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Abstract. This year small size soccer environment, have changed significantly. 
Increasing players to six robots and decreasing the maximum kick speed, results 
in the more dynamic and strategic games. With this attitude, it seems that teams 
are supposed to restructure their mechanical, electrical and AI parts to adapt 
with the new condition. MRL small size soccer team with more than four years’ 

experience in different international competitions, is planning to complete all 
requirements to reach at his highest level when participates in 2012 world 
games. After attaining acceptable performance to reach the third place in 2010 
and 2011 competitions, MRL team are scheduled to modify and change 
different parts. The first step of this year attempts, focuses on redesigning of 
some important parts of the robots’ mechanic to increase the total weight and 
increase the reliability. The second task is an optimization on the direct kicker 
system to meet the new limits with as light as possible system. Software 
redesigning and improvements are the last and important step at this year 
research schedule. Improvement of the control and estimation/prediction are 
minor modifications at this year. Finalizing our debugging tools like 3D 
simulator, physical and non-physical simulators in this year aided us to evaluate 
whole of the system software from low level control to high level strategies. 
First rank at Iran open 2012, verifies the achievements in the way of fast and 
reliable robots, accurate motion, reliable defending and flexible attacking 
strategies. Besides, it is observed that there are still some problems in different 
areas, e.g. motion control, dribbling system and strategies, which should be 
solved till the time of RoboCup 2012. 

1 Introduction 

MRL team started working on small size robot From 2008 and after three years we 
could qualified to be in semifinal round and attaining the third place in 2010 and 2011 
RoboCups. This means that our last year’s plan was achieved. The main problem in 
MRL robots in 2011 competitions was its unreliable behavior. Mainly, slow and 
inaccurate motion together with software problems gave opportunities to the 
opponents to score. Our main target in this year plan is resolving the motion problem 
by modification on the mechanical and electrical structure and redesigning the AI 
mechanism.  

Some requirements to reach the fast and accurate motion are satisfied with 
hardware restructuring. New methods in control are designed using reliability of the 
new hardware that is gained by evolution of software tools like online debugging 



tools and simulator, for more details see [1]. Iran open 2012 was an opportunity to 
evaluate our new contributions. Although, the modified robots are much faster than 
the old ones, there are still some problems that should be solved to reach reliable 
robots. Being the first team in these competitions shows our progress. 

This paper is organized as follows: Firstly, our new software architecture including 
game planner, strategy manger and … are described in section 2. The modified 
electrical design and optimized kicking system, is explained in section 3. Description 
of mechanical configuration modification for the newly designed robot which elevates 
the capabilities of the robots' smooth and reliable motion is the subject of section 4. 
Finally, our modification on the motion control which has a key role in robot 
performance is the subject of the last section. Further research on this topic to reach 
the perfect motion control is under investigation too. 

2 Software 

In this part the software main objects are presented. It is shown that how our new 
architecture provides us a safe and flexible game. In this year MRL software team has 
changed the AI structure and built up a new architecture. The new game planner as 
the core unit for dynamic play and strategy manager layer are introduced in this 
section. After these major changes, minor modifications on the other parts like 
visualizing systems are presented. Following paragraph, sketch an overview to the 
MRL software modules and their connections. 

The software system is consisted of two modules, AI and Visualizer. The AI 
module has three sub-modules being executed parallel with each other: Planner, STP 
Software, and Strategy Manager. The planner is responsible for sending all the 
required information to each section. The Visualizer module has to visualize each of 
these sub-modules and the corresponding inputs and outputs. The visualizer also 
provides an interface for online debugging of the hardware. Considering the vision 
subsystem as an independent module, the merger and tracker system merges the 
vision data and tracks the objects and estimates the world model by Kalman filtering 
of the system delay. Figure 1 displays the relations between different parts. In this 
diagram, an instance of a play with its hierarchy to manage other required modules 
are depicted. 

The system simulator is placed between inputs and outputs and simulates the entire 
environment's behavior and features. It also gets the simulated data of SSL Vision as 
an input and proceeds with the simulation. This year we add a new feature to our 
simulator that uses the kinematic modeling of robot motions. 

In the following subsections we introduce each layer of the AI mechanism. Note 
that, the arrangement of the introduced layers is to increase tractability. 



