
ER-Force
Team Description Paper for RoboCup 2012

Jan Kallwies, Simon Dirauf, Philipp Nordhus,
Simon Kerschbaum, Stefan Friedrich, and Michael Bleier

Robotic Activities Erlangen e.V.
Pattern Recognition Lab, Department of Computer Science

University of Erlangen-Nuremberg
Martensstr. 3, 91058 Erlangen, Germany

info@robotics-erlangen.de

http://www.robotics-erlangen.de/

Abstract. This paper presents an overview description of ER-Force, the
RoboCup Small Size League team from Erlangen, Germany. The current
tracking algorithms and processing stack is outlined. The main part of
the paper gives a detailed description of the model-based motion control
implemented on the robots and trajectory planning and position con-
trol algorithms used on the external computer. Furthermore, upcoming
changes and improvements are outlined.

1 Introduction

In this paper the motion control and trajectory planning components of the
RoboCup team ER-Force is presented. The team, located at Friedrich-Alexander-
University of Erlangen-Nuremberg in Germany, participates in RoboCup com-
petitions since 2007. This year focus lies on improving the motion control al-
gorithms to provide faster reaction times and on adjusting both the position
and the orientation of the robots. In section 2 the tracking algorithm and the
organization of data flow in the system is presented. The design and implemen-
tation of the control loops for velocity and position as well as the basic planning
algorithms for valid trajectories is illustrated in section 3.

2 State Estimation and Tracking

The task of object detection has been greatly simplified by the introduction of
SSL-Vision [1]. This software is able to identify objects reliably in most situa-
tions. However, since it does not include any form of tracking, detection will fail
eventually. For instance, the ball will not be detected if it is occluded by a robot
due to perspective projection. Furthermore, among other situations, fluctuations
in lighting conditions may render an object temporarily invisible.

It is necessary for the control algorithms presented in section 3 to have valid
data on each iteration. If no position data is available at any iteration, the

http://www.robotics-erlangen.de/

software will fail to generate movement commands. Therefore, a tracking system
has been implemented. The well-known Kalman Filter [2] is applied to filter
noise in the detection data from SSL-Vision. This algorithm also tracks objects,
i.e. it provides an estimate of the current position and velocity even if there are
no new measurements available.

For optimal control the delay between receiving new vision data and the
transmission of the control action to the robots has to be kept as small as pos-
sible. Moreover, for easier analysis and design of the control algorithms it is
preferred that all low-level control loops run with a fixed frequency. SSL Vision
does not provide any guarantees about the timing of the vision data packets since
both cameras (or even all four with a large field) are triggered independently
and the processing threads are not synchronized. Hence, the information from
each individual processing stack is received with a small, non-constant delay and
motion control cannot simply be executed whenever new vision data is available.
In this implementation, a dedicated thread first runs the tracking algorithm and
directly afterwards motion control calculations. As a compromise, this thread
is triggered with a fixed frequency of 120Hz which relates to approximately the
double camera frame rate. Upon activation the thread first iterates over all vi-
sion packets received since the last activation, in chronological order. For each
packet, all currently tracked objects are predicted to the time when the packet
was received. This receive timestamp is calculated by subtracting the SSL-Vision
runtime from the time when the packet was received on the control computer.
Any additional latency by Firewire and UDP communication is neglected. Af-
ter prediction, each object is updated with the measurements from this vision
packet. When all vision packets have been processed, all filters are predicted to
the current time. Finally, motion control is run with this estimated data.

3 Motion Control

Motion control is one of the most important areas in the Small Size League due
to the very fast and agile robots. This topic is already addressed in several works,
e.g. [3] or [4].

In this paper, however, a new approach for motion control, in particular the
velocity control on the robot, is presented.

The entire motion control system is divided into two parts, the velocity control
processed on the robot and the position control on the supervising computer. The
position control’s main purpose is to calculate the way and the corresponding
velocities of the robot through the waypoints generated by the path-finding in
an adequate way. The desired velocities are subsequently sent to the robot by
radio. Finally, the velocity control on the robot ensures that the robot motion
complies to the desired velocity.

