

Immortals 2012 Extended Team Description Paper

Iran University of Science and Technology

Mohammad Reza Niknezhad1, Ali Salehi2, Ali GhaziMirSaeed3, Ehsan Kamali4, Mo-
hammad Hossein Fazeli5, Mohammad Tabasi5, Mustafa Talaeezadeh6

1 Department of Computer Engineering of Iran University of Science and Technology
2 Department of IT Engineering of Sharif University

3 Department of Mechanical Engineering of Tehran University
4Department of Electronic Engineering of Shahed University

5Department of Mechanical Engineering of Iran University of Science and Technology
6 Department of Computer Engineering of Shahid Beheshti University

Abstract. This paper presents some of the hardware and software improve-
ments of the Immortals small size robotic team based in Tehran, Iran. The sys-
tem is designed under the Robocup 2012 rules in order to participate in Ro-
bocup 2012 competitions in Mexico.

1 Introduction

Some achievements of Immortals team that seemed innovative and useful are ex-
plained in this paper. This paper is meant to improve these methods by sharing them
with the community, and help new teams achieve the minimum requirements for par-
ticipating in the competitions.

With some minor modifications and adjustments in hardware aspects, the
main focus of the team is more sophisticated AI and improvements in the software
side, that are described briefly in this document.

First some optimizations in electronics design are introduced, and then some
software engineering concepts implemented in this year's robotic overall design are
explained. These include using Data Driven Design, Scripting languages and Strategy
Maker tool.

2 Hardware

The most important to the hardware this year, is the change of wireless modules from
RXQ2 to nRF24L01. The previous modules had small bandwidth which had led us to
ignore all error detection mechanisms like check sum and CRC to reduce the length of
data packets. It resulted in frequent malfunction of the robots. The module also
couldn’t afford to send any feedback to the server for the use of AI.

In order to run some processes on the main processor of the robot, including
local sensing and the fusion of its data with the global data, and further transferring
the low level navigation processes to the robots, the main processor needed to be
freed up. Previously, a long packet containing the commands of all robots was sent to
the robots. Each robot had to find its respective command from this long packet. Us-
ing nRF24L01, addressing and error checking processes were moved from the main
processor to the wireless module.

2

The new interface board for the wireless communications (Figure 1) utilizes an
ARM processor which can receive the data directly from the Ethernet port using UDP
protocol. Based on onboard switches, it transmits the data using either NRF or RXQ2
modules for backward compatibility. Some fail safe procedures have also been im-
plemented on the board, including sending a halt command for robots in case no data
had been received for a specific amount of time.

Fig. 1. New interface board for wireless communications

3 Software

This year, the main target of the software development was moving towards a data-
driven software. To achieve this, some parts of the software architecture were modi-
fied, and some parts are completely replaced. The following sections describe the
changes more specifically.

Also the navigation part has been optimized by removing non-important obsta-
cles from planning. This improvement is described in the last section.

3.1 Data Driven Design

Based on the observations from the past competitions, the main software including
vision filtering and prediction, low level skills, navigation system and wireless com-
munication, is almost identical. But the soccer part, including strategies, tactics and
high level skills, changes more frequently. So it was reasonable to choose a model
that uses a core/crust schematic.

The solution was the Data Driven Model, where a core program is made that
responds to subsets of certain commands as its input data to control the overall flow
of an application. These data is preferred to be in standard formats. "In computer pro-
gramming, data-driven programming is a programming paradigm in which the pro-
gram statements describe the data to be matched and the processing required rather
than defining a sequence of steps to be taken." [1]

For example, some strategies (called “play” in STP [2]) are created, modified
and managed with a visual tool, and used during the game with no need to change the
main code itself.

3

This will also help publishing these applications to communities, since they're
more understandable and easy to be modified to satisfy special needs of individuals /
teams based on generic term. So it helps developers to focus on soccer related parts,
without knowing much about the whole software.

By applying Data Driven Design, a core program was written that holds gener-
ic tasks and interpreting responsibilities, such as filtering, prediction and fusion of the
vision data. This program gets the soccer algorithms, in form of standard messages.
Some examples of such messages are scripting languages, strategy definitions and
tactics parameters.

3.2 Scripting Language

To achieve the data driven design described above, high level soccer algorithms
should be considered as an input data to the main program. This requirement was set
to reduce the build-time, as the hardcode languages take massive amount of time dur-
ing their linking, parsing, compilation, assembly and overall build.

