
Extended TDP of ZjuNlict 2009

Yonghai Wu,Xingzhong Qiu,Guo Yu, Jianjun Chen,Xuqing Rie,Yonghai
Wu,Rong Xiong

National Laboratory of Industrial Control Technology
Zhejiang University

Zheda Road No.38,Hangzhou
Zhejiang Province,P.R.China

qxzzju@gmail.com
http://www.nlict.zju.edu.cn/ssl/WelcomePage.html

Abstract. This paper summarizes the details of ZjuNlict robot soccer
system we have made since participated in Robocup2004. In this paper
we will emphasize the main ideas of designing of robot subsystem, vi-
sion system and AI system. Also we will share our tips in some special
problems.

1 Introduction

Our team is an open project supported by the National Lab. of Industrial Con-
trol Technology in Zhejiang University, China. We have started since 2003 and
participated in RoboCup 2004 2008. The competition and communication in
RoboCup games benefit us a lot. In 2008 Robocup, we were one of the top four
teams of the world. We also won the first place in Robocup China Open 2008,
and are now the champion team of China.

Our Team members come from serveral different colleges, so each member
can contribute more to our project and do more efficient job.

Team Leader Yonghai Wu (AI)
Team Member – Xingzhong Qiu(AI)

– Zhonghao Huang(Vision)
– Jianjun Chen(Electronic)
– Xuqing Nie(Mechanics)

2 Hardware Architecture

2.1 Hardware of Vision System

We use two Basler A310a Fireware cameras with TAMRON len, whose focal
length is 4 12mm , one for each half field. The image data is sent through 1394
FireWire to PC at the speed of 60f/s and the resolution of the image data is
640× 480.

2.2 Robot

Components of the Robot Our robots are equipped with 4 omni-directional
wheels. Each is driven by a 30 watt brushless Maxon motors which help our
robot run with about 2.5m/s and 6.0m/s2. The reduction ratio of the gearbox
with internal spur gear is 4:1. Besides there are three major machinery devices:
a dribbling device, a shooting device and a chipping device. The robot is shown
in Figure 1

Fig. 1. View of Our Robot

Our circuit architecture is FPGA based all-in-one solution as the central
processor module. Our motor driving part is a stable module based on MC33035,
which has been developed to complete the two years since 2007 in Atlanta.

There is an encoder module to form a local feedback control loop. A com-
mercial wireless module based on nRF2401 is used on our robot. Meanwhile, we
develop a new communication system between the PC and robots. We choose
two smaller capacitors with higher voltage, to achieve a better result. They will
help us save more power and permit several shots in short intervals. In addition,
we have set module, power monitor module, IR detector module, and so on, in
order to complete the functions of our robots. We use Protel Altium Designer
6.0 to layout the PCB board.

Fig. 2. Schematic diagram

Mechanical Design Omni-directional Wheel Design Each wheel is composed
of a big aluminous wheel with 18 grooves distributed equably in Circle, there
is a small wheel founded with PM in every groove. Similarly, there is a groove
in the small wheel, covered by a o-ring. The omni-directional wheel is shown in
Figure 3 In Robocup 2008, the wheel exhibited some problems, such as large gap
and friction. Now the wheel is redesigned in some details, and receives a perfect
performance. Except the wheels, we do not change a lot in the other parts. To
improve the manufacture precision, we make all the parts with CNC machine
tools.

Shooting Device Design The robot’s shooting device is the primary method
of both scoring and passing. It is made up of a an electromagnet and a
simple mechanical structure. The electromagnet is made by ourselves and
is calculated accurately in advance. It is drive by two big capacitors which
is fixed on the floor board above. Since nn Robocup 2007, we are pleased
with our shooting devices and don’t change a lot. It is shown in Figure 4.
The shooting device can give the ball a maximum velocity of 11m/s. In the
match, it is controlled by the circuit, the time and the force of kicking the
ball is also in charge. This part of the robot is usually cooperate with others,
such as the chipper,the dribbler.

