
Parsian
(Amirkabir Univ. Of Technology Robocup Small Size Team)

Extended Team Description for Robocup 2013

S.Mehdi Mohaimanian Pour1, Vahid Mehrabi2, Alireza Saeidi3, Erfan Sheikhi4,
Masoud Kazemi1, Ali Pahlavani4, Mohammad Behbooei5, and Parnian

Ghanbari

1Mathematics and Computer Science Department, Amirkabir Univ. of Technology
2Mechanical Engineering Department, Sharif University of Technology

3Mechanical Engineering Department, Amirkabir Univeristy of Technology
4Electrical Engineering Department, Amirkabir Univeristy of Technology
5Computer Engineering Department, Amirkabir Univeristy of Technology

small-size@parsianrobotic.ir

Fig. 1. Our Robots

Abstract. This is the extended team description paper of the Robocup
Small Size Soccer Robot team “Parsian” for entering the Robocup 2013
competitions in Netherlands. In this paper we will represent detailed
description of our robots’ hardware design, as well as the software archi-
tecture in detail with focus on new improvements that have been made
since last year. Improvements and developments that seemed innovative
and useful like modifying and fixing Maxon EC-45 Motors, improvements
on path planing and motion planing will be discussed in detail.

1 Introduction

‘ ‘Parsian” small size soccer robots team, founded in 2005, is organized by electri-
cal engineering department of Amirkabir University of Technology. The purpose

of this team is to design and build small size soccer robots team compatible with
International Robocup competition rules as a student based project.

“Parsian” team consists of nine active members from electrical, mechanical
and computer science backgrounds. We have been qualified for seven consequent
years for RoboCup SSL. We participated in 2008, 2009, 2010, 2011 and 2012
RoboCup competitions. Our most notable achievements was Parsian’s first place
in RoboCup 2012 SSL’s Passing and shooting technical challenges and forth place
in RoboCup 2012 SSL competition.

In this paper we first introduce our robots’ hardware (section 2). Our new
mechanical modification for this year and Macon motors improvements 2.1 and
our electrical design will be covered in section 2.2. Section 3 explains our soft-
ware framework including high path planning algorithm and high level control
algorithms.

2 The Robot’s Hardware

2.1 Mechanical Design

In this section we are going to describe the mechanical system and design pro-
cedure of our robots which consists of drive system, dribbler, kickers and so on.
The dimension and other major parameters of our robots are described below.
Figure 2 shows our robots with and without cover.

Robot Diameter 178 mm
Robot Height 138 mm
Ball Coverage 19 %
Max Linear Velocity 4.1 m/s
Weight 2.2 kg
Maximum kick speed 15m/s
Maximum chip kick distance 7.0 m
Maximum passing ball speed catching 6m/s

Some important section of our robots mechanical sections would be described
in following section.

Driving System : For the driving system we use 30 watts Maxon EC45 12volts
motors that are mounted to the wheels with an internal gear with ratio of 3.6:1
(76:21). The gear is made of spring alloy steel with high tensile strength and
50HRC hardness and thickness of 3mm using wire cutting procedure. Whole
driving package is shown in Figure 3

Brushless motors, Maxon EC45: Always optimized actuator (motors) se-
lection for a system is a significant factor in system reliability, costs and perfor-
mance.

Fig. 2. Our current robots with and without cover

Fig. 3. Driving System

In one hand over design alternatives make extra weight that needs more volume
and theyre more expensive and sometimes mismatching with other components
can make more faults in system. So with this way system need regularly main-
tenance. On the other hand selecting an alternative with lower reliability means
this component should working in zones which are over the nominal operation

area. Often this means more heat and other types of energy losses; because most
components have some restriction for operation in different states.
Likewise selecting a proper motor for small size soccer robot is a concern for our
team. We have a robot that should work properly in highly dynamic situations.
This robot should execute commands with precision and accuracy. Total small-
est errors in an open loop control system if can’t be corrected, makes irreparable
errors in output.
The restrictions that mentioned above are mechanical and electrical restriction.
Each one alone and coordination between them can make an incorrect design
or choice. Here we mention some of regular Maxon EC45 Design faults that we
tried to fix.

Mechanical restrictions: These limitations include Torque transmission, speed,
stress components and etc. for example motor EC-45 had some of this limitation
that has been modified over time.

Problem : fracture in connections between the coil and main structure of motor
that causes the hall sensors to brake.

Solution : select appropriate connection for safe torque transfer

Problem : Rotational component depreciation such as bearings

Solution : Coaxial and fix components with appropriate locating.

Electrical restrictions: About optimal design in electrical there are some
considerations such as modular design, safe and reliable design and etc. For the
example above we have modified some parts for achieving to a safe design.

