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Abstract. This paper presents a detailed description of Skuba, a Small-Size 
League RoboCup robot team in addition to the team description paper. The 
robot system is designed under the RoboCup 2011 rules in order to participate 
in the RoboCup competition in Turkey. The low level and high level control of 
the SKUBA system are explained in each section. 

1   Introduction 

Skuba is a small-size league soccer robot team from Kasetsart University, which has 
entered the RoboCup competition since 2006. We got the championship from last two 
years from the RoboCup 2009 in Graz, Austria and 2010 in Singapore. Another 
championship is in April 2011 from RoboCup Iran Open 2011 in Tehran, Iran. 

The robot system consists of two main components: the robot hardware and the 
software. The software makes strategic decisions for the robot team by using 
information about the object positions from the vision system. The global vision 
system run by the shared vision software, SSL-Vision, uses two cameras mounted 
over field. The software executes plans by calculating the robot actions and then 
sends the commands to each robot. 

Our team has ten identical robots, six of them were built in 2008 and another four 
were built in 2009 with some minor changes in material and mechanical design. We 
are not planning to make any major changes to the design. The robot hardware is the 
same as used in last year. 

This year, the main focus of this extended team description paper is to expand our 
control system. The control parameters are measured by automatic calibration process 
which simply uses the same procedure as the manual calibration does, but it’s done 

automatically by the software. 
 
 
 



1.1   Team Members 

Kanjanapan Sukvichai : Control Theory and Supervisor 
Krit Chaiso : AI Software and Team Leader 
Chanon Onman : AI Software 
Nuttapol Runsewa : AI Software 
Khakhana Thimachai : AI Software 
Phawat Lertariyasakchai : AI Software 
Tanakorn Panyapiang : AI Software  
Teeratath Ariyachartphadungkit : Electronics, Mechanics and Low level Firmware  
Supavit Siriwan : Electronics and Mechanics 
Peerapat Kittiboriluk : Mechanics 

2   Robot Hardware 

This section describes the robot electronics system that is used in driving system 
including the designs and components. Details about operations and algorithms are in 
the firmware section. 

The robot consists of two electronics boards: the main board and the kicker board. 
The main board handles all of the robot tasks except kicking. The kicker board 
controls the entire kicker system. 

2.1   Main Electronics Board 

The board consists of a Xilinx Spartan-3 XC3S400 FPGA, motor driver, user 
interface, some add-on modules and debugging port. The microprocessor core and 
interfacing logic for external peripherals are implemented using FPGA in order to 
handle the low-level control of the brushless motor such as velocity and position 
control.   The main electronics board receives commands from the main software on a 
computer. The board integrates the processing components together with the power 
components to keep the board compact and minimize wiring. With limited space, 
almost components are in small SMD packages. However, these components still 
large enough for hand soldering with conventional tools. Figure 1 show the main 
electronics board of the robot. 



 

Fig. 1. The main electronics board. 

2.2   Motors 

There are two types of motor in the robot, the driving motor and the dribbling motor, 
both are brushless motor. Each driving motor is a 30 watts Maxon EC45 flat motor 
with a custom back-extended shaft for attaching encoder wheel. The motor itself can 
produce a feedback signal from hall sensors for measuring wheel velocity. However, 
this multi-pole motor sends only roughly 48 pulses per revolution; therefore, this 
motor is equipped with an US Digital E4P encoder which have higher resolution of 
1440 pulses per revolution. The dribbling motor is a high speed 15 watts Maxon 
EC16 motor. Despite a very low resolution of 6 pulses per revolution signal from hall 
sensors, the implementation of the PI controller is possible when running this motor at 
high speeds. The maximum speed of the dribbling bar is about 13000 rpm. 

The motor driver is a three phase inverter circuit using complementary N and P 
channel power MOSFET in each phase. This configuration doesn’t require bootstrap 
driver as in N-channel-only configuration. These MOSFETs are driven by MOSFET 
driver ICs to minimize switching loss. The motor commutation and PWM generation 
are described in the firmware section. Figure 2 shows the three-phase brushless motor 
driver circuit. 
 



 

Fig. 2. The three phase inverter in complementary configuration. 

3   Robot Low Level Control 

The main electronics board consists of a FPGA as a single chip central controller. The 
FPGA is embedded with a 32-bit processor, brushless motor controller, PWM 
generator, quadrature decoder, kicker board controller and onboard peripheral 
interfacing cores: SPI and UART. The processor runs at 30MIPS as same as oscillator 
clock speed. We use Altium Designer and Xilinx ISE software to generate, configure 
and debug these cores.  