Chipping Device Design The chipping device allows the robots to pass the
opponent by kicking the ball into the air. As same as the shooting devices,
it is also drive by two capacitors, the method to control it is also the same.
It is shown in Figure 5. When the chipping device works, the shovel close to
the ground can chip the ball to a maximum height of 0.8m and a maximum

Fig. 3. Omni-directional
wheel

Fig. 4. Flat kick device

length of 3.2m. The angle of the shovel and the height between the chipping
pole and the ground influence the performance most. When the ball falls to
the ground, it is a litter difficult for the partner to get the ball steadily and
quickly. Because of the elasticity of the ball and ground both play important
parts. In Robocup 2008 and China open in 2008, this problem is there and
now we are working to solve it.

Dribbling Device Design The dribbling device is the assembly that controls
the ball. It is designed to stop a ball, control it and prevent losing it. The
dribbling device is drive by a motor, accelerated by a pair of gears. A stick
swathed with a special pipe circum gyrates when the ball comes close to the
robot or it must compete for the ball with the opponent. From Robocup
2006 at Bremen, we found that the ball controlling ability is not very sat-
isfactory, these years, we have tried many ways to improve it. We get a lot
of experiences, receive a much better result now. It is shown in Figure 4.
The higher rotate speed the motor circum gyrate, the bigger force the ball is
given, but on the other hand, the ball will be easier to lose control. To get a
better effect, we redesigned the limit device, besides we spend a lot of time
choosing the material.

Electronic Design

Driving Peripheral Design There is a local feedback control loop on the
robot. Motor driving module based on MC33035 which consists of a rotor
position decoder for proper commutation sequencing, temperature compen-
sated reference capable of supplying sensor power, frequency programmable
saw tooth oscillator, three open collector top drivers, and three high current
totem pole bottom drivers ideally suited for driving power MOSFETs, Can
Efficiently Control Brush DC Motors with External MOSFET H-Bridge.(
Figure 7)

Fig. 5. Chip Kick Device

Fig. 6. Dribbling Device

Fig. 7. Motor Drive Diagram

Communication Peripheral Design Our communication system is based
on the module of NRF2401. NRF2401 is a single-chip radio transceiver for
the world wide 2.4 - 2.5 GHz ISM band. The transceiver consists of a fully
integrated frequency synthesizer, a power amplifier, a crystal oscillator and a
modulator. Output power and frequency channels are easily programmable
by use of the 3-wire serial interface. This year, a new communication system
has been developed to reach better results. The new communication system
is based on two RF modules on the robot. They were two separate modules,
respectively charging for receiving and sending. Compared to last year, data
transferred from the pc to robot, is encoded to a larger packet. All of the
robot on the ground can receives the same packet at the same time, and
pick up the right information with the numbers of themselves. the right
information picked up from the large packet includes the speed of every
wheels, shoot or chip command, the number of robot. Thus, every robot can
receive the order without delay. Meanwhile the robots can send a packet to
the pc. However, there is only one robot can send packet that contains useful
information to pc. The PC can receive information from the robot without
any delays. So the command sent from the pc can be implemented more
effectively and timely.

Shooting Peripheral Design Compared to previous years, our Shooting sys-
tem (Figure 8)is not changed too much this year. Our boosted circuit in-
cludes a PWM control module and voltage control module, to control the
boost capacitor voltage. FPGA sent chip or flat shoot signal, through con-
trol circuit for chip or flat shoot. However, we choose two smaller capacitors
with higher voltage, to achieve a better result. The kicks are driven by two
4700uF capacitors charged to 100V. The kicker can give the ball a maximum
velocity of 10m/s [3], [2], [4]. With the increased voltage, the velocity will
be faster.