 

Figure 1: Block diagram of AI structure 

 

2.1 Role assignment 

MRL AI architecture is based on the STP platform introduced by James Bruce [2]. 
Our game strategy aims at dynamic assignment of some pre-defined roles to the 
robots in the field. The dynamic assignment tries to assign the best role to each robot 
at each time frame, making the strategy more flexible to the new events and positions 
in the field.  

Dynamic role assignment is much more complex than static role matching. 
Therefore a new role matching algorithm was required to effectively assign roles to 
the robots at each time frame. Our algorithm addresses the role matching problem by 
considering two different states for each robot at each time frame; whether it stays at 
its previous role or switches to a new, overall more efficient role. The algorithm 



requires taking into account the set of all robots and all roles and should select the 
highest overall priority for robot-role matching. A cost function for each role has been 
designed and each frame cost of a role for a specific robot has been calculated. We 
map the intended problem into the maximum matching in a bipartite graph. 

2.2 Strategy management 

In this year we introduce a new layer of MRL AI hierarchy, the Strategy Layer. In 
the strategy layer, the AI system learns to select the best game strategy for some 
specific time frames. Each strategy is a heuristic game playing for certain number of 
attendees. “Field region”, “game status” and “minimum score to be activated” are 

parameters pertaining to each strategy. For instance, Sweep and Kick strategy with 
three attendees works the best in the middle of the field is activated after score one, 
and requires “Indirect Free Kick” game status. If all the four parameters are satisfied, 

the strategy becomes “applicable” at certain time frame. We model each strategy as a 
Finite State Machine (FSM). Consecutive states of strategy’s FSM indicate the chain 

of actions required to be performed in that strategy. The transition conditions between 
states reflect the prerequisite conditions for the actions. The FSM has got an initial 
state with which the “applicability” is verified. It also has got Trap and Finish states 

indicating “failed” and “successful” ending of the strategy, respectively. A dynamic 

score is designated for each strategy. After completion of each strategy (either failed 
or successful), the strategy score is updated. 

Strategy manager operates as the highest component of the Strategy Layer. This 
component is responsible for selecting the best strategy at each time frame. The 
strategy manager has got three different selection policies: 
1. Random Selection: The manager randomly selects one of the applicable 

strategies. 
2. Higher Score with a Probability of Random Selection: The manager tends to 

select the strategy with the highest score as of now, trying to apply the best 
strategy which has proved to have the best performance. Also, for the sake of 
giving the chance to some lower scored strategies to make progress, the 
manager randomly selects a strategy with probability of P. 

3. Weighted Random Selection: The manager randomly selects one of the 
strategies, each of which has a weight corresponding to the probability to be 
selected. 

 
The Strategy Manager selects one of the applicable strategies in one of the three 

mentioned ways and the attendee robots are assigned roles for performing the 
strategy. When the strategy traps or successfully ends, robots are reassigned roles for 
the normal play. The strategy layer helps us to avoid a share data or blackboard for 
agents. Therefore we can design a cooperative game of agents, dynamically. 

 



 
Figure 2: Sample strategy, Sweep and Kick 

2.3 Game planner 

Game Planner is a part of our AI, which provides the information about the game. 
We use that information to choose good strategies for attacking and defending. In fact 
Game Planner analyzes the game to use in other part of the AI mechanism. So the 
accuracy and reliability of the processed information is very vital and should be 
comprehensive. Thus we need exact and complicated calculations to obtain it. 
Computational complexity and parallel essence of algorithms are used in the planner, 
make us to use "GPU programming" to speed up the calculations. There are many 
interfaces that can be used to do that, e.g. OpenAcc, OpenCL, Direct Compute and 
Cuda. Among them, "Cuda" is using C programming language that make it more 
suitable in our task. NVidia has created and optimized "Cuda" only for GPUs 
produced by itself. We use Cuda 4.1 and a GTX 580 graphic card. Following, we 
describe Game Planner most important parts. 