After evaluating some types of data, the most suitable type found was the
scripting languages. The scripting language that has been chosen for the task is An-
gelScript [3], for its similarity to C.

3.3 Strategy Maker

Although scripting languages are generic, and most of the algorithms could be im-
plemented using them, a visual interface is more suitable to implement the strategies.
It is harder to code strategies even with scripting, and sometimes, the best program-
mers may not be the best game strategists. So a tool had to be built to make it easy for
everyone to propose strategies.

Fig. 2. Strategy maker tool

The visual editor for the strategies called Strategy Maker is shown in figure 2.

This tool is currently used in two situations: game restarts, and attack strategies.

4

For game restarts, this tool allows setting a sequence of roles for each attacking
robot. The advance of the sequence is based on either a predefined condition such as
elapsed time or the distance to waypoint, or a script file describing the condition.

For attacking strategies, it allows setting roles of attacker robots, based on the
state of the ball. Then the main program interpolates between these defined states
during the match, and calculates a strategy for current state of the ball.

The final result of this tool is a message containing strategies. The messaging
is implemented using Google protobuf [4]. This message can be delivered to the main
program using either UDP or a file.

3.4 SB-RRT

One of the relatively recently developed planners that was evolved to tackle the plan-
ning problem is RRT [5]. RRT uses random states to rapidly explore the state space.

Safety Biased-RRT (SB-RRT) [6] is an extension to the RRT, which suggests
biasing the Rapidly-exploring Random Trees (RRTs), with the outcome of a safety
evaluation, which affects the probability of choosing a random point in the sampling
phase of the RRT algorithm, to increase the chance of safer outcomes.

SB-RRT could further be optimized by omitting some of the obstacles from the
evaluation process which is considered time consuming. This becomes more im-
portant when there are too many obstacles in the field or the evaluation process must
be done many times. Some obstacles seem to have no effect on the planned path, in-
cluding the situation, but not limited to, when they are relatively far from both initial
position and the destination. But sometimes even far obstacles have a huge effect on
the planned paths. As can be seen in the figure 3, although the two obstacles in the left
side seem to be far from both initial state and the destination, they cannot be ignored
in the planning process.

Fig. 3. An example planning where farthest obstacles have effect on the path

To overcome this difficulty and omit some of the obstacles from the time con-

suming evaluation process, some neural network technics were integrated in the
SBRRT algorithm which assigns a value to every obstacle representing its importance
in the planning process. This process removes some of the obstacles from the plan-
ning process.

5

Inputs are 13 coordinates, including the positions of 11 obstacle robots, initial
state and final state. There are 60 neurons placed in 3 layers that use the Back Propa-
gation as their learning method. Figure 4 illustrates a typical 3-layer network:

Fig. 4. A typical 3-layer network

As mentioned before, the main challenge in this example was to measure how

much an obstacle effects each path. To train the network, it is given random patterns
of obstacles with random initial and final points numerous times, in addition to the
correct answers. In each case, one of the obstacles is omitted from the pattern and the
number of times that the path crosses through the specific obstacle using SB-RRT is
measured. Running the same algorithm for every obstacle in the same pattern gives us
a measure of how important each obstacle is in that specific pattern. If the number of
times the path crossed through the robot is smaller than an adjusted threshold, the
result would be considered as a correct answer.

Fig. 5. The result of finding important obstacles

Figure 5 shows the result of the described method in an example situation. In

this example, the three obstacles marked as red, are important obstacles. The other
obstacles are non-important obstacles, and could be ignored during the planning.

6

References

1. Data-driven programming, http://en.wikipedia.org/wiki/Data-driven_programming.
2. Browning, B., Bruce, J.R., Bowling, M., Veloso, M.: STP: Skills tactics and plans for mul-

ti-robot control in adversarial environments. In: Journal of System and Control Engineer-
ing.

3. AngelCode Scripting Library, www.angelcode.com/angelscript/.
4. protobuf - Protocol Buffers - Google's data interchange format,

code.google.com/p/protobuf/.
5. LaValle, S., Kuffner, J.: Randomized kinodynamic planning. International Journal of Ro-

botics Research, 20(5):378–400, May 2001.
6. Salehi, A., Niknezhad, M.R., Kamali, E., MirSaeed, A., Fazeli, M.H., Piran, Y., Salehi, S.,

Khuzani, M.: Immortals 2011 Extended Team Description. In: Proceedings of Robocup
2011.