3.1 Velocity Control

The velocity control system takes care of the velocity in x- and y-direction as
well as the rotational speed of the robot. The corresponding coordinate system
of a four-wheeled robot can be seen in Fig. 1.

1 4

2

x

y

3

α4α1

α2

α3

Fig. 1. Model of the robot including the axes and the angles of the motors

Model-based feed-forward control The first step of designing a control sys-
tem is to think about a reasonable feed-forward system that controls the system
correctly under optimal conditions. The actual feedback controller’s only purpose
is then to tackle disturbances caused by uncertainties such as model inaccuracy
and extraneous impacts. This approach, as presented e.g. in [4] and [5], achieves
much better results compared to a classical feedback-only control architecture
by implementing a two degrees of freedom control system consisting of a feed-
forward and a feedback system.

PC /
Radio

System

(Motor and
wheels)

Model based
feedforward

control

a → Torque
Trafo

aff Tff vdw = vcmd

vd

Fig. 2. Structure of the feed-forward system for the velocity control

Following such an approach we implemented a control mainly consisting of
a model-based feed-forward control as it can be seen in Fig. 2.

The first block in Fig. 2 represents the model-based feed-forward control
which generates a trajectory of the desired velocities

vd =

vd,x

vd,y

ωd

 (1)

and appropriate values for the acceleration

aff =

aff,x

aff,y

aff,ω

 (2)

which are suitable for achieving the desired behavior of the velocities vd.
How these trajectories and control values are generated in detailed is de-

picted in Fig. 3. Basically, we shape the real system consisting of the motors
and the wheels in a model and build a controller around it. As a setpoint we
use the desired velocities vcmd received by radio. The controller is a simple state
controller:

Model of
the System

Controller a → Torque
Trafo

aff Tff vdw = vcmd ev

aff

Fig. 3. The model-based feed-forward control

aff = Kff · ev =

kff,1 0 0
0 kff,2 0
0 0 kff,3

 ·
vcmd,x − vd,x

vcmd,y − vd,y

vcmd,ω − vd,ω

 (3)

The controller parameters inKff can be used to adjust the command response
individually for all three dimensions. With higher values for the parameters faster
responses to a change of vcmd can be achieved. However, the command response
must not be made too fast since it may no longer be possible to bring up the
required torque because of the limited voltage and current that can be applied
to the motors. This problem can be avoided by taking actuator signal limitations
in the model-based feed-forward control into account.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1

2

3

t in s

v
in

 m
/s

v
d,x

v
d,y

v
cmd,x

v
cmd,y

(a) Velocities

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−10

0

10

20

30

t in s

a
in

 m
/s

2

a

ff,x

a
ff,y

(b) Accelerations

Fig. 4. Example trajectories generated by the model-based feed-forward control

In Fig. 4 one can see an example of the output of the model-based feed-
forward control.

Please note that the robot will perform exactly the desired trajectories vd as
plotted in Fig. 4(a) if the values for the acceleration aff as plotted in Fig. 4(b)
are used as input values, assuming that the model used for the model-based
feed-forward control is exact and there is no disturbances at all.

Therefore, the feed-forward system outlined in Fig. 2 will control the robot
in the desired way without any feedback path.

Acceleration to Torque transformation The output of the primary control
system as described above is a desired acceleration for the robot:

a =

axay
ω̇

 (4)

Since the acceleration cannot be used directly as input for the motors it has to
be transformed into a corresponding setpoint torque in the form of:

T set =


T1

T2

T3

T4

 (5)

This transformation is not unique because there are three dimensions of ac-
celeration transformed to four motor torques. Basically three motors would be
enough for driving to the x- and y-direction and the rotation. Thus we have one
redundant element in the torque vector T set. This can easily be seen in Fig. 5.

x

y

Fx

F1 F4

F3 F2

x̃

Fig. 5. The desired force in x-direction Fx divided into the four motor forces

A straight forward appraoch to use this redundancy is to equalize all four
motor torques for moving in x- and y-direction.