Fig. 8. Shoot Diagram

3 Software System

3.1 Emebedded Software

Since Robocup2007 in Atlant, Our circuit architecture use the NiosII as the cen-
tral processor module which is a soft IP provided by Altera company matching
at QuartusII5.1 and NiosII5.1 software programming environment. The overview
of our embedded software flow is show in Figure 9

Fig. 9. robot software

Motor PID Control Based on our motor driver module (Figure 10), we use
an incremental PID algorithm, real-time code set encoding to read the speed of
motor for PI and PID control, so that motor speed can reach the stable speed
settings. About the encoder module, we use AM512, which is a compact solution
for angular position sensing. The IC senses the angular position of a permanent
magnet placed above the chip. So we put the permanent magnet on the motor,
when the motor rotation, FPGA board will receive the Incremental signal from
the encoder module. There are two signals for incremental output: channel A
and channel B. Signals A and B are quadrature signals, shifted by 90. The speed
of the motor can be count by the signals.

3.2 Vision System

3.2.1 Calibration Calibration parameters are computed via Tsais method [5],
which is programmed in MATLAB, and are then used to map the object co-

Fig. 10. Motor Control Diagram

ordinate on the image to the coordinate on the field. The error between the
computed field coordinate and the actual one is less than 15mm.

Tsais method for camera calibration recovers the interior orientation, the
exterior orientation, the power series coefficients for distortion, and an image
scale factor that best fit the measured image coordinates corresponding to known
target point coordinates. This is done in stages, starting off with closed form
least-squares estimates of some parameters and ending with an iterative non-
linear optimization of all parameters simultaneously using these estimates as
starting values. Importantly, it is error in the image plane that is minimized.
Details of the method are different for planar targets than for targets occupying
some volume in space. Accurate planar targets are easier to make, but lead to
some limitations in camera calibration. Besides, figure 11 shows that we choose
the 8 points(corner points or intersect points) in the field.

3.2.2 Sampling and Segmentation First of all, we use the HSI color model,
HSI space are transformations of RGB space that can describe colors in terms
more natural to an artist. The two spaces can be thought of as being single cones,
as shown in Figure 12. The hue component in the color space is an angular
measurement, analogous to position around a color wheel. A hue value of 0
indicates the color red; the color green is at a value corresponding to 120, and
the color blue is at a value corresponding to 240. Horizontal planes through the
cones in Figure are hexagons; the primaries and secondaries (red, yellow, green,
cyan, blue, and magenta) occur at the vertices of the hexagons. The saturation
component in color space describes color intensity. A saturation value of 0 (in
the middle of a hexagon) means that the color is ”colorless” (gray); a saturation

Fig. 11. Points for Calibration

value at the maximum (at the outer edge of a hexagon) means that the color is
at maximum ”colorfulness” for that hue angle and brightness. The I component
describes brightness or luminance. A value of 0 represents black. In the space, a
maximum value means that the color is at its brightest. Regardless of the current
values of the hue and saturation components.

In order to differentiate the various objects on the field, i.e. ball, our robots
and opponent robots, first we need to decide the color thresholds for these ob-
jects. Considering the inconsistent light condition of the field, we decided to use
local thresholds method, which divides the whole field into many blocks, each of
which stores its own set of threshold parameters as shown in Figure 13. More-
over, in order to obtain these sets of parameters more conveniently, we designed
a cover with special color configuration, which can be worn by our robot and ran
over the field so that every blocks threshold data are updated, figure 14shows
the cover.

3.2.3 Object Recognition To minimize the computation load, first we take a
background image without any objects in it. Then, during processing, the new
image minus the background image is changed to HSI color space, and colors
on the image are decided using the threshold parameters that previously set as
shown in figure 14. Contour tracing method is used to find connecting regions
with a same color. Blobs of different colors form a certain configuration enable us
to recognize the ball and the robots. After both of half-field images are processed,
in accordance with history information and sizes of the blobs, information from
these two images are merged to generate our final result.

Fig. 12. Color Model

Fig. 13. Blocks of Field
Fig. 14. Cover for Sampling

(a) Original Image (b) Background Subtraction Result

Fig. 15. Object detection

3.2.4 Blobs Model We choose FU model as our blobs model as shown in figure
16. Then we can recognize the direction and id of each robot.

Fig. 16. Blobs Model

3.3 AI System

The AI system is running on a PC installed Windows Xp. It connects the vision
system via UDP, and connects the radio system via serial port. Besides, we have
a debug GUI client connecting the AI system via TCP, which uses the same
protocol to connect vision system. An ODE based Simulator help us to test
some hardware independent algorithms. Our whole software development works
under Visual Studio using the C++ language.