Problem : tearing the motor cable over time.(Figure 4)

Solution : modular connections.

Fig. 4. Original motor cable (left) Parsian made modular motor cable (right)

Fig. 5. Maxon burned wending, also without attachment holes (left) and our handmade
wending with attachment holes (right).

Fig. 6. Parsian made motor PCB

Fig. 7. Parsian modified Maxon EC45 motor disassembled .

Ball Control and Suspension System: One of our major changes in robots
are in the dribbling and suspension system that have been replaced from one
degree of freedom mechanism to two degrees of freedom system. This increase in
DOF helps us to calibrate the ball position and spin back speed easily and more
efficiently. It can also hold the ball stronger and damp the energy of the passing
ball without losing it more effectively. With use of simulation and measurements
we find out that the maximum pass speed that this system can catch is up
to5m/s.
Our future plan for improving the suspension system is to control one of the
DOFs with a servo motor in order to calibrate it automatically.
Dribbling and Suspension actuator for the spin back module is 30watts Maxon
EC16 12volts motor mounted to the gearhead with total gear ratio of 3.6:1
(36/10) that speedup the silicon-tube coated spinner up to 12000rpm. We made
coated silicon hollow bar using a mold filled with silicon raw material. Using this
method we eliminated our problem about finding a proper material for spinner
cover. Here is a picture of our silicon hollow bar made.
Its friction coefficient is about 0.8 that is appropriate for our usage. Both side of

Fig. 8. Silicon made tube separately and mounted on real robot

dribblers arm are equipped with the cover to protect the ball detection sensors
from damage.

Fig. 9. Robots adjustable 2DOF suspension system

2.2 Electrical Design

Our electronic system consists of two electronic boards, the main board and
the kicker board. The main boards platform is based on a single chip Xilinx
Spartan XC3S400-PQ208 FPGA which in charges for wireless communication
(Send and Receive), BLDC motor driving with current control, executing the
low-level control loop and sending control signals to the kicker board. The kicker
board consists of a power section (Charging and discharging MOSFETs) and a
voltage divider for voltage feedback of capacitors.

Battery and Power Supply Each robot uses 4-cell 2000mAh lithium polymer
battery as a power source. There are three main power lines for kicker board,
motor driver and logic devices. These lines are protected with different current
rating fuses. There are four voltage regulator which supplies 1.2v, 2.5v, 3.3v and
5v for logic circuit. In the last year we use series regulator but we replace it with
LM2576 switching regulator because of its high efficiency.

Main Processor FPGA devices are mainly appropriate for parallel algorithms
implementation. Due to less power consumption, simpler board layout and fewer
problems with signal integrity and electromagnetic interface, we preferred to
have both microcontroller and FPGA array based features combined in one
chip. Consequently quadrature decoder, PWM generation, BLDC sequence gen-
erator modules and serial communication are implemented in a hard CPU core
which is dedicated part of the integrated circuits, whereas sensors data decoder,

controller loop handler and other modules are implemented in a soft CPU core
which utilizes general purpose FPGA logic cells. We implemented a TSK3000A
based soft processor on the FPGA. We use Altium Designer software to change
processor or modify the code running on it. To debug a phase of a design we uti-
lize a standardized debug interface via JTAG bus. The Soft core is connected to
the other blocks via wishbones. These blocks are BLDC Controller, Kick Block
and Communication Block which are developed using Verilog language. (Figure
10)

Fig. 10. TSK3000 soft processor connected to blocks via Wishbone Interconnect.

Communication We are using two XBee modules for bidirectional wireless
communication. One XBee is for receiving data and commands from the Host
PC and the other one is for sending data such as battery voltage, kicker sensor’s
status. Last year, we were using 57600bits/s as our wireless baud rate and this
year we have increased it to 115200bits/s for less command sending interval.
Each packet consists of 9 bytes including robot’s ID, Kick or Chip speed, Vx,
Vy, W and etc. Each robot receives these packets and selects the packets which
its ID is as same as robot’s ID. In the past, we were using an interrupt which
was showing that new packet is received or not. So by increasing the amount
of robots, the interrupt request rate was increasing. Now we have developed a
Verilog block in FPGA which receives data packets from Receiver block and
matches the ID of the packet with robot ID and then loads the data on output
buffers. So every time that the soft core needs to read the commands, should
read these buffers.(Figure 11)

Fig. 11. Receiver and packet selector Verilog blocks.

