
RoboDragons 2010 Extended Team Description

Akeru Ishikawa, Takashi Sakai, Jousuke Nagai, Taro Inagaki, Hajime
Sawaguchi, Yuji Nunome, Kazuhito Murakami and Tadashi Naruse

Aichi Prefectural University, Nagakute-cho, Aichi, 480-1198 JAPAN

Abstract. This paper describes the system configuration of Aichi Pre-
fectural University’s RoboDragons 2010 and related research topics. Main
topic in this year is that we developed a new robot hardware. We describe
it in detail here. There are some improvements in soccer software. We
overview our soccer software. Our research results which will be imple-
mented near future are described: a real time computation of dominant
region and a defending strategy based on a safety region.

1 Introduction

This year’s extended team description paper (ETDP) of RoboDragons2010 de-
scribes a new robot hardware, an improved software of RoboDragons 2010 system
and ongoing studies.

First, robot hardware. Our current robots are the fifth generation ones in
our Labs. Our team has six robots, five for competition and one for a reserve.
Each robot of RoboDragons consists of four omni-directional wheels, a dribbling
device, two kicking devices (for chip kick and straight kick) and the embedded
computer for controlling the robot. They are controlled by a host computer next
to the field. Second, software. The software on the host computer origenates
from the one when we made a joint team with CMU in 2004 and 2005. Many
improvements have done since 2005, however, this year, noticeable improvement
has not done. We overview our software centering on minar changes. Third,
research related topics. Several researches on strategies have been doing these
years. We introduce the real time dominant region calculation and the defending
strategy based on the safety region. These thechneques will be implemented in
the RoboDragons system in near future.

In the following sections, we describe these topics.

2 Robots

In this section, we discuss our new robots in detail. First, we show the overview
of our new robot in Figure 1.

2.1 Dimensions of robot

The robot can be packed in the cylinder with dimensions of 145 mm height
and 178 mm diameter. To protect the internal circuit boards and mechanical

Fig. 1. RoboDragons new robot
(Left: with cover, Right: without cover)

devices, the robot is covered by the cardboard (see Fig. 1 left). To strengthen
the cardboard, the 1.5 mm thick plastic sheet is glued.

2.2 Drive unit

The robot has 4 wheels each of which is drived by a DC brushless motor. The
wheel is so called an omni-wheel. Figure 2 shows the omni-wheels moving the
robot.

The DC brushless motor driving the omni-wheel is Maxon’s “EC 45 flat 30
W” with encoder unit. The source voltage of the motor is 15 V . The motor also
has a pinion gear with 21 teeth and the omni-wheel has a gear with 64 teeth
so that the reduction ratio is 1 : 3.047. The diameter of the omni-wheel is 56
mm and the omni-wheel has 15 small tires in circumference. The diameter of the
small tire is 13 mm.

2.3 Kicking device

The kicking device consists of solenoids, kick bars, and a voltage booster. Figure
3 (left) shows the kicking device and figure 3 (right) shows the voltage booster.

Solenoids Three solenoids are built in the robot, one large solenoid is for a
main kick device and a small solenoid is for a chip kick device.

The coil of the large solenoid is made winding the 0.6 mmϕ enamelled wire
on a bakelite cylinder in 7 layers. The dimensions of the cylinder are 13 mm in
inner diameter, 26 mm in outer diameter and 55 mm in length. The stroke of
the solenoid is 30 mm and enables the kicking a ball with speed of 9.5 msec
under the ideal conditions.

The coil of the small solenoid is made using the same material with the large
one. The dimension of the cylinder is 13 mm, 26 mm and 27 mm, respectively.

Fig. 2. Omniwheels and DC brushless motors
(Left: without solenoid, Right: with solenoid)

The stroke is 7 mm and it can kick the ball with flying distance of 2 m and
flying height of 1 m.

Each solenoid employs the spring to pull back the plunger.

Kick bar 7075 aluminum alloy which is light and hard is employed for the kick
bar. Moreover, V-shaped ABS plastic is attached to the aluminum kick bar as
shown in figure 3. This helps to kick the ball to the direction perpendicular to
the kick bar within the accuracy of 5 degree.

Fig. 3. Kicker and voltage booster
(Left: kicker, Right: voltage booster)

Voltage booster: The voltage booster(Fig.3(right)) is a kind of DC-DC con-
verter. It converts 15 V DC input voltage up to 200 V DC output voltage.

Output voltage is adjustable between 150 V and 200 V . The chopper circuit
using a choke coil is a heart of the voltage booster. A PIC controls the chopper
circuit. Large capacity condensers are used for keeping the high voltage output.
Total capacity is 4500 µF . The voltage sensing circuit controls the output volt-
age. 2 solid state relays are used as the switches to drive the solenoids. These
relays are controlled exclusively by the PIC. The charging time of the condensers
is about 2 sec when the output voltage is 200 V .

2.4 Dribbling device

A dribbling device of the robot has been achieved by combining the dribble
roller, the motor and the gear.

The dribbling device uses a Maxon’s “EC 16 15W” motor with an encoder
and a planetary gear. The reduction ratio of the gear is 1 : 5.4. A pinion gear
attached to the motor has 40 teeth and a gear attached to the dribble roller has
36 teeth. Therefore, the net reduction ratio R is given by,

R = Rm × Rg = 5.4 × 36
40

= 4.86, (1)

where, Rm is the reduction ratio of the planetary gear and Rg is the reduction
ratio of the pinion gear and the gear on the dribble roller.

The dimensions of the dribble roller are 20mm in diameter and 73mm in
length. The material of the dribble roller is a alminum shaft with silicon rubber
of 4mm thickness on the face of the shaft.

2.5 Communication unit

Our wireless communication is a spectrum diffusion communication on the 2.4
GHz band. Futaba’s wireless modem “FRH-SD07T” is used for the purpose.
The modem has several communication modes. We use a “direct mode” which
can send the messages with the least delay between modems. A pair of the
FRH-SD03T and the FRH-SD07T realizes the communication between the host
computer and the robot(s).