2.3.1 Prioritizing opponents robots 

This part plays the main role in defensive tactics. In each frame we calculate a 
score between 0 and 1 for each opponent robot. This score shows each robot's 
importance in opponent's offensive movements. This is very important for us, because 
if we give each robot a proper score we can cover their attack with a proper defense 



strategy. On the other hand, because of the various attacking strategies used by 
different teams, covering all possible game conditions needs a lot of parameters and 
that raises the chance of mistakes and creates scoring chances for the opponent. 
Collecting all these parameters and connecting them together is a very hard or even 
impossible task. To do that, we have divided scoring to two parts: online and offline 
calculations. In offline mode by preparing a lot of samples and scoring in different 
situations of the game, we create a function of initial conditions that have a static 
nature like location of the most important robot (the robot owning the ball) and 
location of other robots and … . This function assigns each robot a score. In the 
online mode, some important parameters like direction and speed of the ball and 
robots, time it takes for each robot to reach the ball and ... are used to calculate the 
score. Then we give the results as input to the function that is calculated in offline 
mode. Then the results of the online and offline calculations are combined to get the 
final score. 

 

 
Figure 3: Sample interpolated scoring function 

2.3.2 Regioning: 

Another important part is regioning. In this part using different algorithms we 
recognize empty spaces of the field. And we use those spaces to choose a good 
strategy. Also using this part in different times of the game executable strategies are 
suggested too strategy manager. In recognizing empty spaces of the field we use the 
idea of light being blocked by objects in field. We consider light sources on certain 
points on the field .The shadows created by objects on field are analyzed for each 
light source. We combine those using parallel algorithms to divide the field into 
regions. These regions are mostly used to find the best spot for direct or air passes. 
And also with analyzing these regions online and changes of their area over time, we 
improve our strategies and off ball movements. For example with off ball movements 
we can adjust important regions in a way that certain strategies can be executed. 

 



 
Figure 4: Calculating pass point 

 
Figure 5: Adjusting regions with off ball movement 

2.2. Online internal debugging 

As stated before, to debug onboard control modules such as wheels’ speed and 
controller parameters a comprehensive debugging tool is required. Simultaneous 
investigation of the commanded and the robot velocities (computed via vision and 
encoder data) is desired. Using this new approach we can easily debug and analyze 
our PID controller, wireless module data or any of our internal components. We’ve 

designed an online link between our microprocessor and AI systems in order to debug 
and maintain all controllers and speed problems easily and in a time optimal fashion. 
Figure 6. shows our internal debugger graphical interface. If the desired velocity and 
the robot speed measured by vision are similar, the control performance will be 
suitable. 

Previously, we had a unique configuration states for all of the robots without 
considering differences between them. This year, we have embedded a sub-section to 



our AI system which stores specific properties of each robot which later would be 
used for system’s calibrations. These properties include controlling issues, kick speed 

or any kind of configuration parameters. 
 

 

2.3. Applying Reinforcement Learning 

Temporal Difference learning, first introduced by Samuel [3] and later extended 
and formalized by Sutton [4] in his TD() algorithm, is an elegant technique for 
approximating the expected long term future cost (or cost-to-go) of a stochastic 
dynamical system as a function of the current state. The mapping from states to future 
cost is implemented by a parameterized function approximator such as a neural 
network. The parameters are updated online after each state transition, or possibly in 
batch updates after several state transitions. The goal of the algorithm is to improve 
the cost estimations as the number of the observed state transitions and the associated 
costs increments. We find out that this elegant technique could be useful during 
online dynamic game. The pseudo code of TD is illustrated in Fig.6. 

 

Figure 6: User Interface of the AI, showing the viewer and settings Box 



Initialize V(s) arbitrarily,  to the policy to be evaluated 
Repeat (for each episode): 
 Initialize s 
 Repeat (for each step of episode): 
  a ← action given by  for s 
  Take action a, observe reward, r, and next state, s’ 
  V(s) ← V(s) +  [ r +  V(s’) - V(s) ] 
  s ← s’ 
 until s is terminal  

Fig. 6. Tabular TD(0) for estimating V. 
Therefore, one can benefit from this robust method in low and high level of 

decision making e.g. in making decision about direction of kick in non-static balls. 
When the robot pass the ball to another one, the speed of moving ball in the vicinity 
of the second robot interferes in the direction of final kick to the target. To control this 
problem, Temporal Difference could be applied. 

Rewards of kicks in the vicinity of the target are calculated and learning loop is 
triggered after each kick. To evaluate the method performance, at first it was tested on 
our 3D simulator. The results of this reinforcement learning approach show that after 
several runs, the correct direction will be determined (see Fig. 7).  

 
Figure 7: Descending kick error over time by implementing TD (0). 