3.1   Brushless Motor Driver 

The three phase inverter bridge is fed with signals from FPGA to provide 
commutation for each motor. These signals are ANDed with the PWM signal to vary 
the average voltage applied to the motor winding. The six steps commutation 
sequence is detected by three hall sensors in the motor. Both high and low side drivers 
are driven by PWM signals to control the torque applied to the motor. 

3.2   Motion Control 

The robot employs a PI controller as a motion controller, one controller for each 
motor. The control loop executes 600 times per second using velocity feedback from 
the encoder in driving motor and hall sensors in dribbling motor. The proportional 
and integral gains are manually hand-tuned. The computer sends a velocity for each 
DOF: x-y axis and rotation axis. Then, converted to each wheel velocity and sent to 
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the PI controller. The output from the controller is sent directly to the PWM 
controller. 

3.3   Over-current Protection 

General problem when driving the inverter bridge is the shoot-through current. This 
current is caused by turning on one side of the driver immediately after the other side 
of the driver has been turned off, because the MOSFET turn-off time is usually higher 
than the turn-on time. This situation occurs when the motor is reversing direction, 
which can be prevented by adding a small delay time between each high and low side 
driver signal. 

Many of robot skills use the dribbler. Some ball stealing skills can cause dribbling 
motor to stall when the dribbling bar is contacted with the opponent robot. The stalled 
motor consumes very high current and often burn the fuse out. This over-current 
situation can be detected by a current sensor and can be prevented by limiting a PWM 
duty cycle until the current drop below the safe motor operating current. Figure 3, 
depicts the motor stalling situation. When the motor stalled, the motor current 
increased and dropped in a short time due to limited duty cycle. The motor current is 
controlled around the threshold while the motor is stalling. 
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Fig. 3. PWM duty cycle, velocity and current. The motor is run from stop. 
Then, a very large load applied to the motor in between 0.5 sec to 1.5 sec.  

Current value is in ampere, duty cycle and velocity are normalized. 

3.4   Torque Control for Maxon Brushless Motor 

 
The dynamics of a robot is derived in order to provide information about its 

behavior. Kinematics alone is not enough to see the effect of inputs to the outputs 
because the robot kinematics lacks information about robot masses and inertias. The 
dynamic of a robot can be derived by many different methods such as Newton’s law 



and Lagrange equation. Newton’s law is used to solve the robot dynamic equation. 

The interested mobile robot is consisted of four omni-directional wheels as shown in 
figure 4. Newton’s second law is applied to robot chassis in Fig 1 and the dynamic 
equation can be obtained as (1) though (3). 
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where, 

        x is the robot linear acceleration along the x-axis of the global frame  
        y is the robot linear acceleration along the y-axis of the global frame 

       M is the total robot mass 
       if  is the wheel i motorized force 

       ff is the friction force vector 

       i is the angle between wheel i and the robot x-axis  

         is the robot angular acceleration about the z-axis of the global frame 
        J is the robot inertia 
        d is the distance between wheels and the robot center 
        tracT is the robot traction torque 

 

 
Fig 4. Robot structure 

 
 
    The robot inertia, friction force and traction torque are not directly found from 

the robot mechanic configuration. These parameters can be found by experiments. 
The robot inertia is constant for all different floor surfaces while the friction force and 
traction torque are changed according to floor surfaces. The friction force and traction 
torque are not necessary found at this point because these two constraints are different 
for different floor surfaces and their effect can be reduced by using the control 
scheme. The motorized forces are driven by brushless motors with τm1, τm2, τm3, and τm4 

therefore the dynamic equation of the robot becomes 
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where,  
        r  is a wheel radius 
 
    Equation (4) though (6) show that the dynamics of the robot can be directly 

controlled by using the motor torques.  
 