3.3.1 Decision Flow We use a multi-layered learning based play/subplay/agent/skill
[6], [1] architecture which of decision routine is show in figure 17, In the Play
layer, the most fitness tactic will be selected, then each robot will assign a task.
Some task may be very simple such as going to a specific point for receive or
block. Some task may be very complex such as shoot goal, which is composed
by intercept, grasp ball and aim target etc base skill. We use the finite state
machine to link these actions.

3.3.2 Object Prediction Because of the network transmission and image pro-
cessing time cost, the AI module generated command received by robot will be
later than the time camera captures this frame image. But when making decision
we should take account of the state in which the robot just receives the motion

Fig. 17. Decision Routine

command. So we must predict all of objects state in the field such as ball, our
member and opponent in this latency duration (Figure 18).

Fig. 18. Latency Experiment Data

Latency Measurement In prediction routine, we must first know the system
latency which starts in image capture and ends in the time command received
by robots. We designed a easy experiment to measure this latency time. Detail
of the experiment routine is show in following:

1. Make a robot stop in field, log this initial position
2. in the frame t we send a direct velocity along x axis which magnitude is

k1sin(k2t), where t is the sample (or send) cycle.
3. At the same time we log this velocity command and robots new position
4. Without system latency, when the command speed accelerate to reach its

maximum value, and then decelerate to zero, the robot just moves to the far-
thest distance away its origin position in positive direction. While command
is negative, the robot goes back to its origin position.

5. Considering the system latency, when the command is send, it is after some
time that robot will receive this command. So the time when command
reaches zero doesnt synchronize the time when robot moves farthest.

6. Plot the robot position and command velocity magnitude in figure 18, we
can see the difference between the time when the robot moving distance
reaches its maximum value and the time when sending speed is zero.

Using this method we can get our system latency is about 4 5 frames (one
frame is 1/60 s).

Flying Ball Prediction Predicting the flying ball land point is a new topic
in small size soccer robot since most teams have robot with chip device. With
the chip kicking in cooperation mission we have chance to do the head kicking
just like human football game. But in order to implement this, we must predict
and calculate the right flying trajectory of ball. Now we share our novel method
here.

Fig. 19. Flying ball trajectory calculate model

As the figure 19 show, camera is on point C, AB points are the projec-
tion points of flying ball with camera view, and A

′
B

′
are the flying ball ac-

tual position. According to the geometry relation we know CO⊥AO, CO⊥BO,
A

′
A

′′‖CO, B
′
B

′′⊥CO. CO is the height of the camera, we can measure this
value when building vision system. With the vision input we know point A posi-
tion, and calculate the length of the segment AO. If we know the flying direction,
we can get the point A

′′
which is the intersection point between AO and kicking

radial, then we can calculate the length of AA
′′
. Because of ∆AA

′
A

′′
∆ACO,

we obtain A
′
A

′′
by |AA

′′
|

|AO| · |CO|. In the same way we can get B
′
B

′′
or the height

of other point on flying ball trajectory. Without considering air resistance, we

consider the flying trajectory is a parabola. So long as we get enough points,
we can obtain the whole flying trajectory by Least Square method. Finally, the
land point is the intersection point between this parabola and kicking radial.

3.3.3 Path Planning Path planning is an important issue in the mobile robot
domain, we try to find a proper algorithm which can not only reduce the collision
between objects more, but also generate a smooth and stable path for the high
dynamic environment in robot soccer game. Now we use the A* algorithm to
complete an easy but efficient planning model. This path planning algorithm is
as follows:

– Step 1 Make certain obstacles which need be avoided according to the robot
current position and its desire.

– Step 2 Check the path between start point and target point, and make sure
if there is no obstacles along this path. If so, search ends, otherwise go to
Step 3.

– Step 3 Create some nodes around each obstacle which can not be ignored.
– Step 4 Using A* Algorithm make search from the start point.
– Step 5 We create an evaluation function to describe the priority of each point

in searching procedure.