 
Another technique which can be useful in decision making is Q-Learning. Many 

problems can be modeled as a discrete markov chain and Q-Learning addressed as a 
proper method to overcome these difficulties. After calculating Q-Value the best path 
to achieve the goal is obtained. For example, suppose 2 defenders aren’t fast and after 

2 passes they would be confused. So, Q-Learning shows a path between many states 
that contain a lot of passes from side to side to make opponents dizzy and last state is 
a kick. Fig. 8 depicts the algorithm of Q-Learning. In Iran open 2011 we evaluated 
our learning in technical challenge (passing stage) which had surprising results. 



In [5] we have utilized some other learning methods like emotional learning for 
robot motion control. Such fast learning approaches are in our future viewpoint for 
learning different tasks too. 

 
1. Lets the current state be s 
2. Select an action a to perform 
3. Let the Reward received for performing a be r, and the resulting be t 
4. Update Q(s, a) to reflect the observation < s, a, r, t > as follows: 

  Q( s, a ) = ( 1 -  ) Q( s, a ) +  ( r +  maxa’ Q( t, a’ ) ) 
 Where  is the current learning rate 

5. Go to step 1. 

2.2. High level Analyzer 

One of the most significant variations we have made to our MRL2011 team is the 
implementation of a new decision making layer as a high-level analyser (Fig. 8). Log 
files from SSL Vision of all MRL games should be recorded during a game. The final 
stage is the extraction of the opponent team strategies and finding the best tactic to 
cope with it. Although, it is too far from implementation, the preliminary steps are 
under construction. Strategy model consists of different parameters such as the 
number of robots in each position e.g. defence robots, attackers and free robots. Our 
goal is distinguishing the best feasible strategy from these models dynamically. For 
instance, if the opponent team is attacking with one “attacker”, one marker robot 

should be placed to block it. If there are two attackers in non dangerous area (far from 
penalty area), there should be still one blocker robot. Of course, such high level 
decision makings can be implemented properly when each task in lower levels could 
be performed in a perfect manner. Before obtaining such performances a simulator 
will help the high level designer to evaluate his ideas (fig. 9). 

The core system of MRL2011’s simulator is the same as MRL2010. One of the 
significant changes in the simulator is considering noise signals in wireless system. 
We found that this noise has a close relation with distance. Sometimes data packets 
aren’t properly received by robots. A probabilistic model for data transfer has been 
introduced to simulate a real wireless system. Measuring lost data compared with the 
size of sent packets shows a detectable relation with distance between the robot and 
the wireless transmitter (d). A Gaussian distribution is fitted to the wireless noise with 
the mean (m) and variance (   related to the distance ((1) and (2)). More details about 
these contributions are explained in [1]. 
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Figure 8: The High level analyzer screenshot. 

 

 

Figure 9: The 3D simulator screenshot. 

 
Because of latency in finalizing the robot hardware structure, investigation of the 

codes from high level strategies to each skill performance need an environment 
similar to the reality. Fortunately, progressing of the simulator prepared such an 
environment and our tests in simulator not only specified our bugs but also give some 
new points about implementation on real robots. Besides these preferences, this 
mechanism prevents the robots from damaging. As stated before, our learning 
algorithms after evaluating on the simulator made an appropriate basin to converge in 
real world. 



Another point is about the analyzer which simplifies our operations as much as 
possible. From availability of changing the game strategy to demonstration of the 
game status and drawing the diagrams and necessary shapes to analyze the game 
conditions and detect the mistakes are achievable with this tool. In near future we will 
complete the entire requirements to play with a team of the robots with a virtual team 
in the simulator that satisfy our need to have friendly matches. 

3 Electrical Design 

In this section, different parts of electronic boards will be investigated with special 
focuses on the modified parts and new works. This includes our last year's problems 
and suggested solutions for them. Also to reduce weight we have optimized our 
cylindrical solenoid that will be discussed. As a result of changed rules and increased 
number of robots, our wireless system had to be modified. 

3.1 Main Board 

The robot has a main board contains processor module, motor driver modules and 
solenoid driver circuit. A wireless board is also designed to send and receive data 
between robots and AI system. In the following these concepts are described in detail. 

Current main board is the product of 4 years designing and evaluating. Last years, 
we’ve got problems mainly with connectors and isolation. Fig. 11 shows the main 
board of the old robot that is going to change to unified board this year. We have tried 
to make as less as possible changes to the old board. Main changes are stated bellow 
in different subsections. 