A Maxon brushless motor is selected for the robot. The dynamic model of the 

motor can be derived by using the energy conservation law[1]. The dynamic equation 
for the brushless motor is  

,
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where,  

u   is the input voltage 
 m is the motor output torque 

 mk is the motor torque constant 

    is the motor angular velocity 

 R  is the motor coil resistance 
 

Equation (7) shows that input voltage has a linear relationship with the output 
torque at specific angular velocity. This equation is needed to modify to a simple 
version by using the Maxon parameters relationship. The final dynamic equation of 
the motor is derived from the following information.  
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Use above information in equation (7), the final formula of the motor is  
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where, 
 nk  is the motor speed constant  

 
Equation (8) shows the direct relative of the control signal u and the output torque 

τm at the specific angular velocity  . The control scheme is set using the discrete 
Proportional-Integral control law and torque dynamic equation (8). From the 
experimental, the measured angular velocity has a high frequency noise therefore the 
low pass FIR filter is required.  The error between desired angular velocity and real 
filtered angular velocity of each wheel is the input of the PI controller with the PI 
gains kp and ki respectively. The controller is shown in figure 5 and the control law 
can be described as (9) though (11). 
 

 
Fig 5. The Torque Controller 
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where, 
 N    is the number of samples 
 ccV   is the driver supply voltage  

 *u   is the duty cycle of the PWM control signal 
 
    Since, the control signal for the motor is Pulse Width Modulation (PWM) signal, 
the output of the controller has to be the duty cycle for PWM signal generator. 
Equation (11) shows that the duty cycle of the control signal is the ration of the 
desired torque divided by the maximum torque of the motor at the particular angular 
velocity. The torque control loop executes 600 times per second using velocity 
feedback from the encoder in driving motor. The proportional and integral gains are 
manually hand-tuned.  

To achieve the purpose of this development, the PI torque controller is 
implemented and applied to the wheeled mobile robot.  The interested output of this 
experiment is the error of robot position profile when the same input velocity is 
applied for the different surfaces. Three different carpets are used in the experiment. 
The normal angular velocity control using PI controller and the torque control using 
PI controller are applied to the selected robot. Both controller gains are tuned until the 
robot can perform the same behavior on one of the test surface. This controller gains 
are used for all experiments. By changing the trajectory profile of the robot, the floor 
surfaces, the advantages of each controller are revealed. Robot and motor parameters 
are shown in table 1. 
 

M  1.5 kg 
J  0.0192 kg/m2  
d  78.95 mm 

[ , , , ]   1 2 3 4  [33,147,225,315] degree 

r  25.4 mm 

ccV  14.8 V 

/mk R  0.02125 /Nm A  

/ ( )m nk R k  0.0005426 
/Nm V s A rad    

Table 1. Robot parameters 
 
 
 
 



Case ( ) 0  x  x  

1  90 2 3 
2  90 1.5 2 
3  45 0.8 1 
4  0 0.8 1 

Table 2. The experimental parameters 
 

    Trapezoidal trajectories for robot are generated by using the robot kinematic 
equation with different conditions. The experimental set-point angular velocity is 
shown in figure 6.  
 

 
Fig 6. Angular velocity profiles for motors 

 

 
Fig 7. The selected carpet 

 
    The examples of conditions for each trajectory are shown in table 2, where x and x  

are constant designed velocity of the robot along the robot’s x-axis. ( ) 0  is the initial 

orientation of the robot. The designed trajectories are directly applied to the robot on 
three different surfaces without any global vision feedback controller. Figure 7 shows 
the selected carpets which are used in this experiment. The carpet surfaces have a 
different friction coefficient (  ) with    1 2 3 . The angular velocity of the robot 

Surface 1 

Surface 2 

Surface 3 



is recorded by FPGA board while the position is recorded through the bird eye view 
video camcorder. 
    The output angular velocity of motors are collected and compared with the output 
from same motor but different carpets. Figure 8 shows the output angular velocity of a 
motor which is controlled by the torque controller while figure 9 shows the output 
angular velocity of a motor controlled by regular velocity controller. From the 
experiment, a motor with torque controller can maintain its velocity when the surface 
frictions are changed. For a motor with normal velocity controller, the output is swing 
dramatically when it runs on different surface. The result shows that a motor with 
torque controller has a better tracking response than a motor with velocity controller 
especially when the motor is breaking. 
 
 

 
Fig 8. Angular velocity of a motor with Torque controller 

 
 

 
Fig 9. Angular velocity of a motor with Velocity controller 

 



 
Fig 10. Position of a robot with Torque controller 

 

 
Fig 11. Position of a robot with Velocity controller 

 
Figure 10 and 11 show the trajectory of the robot on different carpets. Robot 

with the torque controller has a better performance when compare with a robot with 
the velocity controller. Moreover, the robot path when controlled by the torque 
controller on the first carpet is close to the second and third carpet while the robot 
path when controlled by the velocity controller on the first carpet is totally difference 
from the second and third carpet. This result yields that if the robot turned up for one 
surface friction if the controller is the torque controller therefore it is possible to have 
a very close result when it run on the different surface frictions. 