2.6 Proximity sensor unit

The proximity sensor is attached above the dribbling device and it detects the
ball just in front of the dribbling device. The heart of the sensor is three infra-red
light emission diode (LED) and photo diode pairs. The irradiation angle of the
LED is about 15 degree. When one of the three photo diodes gets the reflected
infra-red ray more than a preset threshold value, the sensor outputs the signal.

2.7 Control unit

A control unit of robot is a board computer, which is newly developed. It is shown
in figure 4 These boards include a The CPU is Hitachi’s SH2A processor with
FPGA for peripheral control. SH2A has abundant peripheral circuits in it and
makes the compact implementation of the control unit possible. The memories
compose of Flash ROM(1MB) and SRAM(1MB). The IO boards have power
transistors that can drive the motors and they also have interface circuits with
the motors driving wheels and dribble roller, and the proximity sensor.

Fig. 4. Processor boards
(Left: face, Right: back)

2.8 Control program on robots

At the time this paper is written, the software shown below is not implemented on
the robot yet, however, it will be implemented until RoboCup 2010 competition.

The program is written by the C programming language. The TOPPERS
real time OS[1] is used.

Robot control program consists of three modules each of which is invoked
as a process. They are communication, command and motor control modules.
Figure 5 shows a data/signal flow among modules and peripheral units.

Robot command is sent from the host computer to robots by a packet every
1/60 seconds using asynchronous serial communication. Since the communica-
tion speed is 19200 bps in our system, it is possible to send 32 bytes data in
1/60 second if only start bit and one stop bit are used as control bits. There-
fore, Our packet is consisted of 32 bytes1 as shown in figure 6. The packet is
broadcasted to all robots. The packet has error correcting code (ECC) to make
reliable communication possible. We use the Humming code as the ECC.
1 The command cycle synchronizes with the camera cycle which is equal to 59.94

frames per second. Therefore, the command can send without any problem.

modem
communication
 module

command
module

motor control
 module

command

voltage
booster

IR sensor

wheel speed

motor

packet

signal signal

signal

Fig. 5. Data/signal flow

The communication module receives the packet and extracts the command
of its own. If error is detected, the packet is discarded. As far as the error is not
burst error, the discard of packet is a good alternative2. Extracted command is
sent to the command module.

In the command module, the velocity of each wheel is calculated from the vel,
dir and rot value (see Fig. 6) and calculated result is sent to the motor control
module. The kick and dribble command is executed, as well.

In the motor control module, the PID control is performed. This is done
by using the target velocity given by the command and the current velocity
calculated from the encoder pulses. The motor drive control is done by the
PWM control.

3 Software system

3.1 Overview

Figure 7 shows the overview of the RoboDragons system. The features of the
system are as follows:

1. Host computer is Athlon64 X2 4200+ with 512MB memory and Debian
GNU/Linux OS.

2. Each module(shown in box in Fig.7) is implemented as a thread.
3. The Soccer module consists of a strategy, a tactics and a path generation

submodules, and it produces an action command for each robot.
4. Radio module sends the command to each robot through the radio system.

In the next sections, we describe the main improvements of our program.

2 There are no such errors experienced in recent competitions.

class SerialCommand{
public:
uint8_t vel; // Velocity [unit: cm/s]

uint8_t dir; // Direction [unit: 2*pi/256 rad]

uint8_t rot; // Rotation velocity [unit: 2*pi/60 rad/s]

uint8_t var; // kick and dribble command
// b0-b1: kick condition
// 0 : No kick
// 1 : kick when center senser reacts
// 2 : kick when any sensers react
// 3 : kick immediately
// b2-b3・b7: Selection of kicker
// 0 : No kick
// 1 - 4 : Main kicker (1: weak ... 4: strong)
// 5 - 7 : Chip kicker (5: weak ... 7: strong)
// : Main and chip kickers are used exclusively
// b4-b5: Dribble
// 0 : No dribble
// 1 : Reverse rotation
// 2 : Weak normal rotation
// 3 : Strong normal rotation

uint8_t ecc01; // b0-b3: ECC of vel
// b4-b7: ECC of dir

uint8_t ecc23; // b0-b3: ECC of rot
// b4-b7: ECC of var

};

struct SerialPacket{
uint8_t header0; // 0x80
uint8_t header1; // 0x0D
SerialCommand robot[5];

};

Fig. 6. Packet configuration

Soccer

Network Port

 SSL

Vision

Camera

Radio

rserver

Computer

Robot

Real World

Fig. 7. RoboDragons system: overview

3.2 Determining the number of mark robots

In our old strategy, the role of each teammate robot at the opponent free kick
time was determined by the ball’s position. For example, if the ball is within 500
mm from teammate goal line at the beginning of the free kick, it is considered
to be an opponent corner kick and “3 mark robots” strategy is selected even
if an opponent robot is out of field by a penalty. The program is improved to
determine the number of mark robots dynamically as follows,

Let ri be the position of the opponent robot i. If following conditions are
satisfied, the robot i will be marked.

– The distance between ri and the center of teammate goal is less than R mm.
– The distance between ri and the teammate goal line is less than X mm, and

there is a shoot course from ri to the goal.

In RoboDragons, R = 3000 mm and X = 4600 mm. The number of mark
robots ranges from 1 to 3.

3.3 Priority of mark robots

In RoboDragons, the number of teammate robots for marking is at most 3. How-
ever, there are cases that more than 3 robot should be marked at the opponent
free kick. For example, the case four opponent robots are attacking. In this case,
we select three opponent robots to mark. For each opponent robot, a priority is
given as follows, and higher priority robots are selected.

– the greater the distance between ri and the center of teammate goal, the
higher the priority.

– the greater the affordance of the shoot course from ri, the higher the priority.

There are two mark actions, i.e. pass cut mark and shot cut mark. The pass
cut mark has two variations, i.e. preventing the pass at around the passing robot
and around the receiving robot. The shot cut mark is as well.