T1 = T2 = T3 = T4. (6)

In this case the point x̃ describes the distribution of the force in x-direction
between the wheels with different angles and can be evaluated by

x̃ =
sin(α1)

|sin(α2)|+ sin (α1)
. (7)

Analogously the point ỹ can be evaluated for moving in y-direction:

ỹ =
cos(α4)

cos(α4) + cos(α3)
(8)

To rotate the robot, i.e. driving in ϕ-direction, the y-components of each cor-
responding wheels 1–4 and 2–3 neutralize themselves. The x-components of the
corresponding wheels are added and their sum has to be zero.

With these conditions the force feed-forward matrix Fff can be written as

Fff =



− x̃
2 sin(α1)

ỹ
2 cos(α1)

1

2r
1−sin(α1)

sin(α2)

− 1−x̃
2 sin(α2)

1−ỹ
2 cos(α2)

1

2r
1−sin(α2)

sin(α1)

− 1−x̃
2 sin(α3)

1−ỹ
2 cos(α3)

1

2r
1−sin(α2)

sin(α1)

− x̃
2 sin(α4)

ỹ
2 cos(α4)

1

2r
1−sin(α1)

sin(α2)

 (9)

where αi are the angles from the x-axis to the single wheel axes (see Fig. 1) and
r is the radius of the robot.

With this matrix we can compute the setpoint torque vector:

T set = Fff

axay
ω̇

 (10)

The controlled system – the robot with motors and wheels The model
the feed-forward control is based on can be seen in Fig. 6.

The complete dynamics of the motors including the torque control is approx-
imated by a first order lag element (PT1 element). By dividing the torques Ti
by the wheel radius r the forces Fi can be calculated.

With the help of the force coupling matrix F c, the forces of the single motors
are added vectorially to the resulting forces in the three moving directions x, y,
and ϕ Fx

Fy

Tϕ

 = F c ·


F1

F2

F3

F4

 . (11)

Where F1, F2, F3 and F4 are the forces of the single motors, F c is the force
coupling matrix and Fx, Fy and Tϕ are the resulting forces for the robot.

PT1

PT1

PT1

PT1

T
set,1

T
set,2

T
set,3

T
set,4

V
X

V
y

V
omega

Force coupling

Tset,1

Tset,2

Tset,3

Tset,4

T1

T2

T3

T4

1
r

1
r

1
r

1
r

F1

F2

F3

F4

F c

Fx

Fy

Fϕ

ax

ay

aϕ

1
m

1
m

1
I

vx

vy

ω

︸ ︷︷ ︸
Whole Robot

︸ ︷︷ ︸
Wheels

︸ ︷︷ ︸
Motors

Fig. 6. Model of the controlled system

The force coupling matrix is given by

F c = RG ·

− sin(α1) − sin(α2) − sin(α3) − sin(α4)
cos(α1) cos(α2) cos(α3) cos(α4)

r r r r

 (12)

where RG is the gear ratio between motors and wheels, αi are the angles of the
four wheel axes to the x-axis as in Fig. 1 and r is the radius of the robot.

With equation (11) the forces driving the robot can be calculated and the
final accelerations can be derived by dividing them by the mass of the robot m
and the moment of inertia I, respectively.

Torque Control The interface between the velocity control for the whole robot
and the torque control per motor is simply a setpoint for the torque. Note that
the single wheel speeds are not controlled at all. We think that it is much more
reasonable to control torque instead of rotational wheel speeds.

Our approach for the torque control is shown in Fig. 7. As a model we used
a simple model of a DC motor as described in [6] whereas ni is the current
rotational speed, UM the applied voltage, RA the resistance of the anchor, IA
the current through the anchor and Ti the currently available torque. The motor
constant kM measured in Nm/A is used to calculate the torque T = IA · kM and
kEMF measured in V/rpm is used to estimate the back EMF voltage UEMF.