Motor Driver Each motors BLDC driver unit consists of two modules; a FPGA
based digital circuit as main controller and a power driver circuit. The controller
receives Hall Effect sensors data, and then generates proper control signals for
each motor.
The power driver circuit is a three phase inverter circuit using complementary N
and P channel power MOSFET in each phase. These MOSFETs are driven by
TC4427 MOSFET driver to minimize switching loss. The three phase inverter
bridge is fed with signals from FPGA to provide commutation for each motor.
These signals are ANDed with the PWM signal to vary the average voltage
applied to the motor winding and over current signal to limit the current flow
of each motor.(Figure 12)

Fig. 12. BLDC Motor controller block.

Motor Overcurrent Protection We use two over current protection manner
to protect a BLDC from a receiving more than an exact Ampere of current. In
the first method if an over current state is noticed by the software through the
real-time reading of current sensors data, the PWM duty cycle will be narrowed
up to the normal situation. In the second method a simple motor over current
circuit is employed to cut the motor from its power supply when the over current
situation is occurred. A current sensor measures the input current and yields a

corresponding voltage signal at its output. This output is connected to the input
of an analog comparator, with the other input coming from a reference voltage
source of specified ampere of current to be created. If the output of the current
sensor is greater than the specified value, the comparator will output the signal.
This signal is then hooked into the FPGA and if over current occurs, the FPGA
changes the motor signals so the motor will be turned off until the current
decreases.(Figure 13)

Fig. 13. Overcurrent protection circuit.

Kicker Board To decrease the size and weight of the kicker board, this year we
have redesigned the kicker board by means of using new electrical components.
The kicker board continuously charges two 2200 F 180V capacitors connected in
parallels. The current design is based on DC to DC boost convertor circuit which
utilizes a power MOSFET to discharge the stored energy into two solenoids.
To increase the resolution of kick/chip speed we have designed a VHDL block
which moderates the kick speed. With this new feature, kick/chip speed would
be continues and this can be regulated with a high accuracy.(Figure 14)

Fig. 14. Kicker Verilog block.

Low Level Control The control commands are sent to the robots from the
remote Host PC, contains velocities of robot along x and y axis and angular
velocity of the robot. The quadrature decoder units implemented on FPGA de-
code each motors attached encoders signals. These decoders count digital pulses
and calculate the speed of each motor. If the robot receives the velocity type
command, the robot velocities are calculated by means of the transformation of
four motors rotational speed. The desired velocity commands and the current
calculated velocities are then fed into a cascade control system. Robot velocities
as primer variables are controlled by adjusting the set point of each motors rota-
tional speed as related secondary variables controller. A discrete PID controller
acts as primary loop controller, which controls the robot velocities. A discrete PI
controller acts as secondary loop controller, which reads the output of primary
loop controller as set point, then the reference rotational speed of each motor is
calculated using the transformation matrix. When the reference rotational speed
is given to each motor, the PI controller generates the PWM control signal. Then
the robot can reach its desired motion. Obviously if the robot receives the mo-
tor rotational speed type command, just the secondary loop controller performs
the control action. Reasonably the robot has slip between the wheels and the
ground in some amount. In absence of a sensor that measures the robot velocity,
this slip cause an error between actual motion and the desired one. By means
of an extended Kalman observer for state estimation which is implemented at
the high level control loop, this error will be compensated. The performance of
the compensation depends on how well the robots velocity is estimated by the
extended Kalman.

3 Planner

In this section we skip most parts of our planner and just describe our new path
planner with focus on problems using RRT path planner.

3.1 Dynamic Path Planner

This year we decided to create a Dynamic Environment Path Planning algo-
rithm and as the RRT algorithm is the best algorithm for path planning in none
discrete environment [1][2], we decided to implement it based on RRT instead
of dividing the playground to discrete grid , so we reimplement our ERRT path
planner and add some new features to that, and it became a new path planner
consisting these new features.

The first step in having better path planner with RRT path planner is to con-
sider the field a little bigger, as you know there are some situations that RRT
planner cant find a path inside the field for that situation , so you can let the
robot to cross out of the field and find the path to it’s destination. this situation
mostly happens when game start near corner of the field and the crowdedness
of the robots don’t let the RRT find any path inside the field.

Next step in having better path, is not only start generating path from robot
to destination, but also try to find another path from destination toward the
robot, then try to connect the best branch of either RRTs and create the near-
est path to your last path (called WayPoint cache in RRT algorithm) . this will
help to find a better path in fastest possible way in deadlocks and when there’s
just a narrow path toward the destination and it will help to find the path with
least maximum nodes limit so that we have limited our maximum extension
nodes to 100 point for a path and it never misses finding a path when there’s
actually a path even narrowest ones.(Figure 15)

One thing that should be considered in using RRT path planner is that the
result of RRT path planner is not an straight line (since it is extending toward
some random points in any direction by extend step which is not that much
long) so for having a better path planner you should create the longest straight
path from output result . you can see how to create that in Figure 16 .