3.5   Modified Kinematic 

  
Fig 12. Robot structure 

 
Although the robot dynamic equation can be correctly used to predict the robot 

behavior but it is hard to directly be implemented and it needs a long computation 
time. In this topic, the regular mobile robot kinematics is modified [2][3]. The normal 
kinematics can be written as: 

†( )earth command                                              (12) 

where, 
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†   is the pseudo inverse of the kinematic equation 

  i   is the angle between wheel i and the robot x-axis  

     is the robot angular acceleration about the z-axis of the global reference frame 

  i    is the angular velocity of wheel i 

  d    is the distance between wheels and the robot center 
     
Equation (12) is lack of information about surface frictions. Therefore, if robot 

trajectories are generated from equation (12), that trajectories cannot guarantee the 
real robot velocity and position. Modified kinematic is introduced in order to modify 
the robot kinematic with friction parameters.   Let the modified kinematic of the 
mobile robot can be described as equation (13) 

 
†( )earth command                                          (13) 
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where, 
   is the Viscous friction matrix (velocity friction) 

   is the Coulomb friction vector (surface friction) 
 

          The coulomb friction vector is easily found by experiment since this friction 
is constant for specific surface but the viscous friction cannot be found by simple 
experiment. Although the viscous friction is linearly dependent on an angular velocity 
of the robot chassis but this friction is a non-linear function when it’s transformed to 
time domain. The Coulomb friction is canceled out when the torque controller is 
applied to robot system. Thus, term  is gone from equation (13). Therefore, friction 
matrix is a time-varying matrix which can be calculated from experiments. In order to 
obtain the   friction matrix, the error of the robot velocity in earth frame is defined as:   

 

_captured earth ideae                                            (14) 

 where,  

  captured  is a captured robot velocity by over view camera  

  _earth ideal  is a ideal velocity of a robot when robot motors are motorized at 

command speed command   
 
Since the measured data always has noise therefore  

 

captured earth                                                 (15) 

where,      is a measurement noise 
 

Evaluated equation (14) by putting equation (15) into (14) yield: 
 

_( )captured earth idea command                                   (16) 
 
Although, the friction matrix can be directly solved by using Moore–Penrose 

pseudoinverse but it is not in an equation form that can be used in advance robot 
parameters approximation such as Polynomial curve fitting or Kalman filter. 
Therefore, Kronecker product is selected to reform the equation (16). The Kronecker 
product is an operator that transforms a regular matrix multiply to a block matrix as: 

[ ]ijA B block a B                                               (17) 

If A  is m n  and B  is s t , then A B is an ms nt   matrix. Kronecker 
production is used to rearrange an order of command  . After apply the index 

modification, the final form of the transformation can be defined as: 
 

Let m lA R  and l mX R   then 

( )T
mAX B I X a b                                            (18) 

 where, 

       ,a b are the vector version of the matrix ,A B  respectively  



  mI    is an identity matrix with dimension m m   

Equation (16) can be rearranged by Kronecker Product as the following process: 
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3. Solve for friction matrix (now in vector form)  
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where,

   

 
T

          11 12 13 21 22 23 31 32 33  

 
Finally, the friction vector estimation function is defined as: 
 

†

_( ) ( ) *T
m command captured earth ideaI                          (19) 

where,    *  is the transformed measurement noise 

 
  is found from equation (19). In order to used  , the command which is send 

from SKUBA system is rewritten. Since the original trajectory (command) is 
generated from kinematic of robot without information about friction, sendold , thus, 

the final version of command, send , is described below: 

† †( ) ( )send command command command

send sendold

       

  
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 
           (20) 

Where, 

†
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sendcommand old

  
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 


  

 
Equation (20) now is easy to use, the friction effect is combined to matrix  . This 
matrix can be time varying function which updated while training or constant matrix 
when this matrix is used during competitions. The modified kinematic is tested in 2 
different surface. The result is shown in figure 13 and 14. 