3.4 Robots’ actions at free kick

In the old strategy, teammate’s pass action and shot action at free kick were as
follows. In the following, we use the term “direct play” [2]. The direct play is
one of cooperative plays, i.e. a passing robot kicks the ball to a recieving robot,
and the recieving robot shoots the ball immeadiately when it gets the ball.

– Pass action (passing robot in case of direct play)
1. At time t0, the robot which has the greatest affordance of the shoot

course is selected as a receiving robot of the pass.
2. Passing robot moves to the waiting position Tr.
3. When passing robot arrives at Tr at t1, it starts kicking action.
4. After finishing the pass, passing robot waits there until the strategy

change will happen.
– Shot action (shooting robot in case of direct play)

1. Search the best place to receive the ball and move there until the passing
robot will pass.

2. After passing, the shooting robot moves to the shooting position which
is computed from the velosity of the ball and current self position.

3. Shoot the ball. If shot is failed, then next action is taken.

New actions are,

– Pass action (passing robot in case of direct play)
1. At time t0, the robot which has the greatest affordance of the shoot

course is selected as a receiving robot of the pass.
2. Passing robot moves to the waiting position Tr.
3. When passing robot arrives at Tr at t1, it starts kicking action.
4. After finishing the pass, passing robot takes an attacker action.

– Shot action (shooting robot in case of direct play)
1. Search the best place within the specified region to receive the ball and

move there until the passing robot will pass.
2. After passing, the shooting robot moves to the shooting position which

is computed from the velosity of the ball and current self position.
3. If there are some candidates for shooting, the robot nearest to the team-

mate goal judges the possibility of shot. If it is not possible, then take a
defending action.

In the RoboDragons 1-2-3 shot[2] using three robots, above shot action works
well to reduce the time the goal keeper defends the goal without any other
defender(s).

4 Realtime dominant region computation

4.1 Need of realtime dominant region computation

It is important to analyze the actions of opponent team in real time and then
to change team’s strategy dynamically in order to overcome the opponent, since
the strategies based on them are growing year after year [3]. For such analysis,
the voronoi diagram [4] and the dominant region diagram [5] are useful. They are
used to analyze the sphere of influence. The voronoi diagram divides the region
based on the distance between robots, while the dominant region diagram divides
the region based on the arrival time of robots. It is considered that the dominant
region diagram shows an adequate sphere of influence under the dynamically
changing environment such as a soccer game.

In the SSL, the dominant region diagram has been used for arranging team-
mate robots to perform the cooperative play such as passing and shooting [2][6].
However, the existing algorithm takes much time to compute the dominant re-
gion diagram, the use of the algorithm is restricted to the case that the com-
putation time can keep, i.e. a typical case is a restart of play. If the dominant
region diagram can be computed in real time, we can apply it any time.

In this section, we describe the realtime computation of dominant region.
In our system, it is required to compute the dominant region diagram within
5 msec. So, we put this time to be our present goal. Following algorithm is an
approximate computation of the dominant region diagram so that we discuss
the computation time and the approximation accuracy through the experiment.
Our algorithm achieves 1/1000 times shorter in computing time compared with
the algorithm proposed in literature [5] and over 90% accuracy. Moreover, 5
msec computation time can be possible under the parallel computers. We also
show that the dominant region diagram is useful for the prediction of success for
passing.

4.2 Computation of dominant region

A dominant region of an agent3 is defined as ”a region where the agent can reach
faster than any other agents”. A dominant region diagram, simply a dominant
region, shows the dominant region of every agent [5]. The dominant region di-
agram is one of the generalized voronoi diagrams. Though the dominant region
diagram is an n dimensional diagram in general, we discuss a two dimensional
diagram here because we consider a soccer field.

The dominant region is calculated as follows. Assume that an agent i is at
the point Pi(= (P i

x, P i
y)) and is moving at a velocity vi(= (vi

x, vi
y)). Assume

also that the agent can move to any direction and its maximum acceleration is
ai

θ(= (ai
θx, ai

θy)) for a θ-direction. The position that the agent will be after t

3 We call a considering object (such as a player) an agent.

(a)Voronoi diagram (b)Dominant region diagram

Fig. 8. Voronoi diagram vs. dominant region diagram

seconds is given by4,

(
xi

θ

yi
θ

)
=

(
1
2ai

θxt2 + vi
xt + P i

x
1
2ai

θyt2 + vi
yt + P i

y

)
. (2)

For given t, the set of above points makes a closed curve with respect to
θ. Conversely, for given point x = (x, y), we can compute the time which each
agent takes5. Therefore, for each point x in a region (or a soccer field), we can
get the dominant region by computing the following equation,

Ix = argmin
i

{ti(x)}, (3)

where, Ix is an agent’s number which comes at first to the point x.

Preliminary experiment using the algorithm proposed in [5] shows that the
computation time takes 10 to 40 seconds when the soccer field is digitized by
610×420 grid points.

5 Approximate dominant region

To achieve a real-time computation of the dominant region, where the real time
means a few milliseconds here, we propose an approximate dominant region. It
can be obtained as a union of reachable polygonal regions. A reachable polygonal
region is a polygon which is uniquely calculated when the motion model and
time are given.

(a)Acceleration vectors (b)Reachable polygonal region

Fig. 9. Acceleration vectors and reachable polygonal region

5.1 Motion model of robots

We define a motion model as a set of maximum acceleration vectors of a robot.
Figure 9(a) shows an example of a motion model. Each maximum acceleration
vector shows that the robot can move to that direction with the given maximum
acceleration. This is an example of an omni-directional robot. Eight vectors are
given. The number of vectors depends on the accuracy of obtaining the dominant
region.