The first item g(p) represents the distance of this point to start point; The
second item e(p) represents the time which robot costs from this point to target
point. We use the distance of this point to target to estimate this value; The third
item h(p) represents the adaptation of this point considering previous planning
result. We have a set to save some way points when a search success. This can
accelerate the search procedure if target doesnt change so much. Step 6 In search
routine, we always select the point which f(p) value is minimum. Step 7 Check
the path between current selected point and other points, if one path is non-
blocked, we can add a new edge to the graph, and update the path of the start
point to target (this value is initialized to be infinite). This extend method is
just like the Shortest Path Algorithm. Step 8 If the path has connected the start
point and target point, searching procedure ends, otherwise go back to Step 6.
Step 9 Get the first element in generated path to be the robot next move target,
and Add the other points to the way points set for accelerate next search.

3.3.4 Behavior Control

Speed Compensation Because of the inherent mechanical characteristics,
there are variations between the command(|V |, θ, Vrotate) we send to the robot
and the result gotten from the execution. These variations are critical in robot
motion control. We train a three-layer feed-forward neural network to model the
variations, and calculate the compensation we should modify the commands sent
to the robots. As for omni-wheels robot, the translation movement and the ro-
tation movement are independent. This means that they can be compensated re-
spectively. We train the neural network in this way: Certain commands(|V |, θ, Vrotate)

are sent to the robot, we get the vectors((|V |′ , θ′
, V

′

rotate)) which robot really ex-
ecutes by measuring the vision logs. For these given commands(|V |, θ, Vrotate):

– |V | varies between 0cm/s and 250cm/s with a step of 25cm/s

– θ varies between 0 and 350 with a step of 10

– Vrotate = 0

The neural networks [7] input vector is (|V |, θ), output vector is(|V |′ , θ′
, V

′

rotate)
and the hidden layer have 5 neurons. We use the data set gotten in previous mea-
surement to train the network. When the train finished, we get a neural network
which can compensate any given command(|V |, θ). We also measure the rotate
velocity Vrotate compensation by send commands which Vrotate varies between
0rad/s to 10 rad/s with a step of 1 rad/s and |V | = 0. The result show that the

Coefficient λ compensation for rotate velocity is nearly a constant. (λ = V
′

rotate

Vrotate

). The compensation of rotate velocity Vrotate can be obtained through following
equation:

V
′′

rotate = λ · Vrotate + V
′

rotate

V
′

rotate is gotten by the neural network You can refer to a more detailed method
in bibliography

Fetch Ball Control New approach of fetching a ball is designed with divided
states, which cover the situations in procedure of getting the ball. Firstly, the
robot moves to the opposite spot of the ball to the target given by a higher
layer of the strategy. The path should avoid any possible collision with the ball
and get the robot to a final state that staying in line with the ball and target.
Then it turns to the next step, GRASP BALL, the robot keep closing to the ball
with a speed depending on the speed of the ball. In this state, the exit condition
back to the GOTO BEHIND is stricter to perform a fluent action. Besides, two
different control parameters of the motor are applied for the two steps to get
a more accurate and faster response. The following pseudocode describes this
decision process.

1 void CGetBallV0::planWayPoint(VisionInformation, ballTarget)
2 {
3 switch (state())
4 {
5 case BEGINNING:
6 // Variable initailization
7 setState(GOTO BEHIND);
8 break;
9 case GOTO BEHIND:
10 if (isSafeGraspBall and robot, ball and target collinear)
11 setState(GRASP BALL);
12 break;
13 case GRASP BALL:
14 if (robot, ball and target are non-collinear with buffer)
15 setState(GOTO BEHIND);
16 else if (ball Controlled)
17 setState(FINISHED);
18 break;
19 case FINISHED: setState(GOTO BEHIND);
20 default: break;
21 }
22}

Table4.1fetchballf lowchart

The GOTO BEHIND state is subdivided into three main situations due to
the relative position of the ball, robot and the target. Several veriables are defined
to demostrate these relative positions.Let