The other thing that bothers the robot to follow the exact generated path
is that the RRT result could be fracture during the path and if this fracture is
at the middle of path and robot reaches that point with maximum velocity , or
a velocity that doesn’t allow the robot to stay on the path while changing it’s
direction, it will cause the robot to deflect from the path and go through an
obstacle or have a bad motion during cruise.
for solving this problem , we have tried so many heuristics , the best two meth-
ods for solving this problem will be discussed :
One method to overcome the mentioned problem is generating an smooth path

Fig. 15. Try finding path with RRT from 2 ways. Robot toward the destination (white)
and Destination toward robot (gray)

Fig. 16. The RRT result for robot shown by white and the black segment shows how
we extract an straight line from that.

with RRT , which can be done during extension of branches by limiting the
angle between the generated branch by the time and the new extension that is
going to be added . this method will give an smooth path and a path that have
a great curvature instead of fractures. but unfortunately this method has some
difficulties such as increasing robots travel time for reaching to a destination and
the biggest problem is that staying on the past road and using Waypoint cache
is too difficult .(Figure 17)

Fig. 17. Smooth path generated from RRT considering the angle between new exten-
sion and last branch.

Another method for solving this issue is limiting the maximum velocity of
the robot by considering the angle of fracture and the distance to reach that .

The last step to have a dynamic path planner is to not only avoid the current
place of the obstacles but also avoid the possible places that an obstacle could
be in future and by the time we reach them , for this purpose we create some
virtual obstacles from moving obstacle toward its velocity direction. the number
of these virtual obstacles and size of them depends on the velocity of the obstacle
(other robots in field) . In Figure 18 you can see moving robots and the virtual
obstacles toward their velocity.

Fig. 18. Moving obstacles and how we consider their speed to avoid collision, the white
crosses are possible random states which is safe to go.

Motion Time Estimation: The other problem in real time motion planning
is calculating the time to reach the target and find out when we reach to any
point during the path specially when the robot follows a generated path instead
of an straight line , for this purpose we have designed a simulator that simulates
the progress to the end of the road in an infinite loop and creates a motion profile
witch shows the exact time that robot reaches to any point of the path and the
exact velocity of the robot in that point. all we have to do afterward is following
that profile .

3.2 High Level Planner

The Coach layer is the first step in the high level planning (decision making)
loop. Choosing a formation for the team is done prior to any other decisions,
in this year we have another layer beside Coach layer which is called strategy
selecting layer, According to policies, that are a mixture of manual configura-
tions and game-state dependent updated values, each cycle the strategy selector
layer decides the team’s formation. then coach assigns each agent to nearest role
decided by strategy selector. Therefore, each agent takes part in one of the main
plans: defense, midfield and offense.

In last year we have changed our high level planner a bit and added a layer
called Plans , in our game-On play we use this method which contains 3 main
plans as mentioned , the defense plan works individually that contains our Goalie
and defenders but middle and offense plans are cooperating together and the
number of agents these plans should have is based on the manner of opponents

, if the opponent team is ball owner and attacking us the middle plan will
have more agents than offense and vice versa . Middle plan agents intend to
possess the ball owned by opponent and diminish their attacking opportunities
with marking, blocking, ball interception and etc. Offense plan includes agents
that are going to create attacking chances to score. One agent always takes the
role of the ”playmaker” (the agent that possesses the ball), other offense agents
should take suitable positions or support the playmaker during contention of
our playmaker and an opponent robot. But in our non-Play-on ,when the game
stops by referee and starts with a direct or indirect kick for any team, we use
old method and give any agent a role to execute. After running the plans, a set
of roles are assigned to some of agents that aren’t controled directly with plan
and can have an individual role , this role assigning occur in an optimized way,
so that minimum movement is needed for agents to execute their roles.

To perform a role, each agent may use a different set of basic skills. For
example ”marker” itself is a role but it uses the ”gotopoint” skill to reach its
target. The hierarchy of the coach structure is shown in figure 19.