5.2 Computation of reachable polygonal region

The reachable polygonal region is a region that is included in the polygon made
by connecting the points, where each point is given as a point that an agent
arrives at after t seconds when it moves toward the given direction of maxi-
mum acceleration vector in maximum acceleration. Eq. (2) is used to compute
the point. Figure 9(b) shows an example of reachable polygonal region (shaded
area) after 1 second passed when the acceleration vectors of figure 9(a) is given.
We assume the reachable polygonal region is convex6. The reachable polygonal
region is calculated by the following algorithm.

[Reachable polygonal region]
Step 1 Give a motion model of each agent (figure 9(a)).
Step 2 Give time t. Calculate each arrival point (xi

θ, y
i
θ) according to the equa-

tion (2) using the corresponding maximum acceleration vector in Step1.
Step 3 Connect points calculated in Step2 (figure 9(b)).

5.3 Calculation of approximate dominant region

The approximate dominant region is obtained from the reachable polygonal re-
gions for every agent. When some of reachable polygonal regions are overlapped,
4 These equation do not consider the maximum velocity of the agent. If the maximum

velocity must be considered, the equations should be replaced to the non-accelerated
motion equations after reaching the maximum velocity.

5 If more than one arrival time are obtained at point x for the agent i, the minimal
arrival time is taken.

6 If it is concave, we consider a convex hull of it.

(a)Overlapped reachable polygonal
regions

(b)Divided reachable polygonal
regions

Fig. 10. Division of two overlapped Reachable polygonal regions

we have to decide which agent, the point belongs to the overlapped region. Figure
10(a) shows two overlapped reachable polygonal regions (A1, A2) of two agents.
In this case, it is natural to divide overlapped region into two by the line con-
necting the points of intersection of two polygons. Figure 10(b) shows a result
for the reachable polygonal regions. However, since the number of points of in-
tersection between two polygons (with n vertices) varies from 0 to 2n, we have
to clarify the method of division for each case. Moreover, we need to consider
the method of division when many reachable polygonal regions are overlapped.
We describe these methods in the following algorithm. We call this an algorithm
of the approximate dominant region.

[Approximate dominant region]
Step 1 For given time t, make a reachable polygonal region of each agent. (Fig-

ure 9(b)).
Step 2 For two reachable polygonal regions, if they are overlapped, divide the

overlapped region in the following way. Generally, a number of points of in-
tersection between two polygons with n vertices varies from 0 to 2n. If a
vertex of one polygon is on the other polygon, move the vertex infinitesi-
mally to the direction where the number of points of intersection does not
increase. (There is no side effect with respect to this movement.) Therefore,
the number of points of intersection is even. We show the way to divide in
case of 0, 2 and 2k intersections.
1. No points of intersection: There are two cases.

(a) Disjoint: As two reachable polygonal regions are disjoint, there is no
need to divide.

(b) Properly included: One includes the other. Figure 11(a) shows an
example(A1 ⊃ A2). In this case, A1 − A2 is a dominant region of
agent 1 (Fig. 11(b)) and A2 is a dominant region in agent 2 (Fig.
11(c))7.

2. 2 points of intersection: The overlapped regions of A1 and A2 is divided
into two region by the line connecting the points of intersection between
two polygons to create dominant regions A′

1 and A′
2 (Figure 10).

7 This is not correct definition, but we adopt this to perform the real time computation.

(a)Overlapped reachable
polygonal regions(A1

and A2)

(b)A1’s divided
region(gray area)

(c)A2’s divided
region(black area)

Fig. 11. Division of overlapped reachable polygonal regions(one-contains - other
case)

(a)Overlapped reachable
polygonal regions

(b)Symmetric difference (c)Divided reachable
polygonal regions

Fig. 12. Division of overlapped reachable polygonal regions(4 intersecting case)

3. 2k points of intersection: Let A1 and A2 be two reachable polygonal re-
gions and I be a set of points of intersection between the polygons of
A1 and A2. Then, compute A1 − A2 and A2 − A1. Figure 12(a) shows
an example. In this example, there are 4 points of intersection. Fig-
ure 12(b) shows a difference between two regions, where A1 − A2(=
{A11, A12}) is shaded in grey and A2 − A1(= {A21, A22}) is shaded
in black. Make convex hulls of subregions. Figure 12(c) shows the re-
sult (A

′

11, A
′

12, A
′

21, A
′

22). Thus, we have partial dominant regions (A′
1 =

A
′

11 ∪A
′

12 and A′
2 = A

′

21 ∪A
′

22) of the agent 1 and 2. A white area in the
overlapped region in figure 12(c) doesn’t belong to either of two partial
dominant regions.

Step 3 If n reachable polygonal regions (A1, A2, · · · , An) are overlapped, we
process as follows. First, for A1 and A2, we take partial dominant regions
A′

1 and A′
2 by using the procedure in step 2. Replace A1 and A2 with A′

1 and
A′

2. Then, for A1 and A3, and A2 and A3, do the same computation. Repeat
this until An is computed. As a result, we get new reachable polygonal
regions (A1, A2, · · · , An) where any two Ais are disjoint. These are the partial
dominant regions of agents at given time t. Figure 13 shows three examples
of partial dominant regions of 10 agents at time t= 0.5, 0.7 and 0.9 seconds.

(a)t = 0.5[sec] (b)t = 0.7[sec] (c)t = 0.9[sec]

Fig. 13. Synthesis of reachable polygonal regions

(a)Approximate dominant region
diagram

(b)Precise dominant region diagram

Fig. 14. Approximate dominant region diagram vs. dominant region diagram

Step 4 Synthesize the partial dominant regions incrementally. For given times
t1, t2, · · · , tn (t1 < t2 · · · < tn), compute the partial dominant regions. Let
them be B1, B2, · · ·Bn. Then, compute B1+(B2−B1)+· · ·+(Bn−

∑n−1
i=1 Bi).

This makes an approximate dominant region diagram. Figure 14(a) shows
an example constructed from the examples shown in figure 13, but using 10
partial dominant regions computed by every 0.1 seconds.