 

 
Figure 10: The main board of MRL small size team 



  

3.1.1 Processor 

Because FPGA has real time qualities, in the past years we have implemented our 
electronic aims on FPGA. There were some difficulties and limitations. For example 
we couldn’t debug it. So we decided to use FPGA only as motors controller and all 
the remaining tasks are done by an ARM7- Microcontroller those are connected to 
each other by an interface. Although some of our projects in ARM7-microcontroller 
are still under development. 

 

 
Figure 11: Processing unit on the main board 

 

3.1.2 Optoelectronics 

In the past year we isolated all the signals in the Power and Logic sections. That 
was not necessary, but it solved our high voltage and motor drivers' problems. But 
designing circuits using optocoupler can cause problems like a 10 KHz maximum 
working frequency, high power dissipation due switching and occupying a large 
space. But it prevents system failures. In direct-coupled method working frequency 
can be up to 1 MHz and Power dissipation due switching is low, but designing 
circuits needs a lot of experience to reduce noise and interference. Therefor direct 
method's advantages made us reconsider our previous decision to use optocouplers. In 
the figure 12 below the correct procedure of connecting different parts of circuits’ 

Ground can be seen. 
 



 
Figure 12: Grounding schema for different electronic parts 

 

3.1.3 Motor Drivers 

Integrating the circuit's board and removing the motor driver modules and also 
Utilization of maximum velocity and Power are from this year's goals. Right now we 
are using 4 cell batteries that produce 16.8 volts in the maximum charge mode. That is 
less than motors' nominal voltage. Therefore motors driver circuit is being redesigned. 
One other thing we want to do is to use two N-Channel transistors in high side and 
low side for switching the motor windings. P-Channel MOSFETs have lower 
switching current density. Therefore Using dual N-Channel MOSFETs provide higher 
current conduction of outputs, but it needs more components. On the other hand 
MOSFET drivers are available in Integrated Circuits and there is no need for 
designing expanded circuits [6]. 

 

 



In addition to advantages that Bootstrap Gate Drivers have, they have some 
limitations, on time of duty cycle is limited by the requirement to refresh the charge in 
the bootstrap capacitor and serious problems occur when the negative voltage is 
presented at the source of the switching device. Design procedure of bootstrap 
components is very important. And if we don’t consider vital parameters it leads to 
Latch-Up problems and missing pulse in the high side switches. 

3.1.4 Motor Current Protection 

To protect the Brush Less DC motor and power switches, we should control the 
current not to rise above the limits. On way to achieve that is to reduce PWM 
temporary to zero at once. And the other is to measure the current in ADC constantly 
and reduce the PWM   by a controller. In the first method because of multiple 
switches it's likely for the Motor Driver Circuits to face problems. Therefore the 
second method was considered. This method is hard to implement but it makes the 
motors' movements smooth [7]. 

 

3.2 Batteries and protection 

Each robot is running on two pack of Li-Polymer (Dualsky™ – xp17002ex) 
batteries with total voltages of 16.8 volts and capacity of 1700 mAh. These kinds of 
batteries are very sensitive to overuse. If the voltage of each cell is dropped below 3 
volts, the cell would be damaged permanently. Hence, a battery protection circuit and 
a low voltage alarm (buzzer) are used. This circuit turns the system off when voltage 
of each pack is dropped below 6.8 volts and the alarm goes on when the voltages 
dropped below 7 volts. It also sends the voltage value back to the AI system to be 
monitored. 

3.3 Wireless communication 

The communication between robots and AI system is done by using two nRF2401 
transceivers. These modules work in frequency between 2.4 to 2.525 GHz. Designing 
printed circuit board (PCB) of RF circuits needs special skills and facilities, so the 
ready to use module (sparkfun™ – WRL00691) was used.  

A wireless board (Figure 13) was also designed to ease the process of sending and 
receiving packets from modules to AI system. Since changing each module from the 
receive mode to the send mode consume some time, two separate modules are 
employed to decrease this delay. The output power of nRF2401 chip is limited to 0 
dbm, so a radio amplifier (BBA-519-A) is used to increase the output power up to 18 
dbm (50 mW). 

The environment of Robocup competition has lots of interferences caused by 
different teams. An intelligent algorithm was used to scan different frequency 



channels and calculate data loss in each one. After that, the best frequency will be 
used as working frequency. 

