sato, Kazuhito Murakami and
Tadashi Naruse “RoboDragons 2012 Team Description”, RoboCup 2012 symposium
CDROM, 2012

3. Kotaro Yasui, Taro Inagaki, Hajime Sawaguchi, Yuji Nunome, Hiroaki Sasai, Yuki
Tsunoda, Shinya Matsuoka, Naoto Kawajiri, Togo Sato, Kazuhito Murakami and
Tadashi Naruse “RoboDragons 2012 Extended Team Description”, RoboCup 2012
symposium CDROM, 2012

4. http://www.toppers.jp/en/index.html
5. http://en.wikipedia.org/wiki/TRON project and

http://en.wikipedia.org/wiki/ITRON
6. Akeru Ishikawa, Takashi Sakai, Jousuke Nagai, Taro Inagaki, Hajime Sawaguchi,

Yuji Nunome, Kazuhito Murakami and Tadashi Naruse “RoboDragons 2010 Team
Description”, RoboCup 2010 symposium CDROM, 2010

7. James Bruce, Manuela Veloso, “Real-Time Randomized Path Planning for Robot
Navigation”, Intelligent Robots and Systems, 2002. IEEE/RSJ International Con-
ference on Volume:3, pp.2383 - 2388, 2002

8. Yuji Nunome, Kazuhito Murakami, Kunikazu Kobayashi and Tadashi Naruse, “A
Method to Estimate Ball’s State of Spin by Image Processing for Strategic Learning
in RoboCup Small-Size-robot League”, “The Japanese Society for Artificial Intelli-
gence”, SIG-Challenge-B301-4, pp.21-25, 2013

