
RoboDragons 2014 Extended Team Description

Yuji Nunome, Tomonori Hibino, Akifumi Hosino, Shohei Yokota,
Yusuke Adachi, Masahide Ito, Kunikazu Kobayashi,

Kazuhito Murakami and Tadashi Naruse

Aichi Prefectural University, Nagakute city, Aichi, 480-1198 JAPAN

Abstract. This paper describes a system configuration of RoboDrag-
ons, a team of Aichi Prefectural University, Japan. The robots were newly
developed last year. The features of the robot are to use a 50 watt DC
blushless motor for driving an omni-wheel, an improved chip-kicker, a
simple proximity sensor, and a wireless LAN for communication. Soft-
ware on the RoboDragons’ system is almost the same as the one used last
year. However, we improved the estimation method of moving-time of the
robot. We describe it in this paper. These are also shown in the Robo-
Dragons’ TDP. In this paper, in addition to these topics, we describe an
algorithm to realize the continuous passes forming the pentagram. The
video is available. You can watch it on our site, http://www.ist.aichi-
pu.ac.jp/lab/narulab/index e.html.

1 Introduction

In the extended team description paper (ETDP) of RoboDragons 2014, we sum-
marize the hardware and the software architecture of our system and then de-
scribe in detail the improvement of the software done this year.

For the hardware, we developed a new robot last year. Features of the
new robot are dimension with 125mm height and 178mm diameter cylinder,
a 50watts DC brushless motor for driving an omni-wheel, an improved chip-
kicker, a simple proximity sensor, and a wireless LAN for communication. The
detail is written in RoboDragons 2013 TDP [1].

Software development is crucial for the performance of the robot system.
Though we use almost the same software as the 2012 system which we de-
scribed in RoboDragons 2012 TDP [2], we improved the method of estimat-
ing the arrival time of the robot to the given destination. This paper shows it
in detail. Moreover we describe an algorithm to realize the continuous passes
forming the pentagram. The video is available. You can watch it on our site,
http://www.ist.aichi-pu.ac.jp/lab/narulab/index e.html.

2 Robot Hardware

In this section, we briefly describe our current robot. We show that the robot
with/without cover in Figure 1. The features of our robot are shown as follows.

– Cylinder with dimensions of 125mm height and 178mm diameter.
– Weight : 2.3 kg.
– Maximum percentage of the ball coverage : about 18%.
– Motor : 50watt DC brushless motor for driving a wheel.
– Simple proximity sensor.
– Wireless LAN for communication.

Fig. 1: Current robot developed in 2012
(Left: without cover, Right: with cover)

2.1 Components of the robot

All devices attached to the robot are shown in Fig. 2. The description of each
device are presented in Table 1. The details are written in RoboDragons 2013
TDP [1].

2.2 Robot control program

The block diagram of the robot control program is shown in Figure 3. In the
figure, each box named module is a thread program which run independently
and other boxes are hardware which are controlled by modules. Basic control
method is the same as the robot developed in 2010 [6].

2.3 Configuration of communication packet

Thanks to the fast communication ability of the radio system, we redefined the
communication packet configuration. The packet consists of 20 byte header, 49
byte packet body and 2 byte footer. The packet body consists of 8 byte command
for each robot and 1 byte common command for all robots.

The 8 byte command is shown in Table 2. Basic idea of the command is that
we give the moving vector and the angular velocity of the robot. In the 6th and

Table 1: Summary of the robot

Device Description

Control Unit CPU: SH2A processor (Renesas Electronics Corporation)
operated with 196MHz clock. Peripheral circuits (except
analog circuits) are almost in the Xilinx’s Sparta-6 FPGA.

Boost Converter Convert from 18.5V DC to 150V - 200V DC.
Condenser has a capacity of 4400µF.
Charging time is about 2 s (when output voltage is 200V).

Motor Maxon “EC 45 flat 50W”.
Gear reduction ratio between motor and omni-wheel is 21:64.

Wheel 4 omni-wheels, each has 20 small tires in circumference.
Diameter: omni-wheel 55mm, small tire 12.4mm.

Dribble Device Dribble roller: 16mm in diameter and 73mm in length, made of
aluminum shaft with silicon rubber. Motor is Maxon “EC 16 30W”.

Ball Sensor Infra-red light emission diode and photo diode pair.

Kicker Kick bar is made of 7075 aluminum alloy.

Solenoid is a coil winding 0.6mmϕ enameled wire.
Straight kicker kicks a ball with over 10m/s velocity at maximum.
Chip-kicker kicks a ball as far as 4m distance at maximum.

Communication IEEE 802.11g wireless LAN.