6 Experimental evaluation for algorithm of approximate
dominant region

6.1 Experiment

In the SSL, since the ball moves very fast, the standard processing rate is 60
processings per second. One processing includes an image processing, a decision
making, action planning, command sending and so on. Therefore, the allowed
time for the computation of the dominant region is at most 5 milli-seconds8. Our
purpose is to make the computation of the approximate dominant region within
5 msec.
8 This time constraint is sufficient when our algorithm will be applied for the other

leagues in RoboCup soccer and human soccer.

Table 1. Computation time and accuracy of proposed algorithm

acc. vectors arrival-time steps computation time[msec] accuracy[%]
8 10 17.5 91.8
8 20 33.8 92.9
16 10 31.4 95.3
64 200 2.4 × 103 99.9

2048 400 5.0 × 105 100

Table 2. Computation time on various computers (parameters: max acc. vectors:
8, arrival-time steps: 10)

CPU proposed method(A) existing method(B) rate(B/A)
1 3.16GHz 17.5[msec] 13.3[sec] 760
2 3.2GHz 19.3[msec] 24.2[sec] 1254
3 2.2GHz 38.2[msec] 40.5[sec] 1060
4 2.2GHz 38.3[msec] 40.4[sec] 1055

6.2 Experimental result

We digitize the SSL’s field into 610 × 420 grid points (1 grid represents the area
of about 1 cm2) and, for 10 agents (5 teammates and 5 opponents), compute the
approximate dominant region that can arrive within 1 second. The reason why
we set arrival time to 1 sec is that almost all of the whole field can be covered
by the dominant region as shown in Fig. 14. We measure the computation time
and the accuracy of the approximate dominant region. We define the accuracy
by the following equation,

Accuracy[%] =
Total grid points that Idx and Iax coincide

All grid points
∗ 100 (4)

where, Id
x and Ia

x are given by Eq. (3) for the precise dominant region and
the approximate dominant region, respectively.

We used the computer with Xeon X5460 as CPU, 8GB main memory and
FreeBSD operating system for this experiment. We measured the computation
time by running the program in a single thread.

The computation time and the accuracy of the approximate dominant re-
gion depend on the number of maximum acceleration vectors and the number
of partial dominant regions (i.e. the number of time-divisions). We measured
the computation time and the accuracy for the various values by using two pa-
rameters above. Figure 15 shows the results of the measure. Table 1 shows the
computation time and the accuracy for some typical values of the parameters.
The resulting approximate dominant region of the first row of the Table 1 is
shown in Figure 14(a).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0
 5

 10
 15

 20
 25

 30
 35

 0
 5

 10 15
 20

 25
 30 35

 40

 0
 0.05

 0.1
 0.15

 0.2
 0.25

computation time[sec]

acc steps
arrival-time steps

computation time[sec]

(a)Computation time vs. acceleration
vector and arrival-time step pairs

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0
 5

 10
 15

 20
 25

 30
 35

 0
 5

 10
 15

 20
 25

 30
 35

 40

 0
 20
 40
 60
 80

 100
accuracy[%]

acc steps
arrival-time steps

accuracy[%]

(b)Accuracy vs. acceleration vector
and arrival-time step pairs

Fig. 15. Computation time and accuracy

In comparison with Fig. 14(b), it is considered that Fig. 14(a) is a good
approximation of the dominant region diagram. The accuracy is ranging from
91.8% to 100% from Table 1. These numbers show that our algorithm gives a
good approximate dominant region.

Table 2 shows the computation time of the approximate dominant region di-
agram measured on the various computers. (The parameters on this experiment
are fixed as the number of maximum acceleration vectors takes 8 and the num-
ber of time-divisions takes 10.) From the table, it is shown that the computation
time can be reduced about 1/1000 times shorter compared with the algorithm
shown in [5] and the accuracy keeps a little more over 90%. In addition, it is
shown that, from Fig. 15(a), the computation time increases in proportion to
the number of maximum acceleration vectors and the number of time-divisions,
and from Fig. 15(b), the accuracy goes up rapidly to be 90% according to the
increase of the number of maximum acceleration vectors and/or time-divisions,
and then still slightly increases.

6.3 Discussion

From Table 1, the approximate dominant region with parameters of 8 maximum
acceleration vectors and 10 time-divisions achieves the accuracy of 92%. How-
ever, its computation time takes 17.5 msec. It is a little bit far from our goal,
which is computation time to be 5 msec. To achieve this goal, we discuss a par-
allel computation here. Another issue whether the accuracy of 92% is enough in
our purpose will be discussed in the next section.

In our algorithm, we create an approximate dominant region by synthesiz-
ing the partial dominant regions incrementally. Each partial dominant region
can calculate independently and its computation time is almost equal for all
the partial regions. The latter is supported by the fact that the computation
time doubles when the partial dominant regions double. (See Fig. 15(a).) And
also Table 3 shows an average time to compute a partial dominant region. For
synthesis of 10 partial dominant regions, it takes 0.5msec on average. Therefore,

Table 3. Computation time necessary to make and to synthesize reachable
polygonal regions

acc. vectors 8 16 24 32
average computation time [msec] 1.71 3.10 4.37 5.46

standard deviation[msec] 0.016 0.017 0.014 0.014

it is expected in parallel computation that the computation time will be about
1.71 + 0.5 + α msec when 10 partial dominant regions are synthesized, where α
is an overhead of the parallel computation and is considered as a constant. In
the multi-core parallel computer, the α is small enough. We consider that it is
possible to make the computation time within 5 msec, which is our goal.

7 Prediction of success for passing

One application of the dominant region is the prediction of success for passing.
In this section, we introduce a dominant region of a ball. The approximate
dominant region takes a significant role to predict the success for passing. If
we can predict the success of passing accurately in real time, we can choose a
defense or an offense strategy appropriately.