 

Figure 13: Wireless board used for communication 

3.4 Kicking system 

The kicker system in robot is working based on the force created by a 
ferromagnetic plunger in the coil of the solenoid. Force created in the solenoid is 
depended on several factors, including number of turns in the coil, material of the 
plunger, its weight, the value of the current in the coil, duration of switching of power 
MOSFET and extra mechanical factors.  

There are two separate kicker systems in the robot. One cylindrical type is used for 
direct kicks and another flat type is used for chip kicks. Therefore, two separate 
MOSFETs were used to flow current in solenoids when it is needed. The circuit for 
driving solenoids is presented in Fig 22. 

 

 
Fig. 22. Circuit for driving direct and chip kick solenoids 
 

3.4.1 Solenoid Optimization 

Based on the Newton’s second law, to achieve a higher acceleration in movements, 
reducing the weight of the robots is very important. The solenoid has a high potential 
for losing weight. All the mechanical limitations of this structure and Plunger have 



been considered. Designing an optimized solenoid needs a great amount of 
knowledge and experience in electromagnetic. Thus to make calculations easier we 
used FEMM software. After prototype of the cylindrical solenoid and all the 
components are drawn, we attach the material properties to the components. FEMM 
calculates the force that acts along the direction of the perturbation. During that 
procedure we found out that there are some limitations because we don’t analyze our 

flat solenoid. For example the capacity and voltage of the capacitor cannot be 
changed because we want to keep our last year's chip kick ability. After a lot of 
experiments the result of this analysis was approved. Among 4700 simulated 
cylindrical solenoids the one with the most suitable weight and other parameter was 
chosen. This resulted to a 90 grams reduction from plunger and structure of 
cylindrical solenoid's weight with the same kick speed. 

 

 
Figure 14: New optimized solenoid and plunger 

3.5 Motor 

The robot has 4 Brushless DC Motors (BLDC) to perform precise motions. BLDC 
motors are MAXON™ flat motor (EC45 - 50 watts) with custom back extended shaft 
combined by US Digital™ E4P encoder with 360 counts per revolution which is 1440 

pulse per revolution (Figure 15). In dribbler module, a MAXON™ EC16 - 50 watts 
motor is used as an actuator. To drive this motor, ready to use module (DEC module 
24/2) is used.  

 



 

Figure 15: BLDC motor used in the robot 

 
To drive this motor, internal hall sensors are used. According to the current status 

of hall sensors, driving signals would be created for power MOSFETs. This operation 
is being done in FPGA located on the main board. As displayed in figure 16, the 
driver circuit in the FPGA, get samples from motor current, hall sensor status and 
rotary encoder connected to the motor to perform control tasks. 

    

 

Figure 16: Schematic of motor driver in FPGA 

 
Created signals should turn the power MOSFETs on, but their levels at FPGA pins 

are not sufficient to do that. Hence, MOSFET driver would be used to amplify these 
signals.  

4 Mechanical Design and construction 

The mechanical system of small size robot consists of the wheels, stands, chassis, 
kickers, the dribbler and the robot cover. Some problems in the last version of MRL 
small size robots encouraged us to change the materials and mechanical design. At the 
beginning of this year research, we have done many analyses to reach the most 
suitable design for each part of the robot. The diameter of the new robot is 179mm 
and the height is reduced to 140mm. The spin back system conceals 20% of the ball 



diameter in maximum situation. Different parts of our new mechanical design are 
described in the following. Figure 17 shows our newly designed robots that are 
attended in Iran Open 2012 competitions. The motion of the new robot was 
acceptable, while there is some problems in the dribbling systems. We hope to resolve 
the remained problems till RoboCup 2012 competitions. 

 

 

Figure 17: Mechanical design of new MRL robot 

 

4.1 Wheels 

We tried not to have any specific change in the robots but to improve the Omni-
Directional wheels for a smoother movement in the field. In order to provide a better 
system we found out that it’s better to use pins instead of steel rings and this has the 

following listed merits: 
- Decrease of friction between O-rings and the wheels which causes a higher speed 

in robot system. 
- Less involvement of O-rings with the field’s surface which would help and ease 

the cleaning procedure in the O-rings. 

In the replacement procedure (replacing the steel rings with the pins) we had to 
construct the wheels from the base. Consequently it led to an improvement in the 
wheels system. Therefore we decided to change the ratio of gears and the diameter of 
wheels by applying the same ratio which has been used by Skuba team:1:3.60. This 
made us to decrease the diameter of wheels to 52mm with respect to the use of EC45 
50watt motors which had a gradual result in total speed 5 m/s and an acceleration of 4 
 

  
 . 