Control unit Boost converter Dribble device Motor

Omniwheel Kick bars and coil Radio system

Fig. 2: All devices

modem
communication
 module

command
module

motor control
 module

command

voltage
booster

IR sensor

wheel speed

motor

packet

signal signal

signal

Fig. 3: Software configuration of robot

Table 2: Command for each robot
Config. Description

1st byte aaaabbbb aaaa: Robot ID, bbbb: Robot velocity
2nd byte bbbbbbbb bbbbbbbb: Robot velocity, 0 - 4095 (mm/s)
3rd byte cccccccc cccccccc: Moving direction, Resolution is 2π/512 radian
4th byte 000cdeee c: Moving direction, d: Rotation direction, 0:cw, 1:ccw

eee: Angular velocity
5th byte eeeeeeee eeeeeeee: Angular velocity, 0 - 2047 (deg/s)
6th byte ffffffff ffffffff: Kick force, 256 levels
7th byte gggghhhh gggg: Normal/Forced kick, hhhh: Dribble velocity, 8 levels

for each rotation direction (cw, ccw)
8th byte iiiiiiii iiiiiiii: CRC code

7th bytes, we give the kick command. “gggg” field selects kicker (straight/chip)
and kicking mean (normal/forced). The normal means to kick when the ball
sensor detects the ball while the forced means to kick just after the command is
issued.

The 1 byte command for all robots is mainly used for debug purpose.

3 Software System

3.1 Overview of the software system

In this section, we show how our software system in host computer is composed
and relates to the information from real world. The overview of our software
system is shown in Figure 4.

Real World

Cameras Robots

SSL-Vision

Computer

RServer

Tracker world

Soccer

View

Radio

Fig. 4: Overview of software system

The host computer is a commercial one. CPU is Intel Core i7 4700MQ and
main memory is 4GB. OS is Ubuntu 13.10/Linux. Three main modules are
running, each of which is composed as follows.

(1) The Rserver module receives SSL-Vision data and uses tracker submodule
to predict the ball and robots positions by using Kalman Filter. They are
stored in memory as world date, which are shared by viewed Soccer module.
To send a command to each robot, a radio submodule is used.

(2) The View module is used to see the simulated image of real world so that
they are easy to understand the situation. To do so, users set the number
of robots and team color.

(3) The Soccer module makes an action command for each robot. By using the
world data, the module chooses the best strategy, gives a role to each robot,
and calculates a moving path for each robot.

3.2 Improvement of arrival time estimation

After the path planning for given destination, the estimation of moving-time to
destination is necessary in many cases. Examples are the case finding the fastest
robot to get to the destination, the case preventing an opponent robot from
getting the ball, and so on.

We use the RRT algorithm [7] for path generation. However, in our system,
the estimation of moving-time is quite simple, i.e. estimating it as the moving-
time on the straight line connecting the current position and the destination
under the predefined motion profile as shown in Figure 5.

In case that obstacles are in the field, as shown in Fig. 6, the path is not
straight line. An actual path and a motion profile will be given by Figs. 6(a) and
6(b), respectively. Above approximation results in big error.

����
�����

��

(a) A path for estimating moving-time

Time

V
el

oc
ity

Estimated moving-time

Max Velocity

��
(b) Motion profile

Fig. 5: Estimation of moving-time

To reduce estimation error with keeping the real time computation, we adopted
intermediate points method. The number of intermediate points being used de-
pends on the situation. We use one intermediate point here. An example is shown
in Figure 7. In the figure, a green line is a path generated by RRT. The inter-
mediate point is given by the farthest point on the RRT line that the robot
can move straight without colliding the obstacle. The estimated moving-time is
given by the moving-time on the two straight black lines (current position - in-
termediate point and intermediate point - goal) under the motion profile shown
in Fig. 7(b). We assume the velocity reduces to zero at the intermediate point.

With this estimation, we can reduce the approximation error by 51%.

����

�����

�����	
�

��

(a) Actual path

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140 160 180

sp
ee

d

frame

(b) Motion profile

Fig. 6: Actual path and motion profile

����
�����

������	
	��� ��	��

(a) Approximation by two lines

Estimated moving-time

Max Velocity

Time

V
el

oc
ity

��� ���
��
(b) Motion profile

Fig. 7: Use intermediate point

4 Star Passing

Our team have been improving the precision of passing for a decade and de-
veloping the offense strategies extensively using the precise passing. With this,
we could keep advantage of a game and make goals in the games played in
the RoboCup Japan open and the RoboCup world competition. As a result, we
could achieved a good ranking in the past competitions. On the other hand, we
have many chances to demonstrate our system in robot events held mainly in
Japan. In the events, attractive demonstrations are necessary. One of them is a
star passing which is a continuous passing play forming the pentagram. In this
section, we describe it in detail.

4.1 Pentagram Passing Demonstration

The demonstration is like the followings: 1) put each robot on the vertex of
a regular pentagon, 2) a robot with the ball passes it to the robot which is
located on the vertex of the pentagram, 3) each robot goes round on the circle
the vertices of the pentagon make, 4) continue the passing. (See figure 8.)

