
ZJUNlict Extended Team Description Paper
Small Size League of Robocup 2025

Zifei Wu, Lijie Wang, Zhe Yang, Shijie Yang, Liang Wang, Haoran Fu,
Yinliang Cai, and Rong Xiong

State Key Lab. of Industrial Control Technology
Zhejiang University

Zheda Road No.38, Hangzhou
Zhejiang Province, P.R.China
rxiong@iipc.zju.edu.cn

Abstract. This paper presents the ZJUNlict team’s work over the past
year, covering both hardware and software advancements. In the hard-
ware domain, the integration of an IMU into the v2023 robot was com-
pleted to enhance posture accuracy and angular velocity planning. On
the software side, key modules were optimized, including the strategy
and CUDA modules, with significant improvements in decision-making
efficiency, ball pursuit prediction, and ball possession prediction to adapt
to high-tempo game dynamics.

1 Introduction

ZJUNlict has been actively participating in the competition since 2004, and in
2023, we rejoined the offline world competition after the pandemic, and continued
to compete in 2024. Over the past year, we’ve implemented significant hardware
and software improvements to enhance our robot’s performance.

In the hardware section, we focus on the modifications made to the dribbler
system, improvements in feedback and prediction, and the integration of IMU
control at both the hardware level and the software level.

In the software section, we present our advancements in ball pursuit pre-
diction, ball possession prediction, the redesign of our strategy module, and
optimizations to the CUDA module for real-time decision-making. These devel-
opments aim to increase the efficiency, precision, and robustness of our robot’s
behavior during high-tempo games, which will be detailed in the following sec-
tions.

2 Hardware

2.1 Dribbler Modification

Dribbling is one of the fundamental abilities of Small Size League robots, deter-
mining whether the robot can also move with the ball. Before reaching a stable

2 Z. Wu et al.

dribble state, there is an impact at the moment of contact between the drib-
ble ball and the ball. Bouncing occurs when there is a relative velocity between
the ball and the robot. Team KIKS [1] confirmed the importance of dampers in
improving shock absorption. Team TIGERs [2] designed a 2-DOF structure to
improve impact absorption and ball control simultaneously.

Simplified model Initially, we try to drive dynamic differential equations of
the dribble system. However, we are confronted with complex non-linear rela-
tionships and parameters that are hard to obtain, like the friction coefficient
between the ball and the dribble-bar. To simplify these equations, we abstract
the dribble system as a one-dimensional mass-spring-damping system, as shown
in Fig.1, where m represents the ball, M represents the dribbler,k1,c1 represent
the contact between the ball and the dribbler-bar and k2, c2 represent the damp-
ing of the dribbler. In the simplified model, the complex contact between the
ball and the dribble-bar is replaced by separable spring and damping.

Fig. 1. Simplified dribble system model

Assuming x1 = 0,x2 = 0 and ẋ1 = v0 at t = 0 . The ball and the dribble-bar
are separated when x1 − x2 < 0. The dynamic equations are shown as follows.{

mẍ1 = f

Mẍ2 = −k2x2 − c2ẋ2

, x1 − x2 < 0 (1)

{
mẍ1 = f − k1(x1 − x2)− c1(ẋ1 − ẋ2)

Mẍ2 = −k2x2 − c2ẋ2 + k1(x1 − x2) + c1(ẋ1 − ẋ2)
, x1 − x2 ≥ 0 (2)

We can solve these equations numerically in MATLAB and compare the
results by analyzing the curve of position of m over time.

Simulation and results Simulation parameters are shown in Table 1. Since
we do not know the true values of each parameter, we can only make qualitative
comparisons. To test the influence of M on the simulation results, M = 0.05, M
= 0.15 and M = 0.25 are taken respectively. The simulation time step is set to

ZJUNlict Extended Team Description Paper SSL 2025 3

0.0001s. Simulation results are shown in Fig.2. When M is reduced, the bouncing
amplitude of m is reduced and the dribbler system stabilizes faster, which means
cutting down the inertance of the dribbler can enhance the dribble ability.Thus,
we move the rotational joint to a higher place, as shown in Fig.3.