  
Figure 18: New wheels of MRL robot 

 

4.2 Motor’s Stands 

Due to sudden collisions of robots we decided to change the stand’s shafts and 
strengthening them. This was made by using a fillet in stand’s design as illustrated in 

the figure. This amplifies the strength. 
 

 
Figure 19: Motor stands with modifications on the shaft and chassis connecting surface 

Second change on the motor’s stand was increasing the connection surface 

between the motor’s stand and the chassis. By creating a rectangular touching surface 

and joining the motor’s stand and the chassis with 4 screws we made a stronger 

connection which is more resistant to bending momentum and it also create a reliable 
connection between chassis and the motor’s stand. 

4.3 Chassis 

In the chassis section there was no specific change. In order to avoid any warp due 
to lathing in the system, we decreased the time of lathing on the chassis. The 



application of multiple screw types in the previous version of the robot was decreased 
to only one type which created an ease in dealing with the robot. 

 

 
Figure 20: Robot new chassis with added stands’ screws. 

Also due to vibrations made by the robots movement and its impact on loosening 
the screws we used spring washers. 

4.4 Kickers 

The robot uses two kinds of kicking system, direct kick and chip kick. Each of 
them is divided in two part, solenoid and plunger. The magnetic plunger material is 
pure iron ST37. Because of the electromagnetic effect two separate parts are used in 
the cylindrical plunger. The custom-made cylindrical solenoid is used for direct kick 
which has ability to kick the ball up to 12 m/s. Last year our direct kicker was made 
from Aluminum alloy but the kickers were broken frequently during the matches. To 
solve this problem, we replaced it by Titanium Alloy for the new robot. Direct kick 
solenoid is located between kicking plates which are made from polyamide and 
aluminum.  

As a second kicking system, MRL2012 has a custom-made flat solenoid. Because 
of space limitation with high performance chip kick we decided to reshape the 
solenoid from cylindrical to flat rectangular and placed in the front part of the robot. 
The chip kick has a 45 degree hinged wedge front of the robot which is capable of 
kicking the ball up to 6m before it hits the ground. The chip kicker is made from 
Aluminum Alloy 7075 which is enough strong to kick the ball. Chip kick system has 
a different plunger from direct kick; chip kick plunger is made from Steel with the 
thickness of 3.70mm.  

4.5 Dribbling System 

Dribbling system is a mechanism to improve the capability of ball handling. 
Dribbler is a steel shaft covered with a rubber and connected to high speed brushless 
motor shaft, Maxon EC16 Brushless. We examined several materials for dribbler bar, 



like Polyurethane, Silicon and carbon silicon tube. Carbon Silicon is selected for its 
higher capability in ball handling. 

The spin-back motor was in the front of the robot and it was exposed to any strike 
whether due to ball hit or robot’s collisions. To solve this problem, we have taken the 

spin back motor’s position a little back. Additionally, by attaching the ending point of 
the spin-back motor with a fastener to spin-back system we fixed the structure. This 
led to a higher resistance in front of any hit and it also helped the opening and 
fastening of the dribbling system. 

 
Figure 21: MRL robot dribbling system 

 
The major change in dribbling section in the following year was the sensors’ 

position in the dribbling system which a rotation in spin-back system around the 
connecting pin or any vibration due to spin-back motor created a movement in the 
spin-back system and gradually led to sensors movement. With a change in sensors 
position and fixing them with a specific structure we increased the accuracy and also 
by placing a cover on the sensors connections we saved them from any unwanted 
damage. 

 
Figure 22: Fix and rotating parts of the dribbling system 



4.6 Protection Cover 

Because of heavy collision with other robots or being hit by the ball we decided to 
use a more resistant cover made of carbon and glass made by a composite procedure. 
We found out glass and carbon fiber in ingredients of cover had an unwanted impact 
on wireless receiving system. By changing its material to polyethylene the problem is 
solved. The new cover is about 50-60 grams lighter and it is fixed without any screw 
on the robot. 

 
 

Figure 23: Robot cover with new material and design 

The second problem was the ease of applying any change in the robots in critical 
situations such as changing batteries and etc., which with a more flexible cover we 
solved the problem. 
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