θ = arcsin(
r

|−→m|
)

α = π− < −→n ,−→m > −θ

Where,

r is the collision-avoiding radium
−→m is the vector from robot to the ball
−→n is the vector from the ball to the target

If the robot is in the way between ball and the target (α ≤ π
12 , figure i), it

moves on the line with constant distance to the ball position to avoid blocking
the ball. Then if the robot is on the side of the robot (figure ii,iii), it should go
behind the ball to get a proper position to push it to the target. The distance d
to the ball has a relation with α; the smaller is the closer robot should approach
to the ball. So we got

d0 =

{
r

sinα , (π12 ≤ α ≤
π
2)

r + 5, (α ≥ π
2)

(1)

d = d0 −K · cosβ

Where,

r is the collision-avoiding radius.
K = d0 + dribbleballdist
β is the angle between −→n and −→m , also can be expressed < −→m,−→n >

Fig. 20. Three phases of Getting Ball

Potential Based Pass and Receive Searching Potential Based Pass and
Receive Searching We have functions to find the best assist point, shoot point or
receive point. Several evaluation functions are applied to calculate the rates of
each qualified point on the ground according to a set of parameters between ball
and goal. As it turned out to cost a lot to recalculate all positions in every cycle,

Fig. 21. Best shoot point

we prequalify the field according to following two rules. Firstly, considering the
situation that our player is blocked, cross-regional pass is a usual solution. So
let A to be the region on the opposite of the robot on y axis. Another rule is
the receive point should have an acute angle between the direction of receiver
to goal and dribbler. Then let B to be the acute angle region which is outside of
the circle with the diameter between goalpost and dribbler. The final qualified
region to start a search in is A-B (shadow area). This process can reduce the
computing cost. The assistant point, shooting point, and other tactic positions
are selected by given evaluation functions. Such function uses the position of
ball, friend robots, and opponent robots as variable. For example, we establish a
evaluate function E to produce a best assistant point (receive the ball and shoot
the goal). All these factors are taken into consideration to evaluate a certain
position P:

E(P) = w0 · calShootEval() + w1 · calRobotAdjustEval()
+ w2 · calToTargetAdjustEval() + w3 · calAwayFromEnemyEval() (2)

Where,

w[] is the weight of each factor
calShootEval() is the possible shoot range at P

calRobotAdjustEval() is the cost for dribbler to adjust to proper angle to
pass

calToTargetAdjustEval() is the cost for receiver to get to position P with
proper angle

calAwayFromEnemyEval() is the threats of some near opponent robots

When the ball procession robot cant dribble ball forward any more or com-
plete a goal shoot, he must pass ball to a teammate who can receive and kick
the ball to opponents goal easily. To implementation this cooperate, support
teammate will search a better receive point in another half field using potential
method. In the situation described in figure 21 the slash drawn area is a proper
optimized searching range.

4 Conclusion

Owing to our all team member hard work, we can obtain this result. If the above
information is useful to some new participating teams, or can contribute to the
small size league community, we will be very honor. We are also looking forward
to share experiences with other great teams around the world.

References

1. Bruce J.R. Browning B. Skills tactics and plans for multi-robot control in adversarial
environments. Journal of System and Control Engineering, 2005.

2. Gordon Wyeth David Ball. Uq robocup 2004: Getting smarter. RoboCup 2004,
2004.

3. Ng Beng Kiat. Luckystar 2004. RoboCup 2004, 2004.
4. Aphiwat Kriengwattanakul. Plasma-z 2008 team description paper. RoboCup 2008,

2008.
5. ROGER Y. TSAI. A versatile camera calibration technique for high-accuracy 3d

machine vision metrology using -the-shelf tv cameras and lenses. IEEE Journal of
Robotics and Automation, 1987.

6. Wenfei Wang. Zjunlict team description for robocup 2009. RoboCup 2009, 2009.
7. Yonghai Wu Yu Sheng. Motion prediction in a high-speed, dynamic environment.

Proceedings of 17th IEEE International Conference on Tools with Artificial Intelli-
gence (ICTAI), 2005.