PT1

Coil
and R

A

U
R

A
/k

M

Controller

T
set

k
EMF

k
EMF

n

k
M

k
M

TU
M

T
set

U
C

U
ff

T
est

e
T

I
A

Filter

Motor

Prefilter

Torque estimation

Disturbance
compensation

I
A

U
EMF

Fig. 7. Structure of the torque control per motor

The torque control consists of three parts to calculate the control input which
is the applied motor voltage.

We do not control the rotational wheel speeds, but we take them into account
in terms of the torque control. This way we can treat the back EMF voltage which

reduces the voltage available for acceleration (see Fig. 7) as a measurable distur-
bance. Thus the first step is to compensate this effect by adding Un = n · kEMF.

The next step is once again a feed-forward control in form of a static prefilter

Uff = Ti,set ·
RA

kM
as it can be seen in Fig. 7. Under the assumption that the model

is exact this control value will lead to a torque that is equivalent to the desired
torque after a short time.

The last step is to compensate unknown disturbances or such that are not
measurable, as well as model uncertainties by using a controller UC = (Ti,set − Ti) · kT

whereas the current torque is estimated using the measured value of the current
according to Fig. 7.

Thus we can write the overall control formula as:

UM = n · kEMF︸ ︷︷ ︸
Compensate back EMF

+ Ti,set ·
RA

kM︸ ︷︷ ︸
Feed-forward control

+ (Ti,set − Ti) · kT︸ ︷︷ ︸
Feedback control

. (13)

State controller A pure feed-forward system as described above would control
the robot already quite well but will never be stationary exact because we can
neither create an exact model nor neglect disturbances. Moreover, we do not
know the initial conditions exactly, what would also be necessary for an exact
feed-forward control. Thus we need a controller in order to compensate deviations
from the desired trajectories.

The resulting complete structure of the velocity control system is shown in
Fig. 8.

Since the system is completely controllable we can place the eigenvalues ar-
bitrarily and individually for all three dimensions.

PC /
Radio

System

(Motor and
wheels)

Model based
feedforward

control

a → Torque
Trafo

Controller

Kalman
filter Sensors

vcmd aff aset T set v

vestvd

ev

ac

Fig. 8. The complete structure of the velocity control for the robot

Measurement and state estimation In order to be able to compensate the
uncertainties using a state controller as described above we need to estimate the
current state, in particular the velocity vector v. Therefore, we have different
measured values:

• Rotational speed ni of the 4 wheels measured by a magnetic encoder
• Rotational speed ω of the robot measured by a gyroscope
• The acceleration in x- and y-direction measured by an acceleration sensor

In order to perform sensor data fusion and state estimation a Kalman Filter
is used [2].

3.2 Position Control

Trajectory Planning The algorithm is implemented in the scripting language
Lua [7] to avoid the need for recompilation of the source after implementing
changes. This helps to quickly test modifications of the code.

The trajectory starts at the current position of the robot. The pathfinding
generates waypoints which shall be passed by the robot in successive order. In
addition it determines the velocity and rotational orientation which the robot
should have, when it reaches the final waypoint. To connect all waypoints with
a feasible trajectory, the velocity and its direction at every waypoint must be
known.

First, all waypoints are connected via linear intercepts. The time needed to
get from one waypoint to another is estimated on the basis of the length of these
segments. The direction of the velocity at one waypoint is orthogonal to the
angle bisector of the two lines which meet at one waypoint. The absolute value
of the velocity is limited by three factors. If the waypoint is close to the previous
one, the velocity should be similar to the velocity of the previous waypoint, as
the acceleration is limited. If the waypoint is close to the last waypoint, the
velocity is limited for the same reasons. Furthermore, we take the angle between
the two lines, which meet at the waypoint, into account. If the angle is big, the
velocity is close to the maximal velocity. With smaller angles a smaller velocity
is chosen.

The robot shall rotate permanently and reach its final rotational orientation
and its final position at the same time. This way a rotational orientation can be
assigned to each waypoint.