Plans

Scripts

Goalie
Defense

Block
Mark

Playmake
Position
Support

Stop

GotoPoint
GotoPointAvoid

Kick
OneTouch

Spin
TrackCurve

Intercept
FollowBall

Coach

Offense

Defense Middle

Roles

Skills

Fig. 19. The hierarchy of coach stucture

Each role works individually and should decide what to do in any situation
in game, so that each role can have multiple choices for what to do and it’s
a bit hard to choose the right manner any time. For solving this problem in
our team we found a solution that any role can have multiple behaviors, In

general, each role has its defined behavior which controls the roles operation. In
this section we’re going to explain the Playmaker’s behavior which is our AI’s
most important role that possesses the ball and should decide either kick the
ball toward opponent goal or pass it to a teammate. Each behavior contains
some Hierarchical Skills execution that ends to a desired aim, considering a set
of specific parameters and probability of success and failure of that behavior.
This prosperity is calculated with a function (CBehaviour::probability()) , each
behavior has its own function for calculating this probability.

As a matter of fact, in a small-size game, most of the time the game is in stop
mode (i.e. ball is moved out and the game should be started either by a direct or
an indirect kick), Thus having a knowledgeable game play when the game starts
(direct or indirect kicks) may result in more scores. Kickoff, indirect kick, direct
kick and penalty kick are the main ”non-play-on” plays in a small-size robotic
game. To have more diverse ”non-play-on” game plans, we have implemented a
script language to write multiple plays for any non-play-on game.

In this scrip language that implemented just for small size , at the first of
any play file we check the refBox signal to check which plays should be checked
too choose one of them for that part of the game . the refBox signals starts
with a ”$” sign at the first of any play (for example $ourkickoff, $theirindirect,
$ourpenalty and etc.) , after checking that part we have to check whether this
play is suitable for executing or not , for this purpose we have some conditions
(like ”ballmoved” , ”ballinside(X-rect)” , ”agentcountof(plan,X)” and ...) to
check , any condition has its own Class inside the main code to check if that
condition is true or not , if that condition is used to enter a play a ”>” sign
should be placed right before that condition and if we want to exit that play
when a condition occur a ”<” sign should be placed right before that condition’s
name . It’s obvious we can check if two conditions occur together with using ”&”
operator between them. These plays can contain some blocks and any block can
have its own condition to enter.

Each one of these plays has its own favorability to be chosen , when more than
a play is qualified considering they’re conditions , a random number will choose
which one to execute ; any of them that has greater favorability is more likely
to be chosen . That number can be updated after any execution, if the executed
play was successful the favorability of that play will increase so that in next
same situations this play is more likely to be chosen and if that play fails for any
reason (for example the manner of opponent team in front of that play prevent us
to achieve any success) this number will decrease so that in next same situation
this failure is less likely to happen again. After choosing the best play and right
block of that play, any agent will get one of the roles declared in that block with
the defined parameter. any role can receive some predefined parameters through
parenthesis to act rightly (for example position(rect,@onetouch,...) that the first
parameter declares the rectangle to search inside that for suitable position and
the second one means agent should be ready to one-touch kick the ball toward
opponent goal). This script language has its own editor inside the user interface
so that we can edit the written plays easily when the AI is running. There is

a simple kickoff plan written in our game script and our editor appearance in
figure 20.

Fig. 20. A sample of our script language.

Offenders in offense Plan As we mentioned in our last year ETDP [3] and this
years TDP [4] we have some Behaviors (such as passing behavior , kick toward
the goal behavior , chip pas behavior and ETC.)for deciding how to play in our
gameplay and rate each Behavior with a reward and penalty considering some
random numbers to have a random and unpredictable gameplay. this year we
have add a (somehow static) gameplay above that layer which tries to create a
graph in behaviors instead of random decision making, this graph should always
end to a goal for our team, if this graph exist and we can create a scenario to

score a goal, we will save that scenario and try to do that otherwise the old
random decisioning system will take the control of the game.

References

1. Bruce, J., Veloso, M.: Real-time randomized path planning for robot navigation.
Lecture Notes in Computer Science pp. 288–295 (2003)

2. Bruce, J., Veloso, M.: Safe multirobot navigation within dynamics constraints.
Proceedings-IEEE 94(7), 1398 (2006)

3. Mehrabi, V., Koochakzadeh, A., Poorjandaghi, S.S., MohaimanianPour, S.M.,
Sheikhi, E., Saeidi, A., Kaviani, P., Saharkhiz, S., Pahlavani, A.: Parsian - extended
team description for robocup 2012 ssl. RoboCup 2012

4. MohaimanianPour, S.M., Mehrabi, V., Sheikhi, E., Kazemi, M., Saeidi, A., Pahla-
vani, A.: Parsian - team description for robocup 2013 ssl. RoboCup 2013

5. Zickler, S., Laue, T., Birbach, O., Wongphati, M., Veloso, M.: SSL-vision: The shared
vision system for the RoboCup Small Size League. RoboCup 2009: Robot Soccer
World Cup XIII pp. 425–436 (2010)