7.1 Approximate dominant region of ball

We consider a dominant region of a ball. The motion of the kicked ball on the
SSL’s field can be considered as a uniform decelerated motion, since the ball
receives the force by the friction of the field only, and the friction is constant
over the field. In addition, the ball moves on a straight line unless it meets with
an object. Thus, the dominant region of a ball is defined as a line segment that
the ball does not meet with any agents. By using the following way, it is possible
to find an agent who can get the ball first: 1) compute a partial dominant region
for time ti and draw the position of ball at time ti on it. 2) If the ball is in
the dominant region of an agent, then the agent can get the ball. if not, repeat
computation for next time ti+1 until the ball is in the dominant region of an
agent. By this way, we can predict the agent who gets the ball first, and also we
can find a dominant region of a ball.

Figure 16 shows an example. Fig. 16 (a) is a current situation of the game.
The ball is at the lower part of the left side from the center line. The lines in
front of the agents and the ball show the velocity of them. Figs. 16 (b) and (c)
are the synthesized partial dominant region until t = 0.45sec and t = 0.5sec,
respectively. In Fig. 16 (b), there is no agent who can get the ball, but in Fig. 16
(c), the agent No. 4 can get the ball, since the ball is in the dominant region of
the agent 4. Fig. 16 (d) shows the approximate dominant region until t = 1sec
and the ball’s dominant region. To make this diagram, it takes 0.5 msec more
time than the computation time of the diagram without the ball.

(a)An example of soccer game (at
present)

(b) A synthesized partial dominant
region until t = 0.45[sec]

(c) A synthesized partial dominant
region until t = 0.5[sec]

(d)Approximate dominant region
diagram with ball (t = 1sec)

Fig. 16. Example of approximate dominant region diagram with ball

7.2 Discussion

In this experiment, we use the approximate dominant region with parameters of
8 maximum acceleration vectors and 20 time-divisions for 1 second interval9. We
used the logged data of the third-place match in 2007 RoboCup competition to
analyze the prediction of success for passing. By using the proposed algorithm,
we predict the robot who gets the ball first. 60 passings are predicted correctly
out of 63 total passings in the game (95% accuracy), i.e. the predicted agent and
the agent that gets the ball in the game coincide.

In the results, 3 passings are failed to predict correct agents. The detailed
analysis shows that the cause of mis-prediction is not due to the accuracy of the
approximate dominant region but due to the strategy of the team. That is, the
mis-predicted agent acts to achieve an other goal like moving the goal area to
defend the goal by the team’s strategy instead of getting the ball. Therefore, we
think the approximate dominant region is very useful to judge the prediction of
success for passing as well as to evaluate the team’s strategy.

9 It is possible to obtain the approximate dominant region within 5 msec under the
parallel computation environment even if these parameter values are used.

8 Safety region

One more topic is a safety region index. This is used for evaluating the situation
of a game and deciding the defence robots where to deploy.

8.1 Definition of safety region

A concept of “safety region” is simple. It is defined as a region that the teammate
robot(s) can keep the goal when an opponent robot shoots the ball from the
inside of the safety region if teammates are positioned properly according to
their defence strategy. Remaining region of the field given by removing the safety
region is called “unsafety region”.

In the following discussion, as a first step, we do not consider the chip shot
or the curved shot in the following discussion.

8.2 Calculation of safety region

The calculation of the safety region depends on how the shot action is taken, i.e.
a single shot or a cooperative shot, and how the team keeps the goal, i.e. defence
strategy and the number of defence robots. It takes much time to compute
the precise safety region. Therefore, in the following, we describe procedures to
compute the approximate safety region.

Calculation of approximate safety region: single shot case Defence
robots will move according to their strategy so that we assume the right po-
sitions of the defence robots are given at any time. Let b be the position of the
ball at time t. Let ri be the position of the defence robot i at time t. Let Lr

and Ll be the lines connecting b and the right and left goalposts, respectively.
(See figure 1.) Defence robots usually stand on the inside of the region the lines
Lr and Ll make. Let pr,i be the cross-point between the line Lr and the line
perpendicular to Lr through ri, and let pl,i be the cross-point similarly defined
for the line Ll and ri. Assuming ||ri − pj,i|| ≥ R, where || · || means a length of
a vector ·, calculate the following equations for each defence robot i.

Compute,

ts =
||b − pj,i||

vs
, ti =

vi

ai
, (5)

where ts means the time for the ball to move from b to pj,i by the speed vs and
ti the time for the speed of robot i to be vi (starting from speed 0). vi and ai are
the velocity and accerelation of the defence robot, and their values are decided
depending on the defence strategy.

If ti > ts, then compute whether equation

||b − pj,i||
vs

>

√
2(||ri − pj,i|| − R)

ai
, (j = r, l) (6)

ir
ir ,p

il ,p

lL rL

Defense
Area

b

Fig. 17. Definition of the safety region: single shot case

is satisfied or not, otherwise compute whether equation

ts > ti +
||ri − pj,i|| − R − ait

2
i

2

vi
, (j = r, l). (7)

is satisfied or not, where vs, ai, vi and R are the kicked speed of the ball, the
maximal acceleration and velocity of the defence robot i, and the sum of radii
of the defence robot and the ball, respectively.

When Equation (6) or (7) is satisfied for j = r and l, the position of the
ball b is defined as a point in the safety region. In case there are more than one
defence robot, if at least one of them satisfies Eq. (6) or (7), b is defined as a
point in the safety region. When ||ri −pj,i|| < R is satisfied, b is also defined as
a point in the safety region.

Calculation of approximate safety region: cooperative shot case When
the two opponent robots make the shot cooperatively, a typical example is a
direct play[2] which is an action that shooting robot kicks the ball immediately
after receiving it from a passing robot (figure 2), we have to take the passing
robot into consideration since the defence robots keep their goal at the positions
that defend against the attack of both robots. In this case, we have to take the
passing time into consideration to compute the safety region.