The linear connection between two neighbouring waypoints is divided into
two parts with the same length. The acceleration vector is constant inside of each
part. The acceleration in one dimension (x, y and rotational) can be calculated
independently from the other two accelerations. The values of the accelerations
are completely determined by the boundary conditions.
The whole method is visualized in Fig. 9.

Exact Linearization The dynamics of the robot can be described approxi-
mately by a linear state space model

v̇R(t) = AvR(t) +Bu(t) (14)

vR(t) : velocity vector in the coordinate system of the robot
u(t) : input vector

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−1

0

1

2

3

4

5

6

x in m

y in m

Fig. 9. The waypoints are connected via linear intercepts, a velocity vector is calculated
for every waypoint, and all waypoints are connected in a final step using splines.

A : dynamic matrix
B : input matrix

in the coordinate system which is attached to the robot.
For the position controller the position of the robot in the global coordinate

system is needed. To transform the velocity vector from the coordinate system
of the robot into the global coordinate system

vR(t) = T (ϕ)vG(t) (15)

vG(t) : velocity vector in the global coordinate system
T (ϕ) : transformation matrix
ϕ : angle between robot and global coordinate system

a transformation matrix is needed, which contains sinusoidal terms and is there-
fore nonlinear

T (ϕ) =

 cos(ϕ) sin(ϕ) 0
− sin(ϕ) cos(ϕ) 0

0 0 1

 . (16)

The non-linearity of the resulting system model in global coordinates

v̇G = T−1(ϕ)
[
AT (ϕ)− Ṫ (ϕ)

]
vG + T−1(ϕ)Bu (17)

can be compensated by a modified input signal

u = B−1T (ϕ)
[
u− T−1(ϕ)

[
AT (ϕ)− Ṫ (ϕ)

]
vG

]
. (18)

u Compenastion of
non-linearity

u
Robot

ϕ,vG

Fig. 10. The linearized system consists of the compensating filter and the dynamics of
the robot

The elements of the new input signal u are the accelerations of the robot in
the global coordinate system. These accelerations can be chosen arbitrarily. The
input signal that has to be sent to the robot (17) to accelerate in the chosen way
can be calculated by (18).

The whole system, consisting of the dynamics of the robot and the compen-
sator of the nonlinearity, can ultimately be treated as a linear system, as can be
seen in Fig. 10.

4 Conclusion

Tests have shown that a well-performing tracking system increases the accuracy
and reliability of the SSL-Vision detection. The presented algorithm has already
proven to be very stable, and therefore reduces the dependency on a perfect
vision calibration.

The motion control algorithms achieve a better command response by apply-
ing additional feed-foward control rather than common feedback-only. To reduce
development time the algorithms have been verified in MATLAB/Simulink.

References

1. Zickler, S., Laue, T., Birbach, O., Wongphati, M., Veloso, M.: Ssl-vision: The shared
vision system for the robocup small size league. RoboCup 2009: Robot Soccer World
Cup XIII (2009) 425–436

2. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans-
actions of the ASME – Journal of Basic Engineering 82 (Series D) (1960) 35–45

3. Chaiso1, K., Ariyachartphadungkit, T., Sukvichai, K.: Extended team description
2010 paper team skuba. (2010)

4. Umeno, T., Hori, Y.: Robust speed control of dc servomotors using modern two
degrees-of-freedom controller design. IEEE Transactions on Industiral Electronics
38(5) (1991) 363–368

5. Grotjahn, M., Heimann, B.: Model-based feedforward control in industrial robotics.
The International Journal of Robotics Research 21(45) (2002)

6. Oguntoyinbo, O.: PID Control of Brushless DC Motor and Robot Trajectory Plan-
ning and Simulation with MATLAB/Simulink. PhD thesis, Vaasan Ammattiko-
rkeakouluuniversity of Applied Sciences (2009)

7. Ierusalimschy, R.: Programming in Lua. Lua.org (2006)

	ER-Force Team Description Paper for RoboCup 2012