Fig. 8: Pentagram Passing

4.2 Basic Technology

To realize the pentagram passing, we need following techniques,

– The passing robot should approach the ball by turning its face toward the
receiving robot,

– Precise facing angle should be computed.

In the following, we describe the first technique. Look at the figure 9(a). In the
figure, R is a robot, B is a ball and −→a is a vector showing the pass direction.
Our purpose here is to control a robot beginning from Fig. 9(a) and ending in
Fig. 9(f), changing its face direction (straight line part of the robot) toward the
direction of −→a as shown in each subfigure of Fig. 9. Let us explain it in detail.
First, we take an X−Y coordinate as shown in Fig. 9(b) and define the following
variables and constants.

– (xR, yR) : robot position
– (xt, yt) : target location
– BallRadius : ball radius
– RobotRadius : radius of the circle encompassing robot
– DribbleWidth : length of dribble roller
– maxx, maxy : BallRadius + C1, BallRadius + RobotRadius + C2, respec-

tively, (where C∗ is a given constant (i.e. tuning parameter))

In case that the x-coordinate of the robot is negative xR < 0 as shown in
Fig. 9(c), we give the target location (xt, yt) as follows,

xt = maxx (1)

yt = sgn(yR) ·maxy, (2)

where sgn(·) is a sign of ·. The target location is a position that the robot can
approach the ball without touching it. During the approach, the robot changes
its face direction toward the direction of vector −→a .

In case that the robot is in the pink area shown in Fig. 9(d), we give the
target location (xt, yt) as follows,

xt = maxx (3)

yt = sgn(yR) ·maxy ·
θ

ϕ
, (4)

where the point α is (0, C3) and C3 is a given constant, the angle ϕ is 30 degree
in our system and θ is the angle ̸ βαR. Note that the robot moves on the line
connecting the robot and the target location, though the target location varies
from time to time according to the value of θ. We compute it in the same way
when the robot is in the position symmetrical to the x-axis.

In case that the robot is in the pink area shown in Fig. 9(e), we give the
target location (xt, yt) as follows,

xt =
2 ·BallRadius−maxx

π
2 − ϕ

θ +maxx (5)

yt = 0. (6)

�
→

R

B

(a)

B

R

X

Y

�
→

(b)

�
→

R

B Target Location

����

����

(c)

�
→

R

B

α
β

γ

Target Location

θ

φ

����

����

φ

(d)

�
→

RB

α
β

γ

θ

Target Location

φ

����

φ

(e)
�
→

RB

(f)

Fig. 9: Approaching the ball

As the robot moves toward the x-axis, the target location goes closer to the ball,
just in front of the ball (when C3 is adequately chosen). Then, the robot goes
forward and the kicker kicks the ball under the control of the proximity sensor.

5 Conclusion

This paper described the summary of the robot and software system of Robo-
Dragons 2014 and described an improved method of estimating the moving-time
of the robot when a path is given. Moreover, this paper described the star passing
demonstration program.

References

1. Kotaro Yasui, Yuji Nunome, Shinya Matsuoka, Yusuke Adachi, Kengo Atomi,
Masahide Ito, Kunikazu Kobayashi, Kazuhito Murakami and Tadashi Naruse “Ro-
boDragons 2013 Team Description”, RoboCup 2013 symposium CDROM, 2013

2. Kotaro Yasui, Taro Inagaki, Hajime Sawaguchi, Yuji Nunome, Hiroaki Sasai, Yuki
Tsunoda, Shinya Matsuoka, Naoto Kawajiri, Togo Sato, Kazuhito Murakami and
Tadashi Naruse “RoboDragons 2012 Team Description”, RoboCup 2012 symposium
CDROM, 2012

3. Kotaro Yasui, Taro Inagaki, Hajime Sawaguchi, Yuji Nunome, Hiroaki Sasai, Yuki
Tsunoda, Shinya Matsuoka, Naoto Kawajiri, Togo Sato, Kazuhito Murakami and
Tadashi Naruse “RoboDragons 2012 Extended Team Description”, RoboCup 2012
symposium CDROM, 2012

4. http://www.toppers.jp/en/index.html
5. http://en.wikipedia.org/wiki/TRON project and

http://en.wikipedia.org/wiki/ITRON
6. Akeru Ishikawa, Takashi Sakai, Jousuke Nagai, Taro Inagaki, Hajime Sawaguchi,

Yuji Nunome, Kazuhito Murakami and Tadashi Naruse “RoboDragons 2010 Team
Description”, RoboCup 2010 symposium CDROM, 2010

7. James Bruce, Manuela Veloso, “Real-Time Randomized Path Planning for Robot
Navigation”, Intelligent Robots and Systems, 2002. IEEE/RSJ International Con-
ference on Volume:3, pp.2383 - 2388, 2002