 
Fig 13.The result of the first surface 

 

 
Fig 14. The result of the second surface  

4   Robot High Level Control 

          ControlModule receives predicted vision from VisionModule and destinations 
from StrategyModule and makes robots go to those destinations. So, the essential 
component of ControlModule is a path planning algorithm. Since the World RoboCup 
2008 at Suzhou[4], we have made use of the “Real-Time Randomized (RRT) Path 
Planning for Robot Navigation” for default path planning algorithm and use of the 
“Sub Goal Path Planning” for fast move planning algorithm. 
 
 
 
 
 



       After the ControlModule get command to navigate robot from the start point to 
the end point, the ControlModule will find the path (RRT or Sub Goal) by using start 
position, end position, initial velocity along x and y axis and direction of starting 
point and ending point. The result path will be calculated the usage time in order to 
use this information generates the velocity command which will be sent to the robot. 
Sometime the velocity is limited by the maximum acceleration of the robot. The 
velocity command is generated separately to the every point along the trajectory 
according to the frame rate. Each frame has its own velocity command. If there are 
any obstacles block the robot path, the path planning will be spited to small straight 
line to avoid collision. The velocity profile is generated by using Bang-Bang 
algorithm as shown in figure 15 and 16. Final motion of the robot and robot velocity 
profile are shown in figure 17 and 18 respectively. 
         

 
Fig 15. Bang-Bang motion 

 
 

Fig 16. Bang-Bang Algorithm 
 



 
Fig 17. Robot motion and velocity profile. 

 

 
Fig 18. Robot Trapezoidal velocity profile. 

 
 
     The hardest calculation of the robot motion, in both RRT and Sub goal approaches, 
is to find the proper velocity along x and y axis according to current robot position 
and orientation since the possible velocity along x and y direction are not the same 
because of the robot structure. The robot can move with a faster velocity when it 
moves forward or backward and slower velocity when it moves to left or right 
direction. In SKUBA system based on Cornell research, the binary search is used to 
find the different of velocity to time. The proper velocity is separated in x and y 
direction.  
    After calculation along x and y direction, the maximum total time usage is selected 
in order to guarantee the robot motion. For example, if the total time usage along x-
axis is greater than along y-axis, the trajectory time constrain is the total time along x-
axis. The velocity that is generated for a robot in x direction will use a proper velocity 
along x-axis (maximum) and the velocity in y direction will use smaller value than the 
value that is calculated from previous step in order to make the robot move smooth.  



The trajectory generation algorithm above can be written as Pseudo Code below:  
 
Pseudo code for Trajectory_2D function 
 

 
 
 
 
 

Trajectory_2D(StartState,FinalState,Framerate,maxAcc,maxVel,maxAngAcc,maxAngVel) 
u = PI/2 
du = -PI/2 

 For i = 0 to 10 : 
 
  alpha = u+(du *= 0.5) 

axMax = sin(alpha)*maxAcc 
ayMax = cos(alpha)*maxAcc 

      vxMax = sin(alpha)*maxVel 
      vyMax = cos(alpha)*maxVel 
 
  deltaX = FinalState.X - StartState.X 
  deltaY = FinalState.Y - StartState.Y 
 
  xAcc,tx = Trajectory_1D(deltaX,StartState.Xvel,FinalState.Xvel,Framerate,axMax,vxMax) 
  yAcc,ty = Trajectory_1D(deltaY,StartState.Yvel,FinalState.Yvel,Framerate,ayMax,vyMax) 
  if(tx – ty <= 0.0) : u = alpha 
 

trajTime = MAX(tx,ty) 
deltaAng = FinalState.Rotation – StartState.Rotation 
For factor = 0.1 to 1.0: 
 
 angAcc,tAng=  

                                 Trajectory_1D(deltaAng,StartState.Rotation,FinalState.Rotation,Framerate,maxAngAcc*factor,maxAngVel) 
if tAng < trajTime : 
 break 
 

 return StartState.Xvel + xAcc/Framerate, StartState.Yvel + yAcc/Framerate, StartState.Rotation + angAcc/Framerate 
 



Pseudo code for Trajectory_1D function 
 

 
 
 