Let b and e be the positions of the ball and the shooting robot at time t,
respectively, and ri be the position of each defence robot i at time t. Let L′

r and
L′

l be the lines connecting e and the right goalpost and e and the left goalpost,
respectively. (See figure 2.) We assume the goalkeeper stands in the defence area
and moves along the defence area and other defence robots stand outside defence
area and move along the defence area. Then, let pr,i be the cross-point between

the line L′
r and the line perpendicular to L′

r through ri, and let pl,i be the cross-
point similarly defined for the line L′

l and ri. Assuming that the passing robot
holds the ball at time t and makes the cooperative play, following equation is
obtained for computing the safety region.

b

ir
ir ,p

il ,p

lL' rL'

e

Defense
Area

Fig. 18. Definition of the safety region: cooperative shot case

Compute,

tp =
||e − b||

vp
, ts =

||pj,i − e||
vs

, ti =
vi

ai
, (8)

where tp means the passing time between b and e, ts and ti are the same ones
in Eq. (5).

If ti > tp + ts, then compute whether equation

tp + ts >

√
2(||pj,i − ri|| − R)

ai
, (j = r, l) (9)

is satisfied or not, otherwise compute whether equation

tp + ts > ti +
||pj,i − ri|| − R − ait

2
i

2

vi
, (j = r, l) (10)

is satisfied or not, where, vp, vs, vi, ai and R are the speed of the ball at
passing, the speed of the ball at shooting, the maximal velocity and acceleration
of the defence robot i and the sum of radii of the defence robot and the ball,
respectively.

If equation (9) or (10) is satisfied or there is no pass line10 between b and e,
e is a point in the safety region. In case there are more than one defence robot,
if at least one of them satisfies Eq. (9) or (10), e is a point in the safety region.
When ||pj,i − ri|| < R, e is also a point in the safety region.
10 The length of the perpendicular from ri to the line connecting b and e is less than

the radius of the robot, it can block the pass.

9 Experiment of safety region

In this section, we show the experimental results of the safety region for the
direct play[2]. We use the defence strategy of RoboDragons[7] here since we
know all its details.

9.1 Method of experiment

The safety region should be calculated analytically, however, it is hard to do the
analytic computation so that we calculate it on each of the mesh points which
are given by dividing the field every 40 mm, and we give the approximate safety
region using the model discussed in section 8.2.

On the other hand, to testify the correctness or preciseness of the proposed
safety region, we compared the proposed safety region with the result of simula-
tion, where simulation was done by using the game simulator embedded in the
RoboDragons system. Here we show a simulation procedure for the cooperative
play in the followings.

1. Divide the field into n mesh points, where n = 14888 in this experiment.
Put the ball on the initial position b, one of the mesh points. Also put the
attacking robots on the mesh points, one around the ball and the other one
a given point ei, a shooting position11. Place defence robot(s) on defending
position(s) according to the strategy algorithm of the RoboDragons system.

2. At time t, move the ball from b to e with the passing velocity vp.
3. Move the ball on the shooting line from e which is the farthest line to the de-

fence robots when the ball arrives at shooting position e at time te. (Shooting
line is calculated at time t.)

4. Simulate the movement of the defence robots and judge if a goal is achieved
or not. If the goal is achieved, then the point e is a point in the unsafety
region, otherwise it is a point in the safety region.

5. Repeat steps 2 ... 4 for each point in the mesh by replacing e into it.

The initial position of the ball used in the simulation is selected from the
logged data of the 8 games held in RoboCup Japan Open 2009 and RoboCup
2009, i.e. kick off, direct and indirect free kick points are the candidates of the
initial position of the ball, and it is randomly selected from the candidates.
Passing velocity and shooting velocity of the ball are 4.0 m/sec and 8.0 m/sec,
respectively, which are the typical values in the SSL. The acceleration and ve-
locity of the defence robot are 2.0 m/sec2 and 0.6 m/sec, respectively, which are
the measured values.

9.2 Experimental results

Coincidence rate We compared the approximate safety region with the one
obtained by the simulation for the one defence robot case and the two defence

Fig. 19. Safety region: one defence
robot case

Fig. 20. Safety region: simulation result
corresponding to Fig. 19

robots case under the RoboDragons’s defense strategy. Figures 19 through 22
show the examples of the experimaental results.

In the figures, the white region is a safety region and the gray region is an
unsafety region except the defense area in which the goalkeeper stands. There
are two large gray areas in the field and the shapes of each area are similar
between the proposed and simulated results. However, the down-left corner of
the field does not match between the approximate results and the simulation
results. (In the simulated result, there are many small gray dot-like areas. This
is caused by the noise model implemented in the simulator.) These figures show
that the approximate safety region is a well approximation of the safety region
and can use as the safety region.

To show how much portion of safety and unsafety regions coincide with be-
tween the approximate method and the simulation, we define a coincidence rate
R by the following equation.

R =
number of coincident points

number of all points on the mesh
, (11)

where coincident points are points that the results of approximate method and
simulation coincide with. Table 4 shows the result which is the average of 10
trials.

Computation time Using the three typical computers, we obtained the com-
putation time for the proposed method. Table 5 shows the result.

In our system, given time for the computation of the safety region is at most
5 msec from our experience of the development of the RoboDragons system when
we use the safety region in strategy computation in real time. From Table 5, we
can realize the real time computation using the Xeon processor.
11 We assume that the robot can kick the ball toward any direction.

Fig. 21. Safety region: two defence
robots

Fig. 22. Safety region: simulation result
corresponding to Fig. 21

Table 4. Coincidence rate (Direct play[2])

coincidence rate R
one defence robot 0.889
two defence robots 0.869

10 A defence strategy using the safety region

In this section, we propose a defence strategy using the safety region against the
cooperative play.

10.1 A defence algorithm using the safety region against the direct
play

When n robots have already placed in defence positions and (n + 1)th robot is
placed in defence position, the following algorithm determines the position of
the (n + 1)th robot.

1. Letting the positions of n defence robots be ri (i = 1, ..., n), obtain the safety
region and the unsaftey region. Number each connected component in the
unsafety region. Let it be Nk (k = 1, ...)

Table 5. Computation time

CPU Memory one defence robot two defence robots
Pentium 4 2.8GHz 1 GB 4.5 msec 5.6 msec

Athron64 X2 4200+ 512 MB 4.6 msec 6.1 msec
Xeon 3.3 GHz 2 GB 1.5 msec 1.9 msec

2. Search a connected component with maximal area (Nm) and compute the
gravity center G of Nm.

3. Place (n + 1)th robot at the cross-point of the line Lg and the defence line
(a bit outside of defence area), where Lg is a bisector line of the maximal
free angle toward the goal from point G.

Figures 23 and 24 are examples of the deployment of a new robot. Fig. 23
is obtained from Fig. 19 and Fig. 24 is obtained from Fig. 21. Figure 25 is
the deployment of the three defence robots under the RoboDragons’ existing
strategy. Table 6 shows the number of points in the unsafety region.

Fig. 23. Safety Region: Placing a new
defence robot to figure 19

Fig. 24. Safety Region: Placing a new
defence robot to figure 21

Fig. 25. Safety Region: Three defence
robots (existing strategy)

From Table 6, it is shown that the proposed defence strategy (deployment
algorithm) greatly reduces the area of the unsafety region. This means that it
is possible to keep the goal to the great extent and shows that the proposed
strategy is efficient against the opponent’s cooperative play.

Table 6. the number of points in the unsafety region

two defence robots three defence robots
existing strategy 6256 (Fig. 21) 7086 (Fig. 25)
proposed strategy 1627 (Fig. 23) 1126 (Fig. 24)

However, the proposed defence strategy is not always efficient against the
opponent’s cooperative play. For example, applying the proposed strategy to
Figure 26, we get Figure 27.

Fig. 26. Safety region: one defence
robot

Fig. 27. Safety region: two defence
robots

In Fig. 27, if the shooting robot is in the unsafety region which is shown
by the circle in Fig. 27, the goal is achieved by the robot. This situation is not
preferable. In the next section, we discuss how we avoid such situation.

10.2 A defence strategy considering the position of the opponent
robot

In a real game, we should take the position of opponent robot into account. In
this section, we discuss the weighted unsafety region. The weight is given to each
point e in the unsafety region as a function of the distance between the position
of the opponent robot re in the unsafety region and the point e. We gave the
following weighting function,

w(e) = max(1, 100 × (1 − ||re − e||
max(M, tp × vr)

)). (12)

In eq. (12), vr is a velocity of opponent robot at re, and tp is given by eq. (8).
M is a threshold value to keep the weighting area wide when the value tp × vr

is small. We used M = 270 in the experiment. w(e) takes the value in the range
between 1 and 100.

Computing the weighted gravity center G′ of the unsafety region, and re-
placing G in the previous algorithm into G′, we get an improved algorithm for
computing the defence position.

’

Fig. 28. Weighted unsafety region

Fig. 29. Improved safety region

Table 7. Computation time of weighted (un)safety region

CPU Memory Weighted gravity center Weighted (un)safety region
Pentium4 2.8 GHz 1 GB 1.0 msec 5.6 msec

Athron64 X2 4200+ 512 MB 1.9 msec 6.4 msec
Xeon 3.3 GHz 2 GB 0.3 msec 1.9 msec

Figure 28 shows a weighted unsafety region. The higher the weight, the darker
the region. The weighted gravity center comes near the opponent robot in the
unsafety region. Figure 29 shows obtained defence positions of the robots and
an improved safety region. From the Fig. 29, it is clear that the opponent robot
is in the outside of the unsafety region.

The computation time of the weighted gravity center and weighted (un)safety
region12 excluding the computation of weighted gravity center are given in Table
7. Comparing Tables 5 with 7, it is shown the increase of computation time by
the weighted (un)safety region is small and the real time computation is possible.

12 When stating computation time, we use the term “weighted (un)safety region”, since
it includes the computation time of both safety and weighted unsafety region.

11 Concluding remarks

In this paper, we describe the configuration of the RoboDragons’ new robots. The
robot is driven by four DC brushless moters. A new control board is developed.
There is not a large improvement in the software of the RoboDragons this year.
A minar improvement is described. Research topics which will be embedded in
the future RoboDragons system are described. The dominant region method and
the safety region method. These can be used for realising a higher strategy.

acknowledgement

This work was supported by the cheif director’s special study fund of Aichi
Prefectural University and the president’s special study fund of Aichi Prefectural
University.

References

1. “http://www.toppers.jp/en/index.html”
2. Ryota Nakanishi, James Bruce, Kazuhito Murakami,Tadashi Naruse and Manuela

Veloso, “Cooperative 3-Robot Passing and Shooting in the RoboCupSmall Size
League”, RoboCup 2006:Robot Soccer World Cup X, LNCS 4434 pp.418-425

3. K. Murakami, S. Hibino, Y. Kodama, T. Iida, K. Kato and T. Naruse “ Cooperative
Soccer Play by Real Small-Size Robot”, In RoboCup 2003: Robot Soccer World Cup
VII, LNAI3020, pp. 410 - 421, Springer-Verlag, 2003

4. F.P. Preparata and M.I. Shamos “Computational Geometry” Springer, 1988
5. T. Taki and J. Hasegawa “Dominant Region: A Basic Feature for Group Motion

Analysis and Its Application to Teamwork Evaluation in Soccer Games”, Proc. SPIE
Conference on Videometrics VI, Vol.3641, Pp.48-57 (Jan. 1999)

6. R. Nakanishi, K. Murakami and T. Naruse “ Dynamic Positioning Method Based
on Dominant Region Diagram to Realize Successful Cooperative Play”,In RoboCup
2007: Robot Soccer World Cup XI, LNAI5001, pp. 488 - 495, Springer-Verlag, 2007

7. H. Achiwa, J. Maeno, J. Tamaki, S. Suzuki, T. Moribayasi, K. Murakami
and T. Naruse “RoboDragons 2009 Extended Team Description”, http://small-
size.informatik.uni-bremen.de/tdp/etdp2009/small robodragons.pdf