Trajectory_1D(deltaS,StartVel,FinalVel,Framerate,AccMax,VelMax) 
 if(deltaS = 0 and StartVel = FinalVel) 
  return 0,0 
 timeToFinalVel = | v0 - v1| / a_max 
 distanceToFinalVel = ( | FinalVel + StartVel | / 2.0) * timeToFinalVel 

if( |StartVel| > |FinalVel| ) 
 timeTemp = (sqrt((StartVel^2 +FinalVel^2) / 2.0 + |x0| * a_max) - |StartVel|) / a_max 
     if (timeTemp < 0.0) timeTemp = 0 
     timeAcc = timeTemp 
    timeDec = timeTemp + timeToFinalVel 
else if( distanceToFinalVel > |deltaS|) 
 timeTemp = (sqrt(StartVel^2 + 2 * a_max * |StartVel|) - |StartVel|) / a_max 
     timeAcc = timeTemp 
     timeDec = 0.0 
else 
 timeTemp = (sqrt((StartVel^2 +FinalVel^2) / 2.0 + |x0| * a_max) - |FinalVel|) / a_max 
     if (timeTemp < 0.0) timeTemp = 0 
     timeAcc = timeTemp + timeToFinalVel 
    timeDec = timeTemp 
 
trajTime = timeAcc + timeDec 
if (timeAcc * Accmax + |StartVel| > VelMax)  

trajTime += (VelMax - (AccMax * timeAcc + |StartVel|)) ^ 2 / (AccMax * VelMax) 
 

 if(timeAcc < 1/Framerate and timeDec = 0) 
  trajAcc = (FinalVel-StartVel)/Framerate 
 else if(timeAcc < 1/Framerate and timeDec > 0) 
  trajAcc = (AccMax * timeAcc) + (-AccMax * ((1/Framerate) – timeAcc)) 

else 
 trajAcc = AccMax 

 return trajAcc,trajTime 
 



 “Trajectory_2D” is the function that is used to find the next command velocity that 
will be sent to robot next frame. The angular acceleration of the robot along x and y 
direction which are used in “Trajectory_2D” are found from “Trajectory_1D” 

function. The Trajectory_1D can be explained as: 
1) If the initial velocity is less than final velocity, the robot must be 

accelerated until the velocity of the robot is greater than final 
velocity and break the robot to make the robot velocity become final 
velocity at the end point. 

2) If the initial velocity is greater than final velocity, the robot must be 
decelerated until the velocity of the robot is equal to the final 
velocity at the end point. 

3) If the distance is too small and the robot cannot be accelerated to the 
final velocity, the function will make the robot just accelerate 
without consider the velocity  

After the “Trajectory_1D” function gets the acceleration or deceleration value, the 
usage time will be checked if it is equal to time of one frame, this acceleration or 
deceleration value will be used as frame acceleration but if it less than time of one 
frame, this acceleration or deceleration value is summered with other calculation 
within one frame and be averaged to averaged frame acceleration. 
        The “Trajectory_2D” gets the return value from “Trajectory_1D” function as 

frame acceleration. The “Trajectory_2D” will calculate an angular acceleration by 

starting small value and calculate a robot rotation usage time and compare with usage 
time along x and y direction (linear motion usage time) if a robot rotation usage time 
is greater than linear motion usage time, the current angular acceleration is increased 
and the calculation start again until the “Trajectory_2D” function find a robot rotation 
usage time less than linear motion usage time. Finally the “Trajectory_2D” function 

will calculate the final velocity and angular velocity that will be sent to robot as robot 
command. Figure 19 shows the trajectory generated from RRT and Sub Goal. 
 

 
Fig 19. (Left) trajectory from RRTs, (Right) trajectory from Sub Goal. 

 



5   Conclusion 

Table 3. Competition results for Skuba SSL RoboCup team. 

Competition Result 
RoboCup Thailand Championship 2005 
RoboCup Thailand Championship 2006 

RoboCup 2006 
RoboCup Thailand Championship 2007 
RoboCup Thailand Championship 2008 

RoboCup 2008 
RoboCup 2009 

RoboCup China Open 2009 
RoboCup 2010 

RoboCup Iran Open 2011 

3rd Place 
Quarter Final 
Round Robin 

3rd Place 
2nd Place 
3rd Place 
1st Place 
1st Place 
1st Place 
1st Place 

Our system has been continuously improving since the beginning. Last year, we 
introduced some improvements about the low level motion controller and the robot 
hardware. The new calibration software is fully testes in RoboCup 2010 and it greatly 
reducs the amount of team setup time which allowed us to focus more on the strategic 
planning. The software which runs the robot team was built in 2006 and improved 
each year. It has given us very successful competition results for the last several 
years, the results are summarized in table 3. We hope that our robot team will perform 
better in this year and we are looking forward to sharing experiences with other great 
teams around the world. 
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