Table 1. Values of simulation parameters

Parameters Value
M(kg) 0.05, 0.15, 0.25
m(kg) 0.046
k1(N/m) 4000
k2(N/m) 100
c1(Ns/m) 5
c2(Ns/m) 20
v0(m/s) 2
f(N) 0.13524

Fig. 2. Simulation results of the position of m with different M

2.2 Dribbler Feedback And Prediction

High-speed dribbling has always been a distinctive feature of ZJUNlict. During
competitive matches, high-speed dribbling often enables the robot to intercept
the ball and gain control. However, maintaining the stability of the ball spinning
at an extremely high speed within the dribbler is not an easy task, as it is signif-
icantly influenced by the roughness of the field. The existing infrared feedback

4 Z. Wu et al.

Fig. 3. Dribblers of different joint positions

from the dribbler is too sparse, and when the ball is close to the robot’s dribbler,
the vision system cannot determine whether the ball is truly in contact with the
dribbler, rendering it ineffective. This makes it difficult to accurately assess the
true state of dribbling during matches. Therefore, to address the lack of feed-
back, we have added an angle sensor to the dribbling drive board to capture
the vibration state of the dribbler during dribbling. The angle sensor collects
signals at a frequency of 1000 Hz, with 50 signals forming a group. These sig-
nals are then processed by an LSTM neural network to predict whether the ball
has been successfully dribbled.Considering that the ball dribbling might affect
the vibration of the entire robot body, we additionally collected the IMU an-
gle information on the robot to capture potential features for predicting the ball
dribbling state. Due to the neural network’s reliance on the dataset, we collected
separate datasets for dribbling during forward motion, stationary dribbling, ro-
tational dribbling, and backward motion,which is partially shown in Fig.4. With
a collection of 5000 datasets, the prediction accuracy on the training set exceeds
90 percent. This prediction result is sent to the software layer as part of the
dribbling feedback.

In earlier implementations, only a single low-cost infrared sensor pair was in-
stalled on lateral sides of the dribbler, consisting of one infrared emitter (Model
LTE-C9506B) and one infrared receiver (Model PT26-21B/CT). This configura-
tion relied on voltage signal variations to determine ball possession status. How-
ever, this arrangement exhibited significant limitations - the sparse single-point
feedback could only provide binary ball possession detection (present/absent).To
resolve this limitation, this year we deploy 12 infrared sensor pairs linearly along
the lateral aspects of the dribbler, arranged in a shallow-to-deep configuration.
The combination of infrared sensors at different positions yields high-density
feedback signals which allows us to determine the depth of the ball within the
dribbler during dribbling.

ZJUNlict Extended Team Description Paper SSL 2025 5

Fig. 4. Imu data collected when dribbling

3 Software

3.1 IMU For v2023 Robot

Since replacing the robot in 2023[3], we have been utilizing visual information
to assess the robot’s posture and plan angular velocities. This vision-based feed-
back motion control relies on a 74Hz camera, which severely limits the control
frequency and precision within our control architecture. Specifically, our con-
trol architecture is hierarchically planned in terms of software and hardware.
After the software layer makes decisions and plans, it sends the target speed of
each robot to the robot via UDP. This results in the average frequency of visual
position feedback being only 74Hz, which is significantly lower than the motor
motion control frame rate at the hardware level. This year, we integrated an IMU
into the new robot to obtain posture information with greater accuracy. Once
the software layer plans the path and sends the speed to the robot, the robot
obtains linear acceleration through the IMU, which is then integrated to derive
current linear velocity, enabling high-frequency closed-loop motion control using
pid controler, it enables more stable and robust speed planning.

The IMU’s coordinate system is initialized when the robot powers on, but it
cannot be guaranteed that the IMU coordinates align with the visual coordinates,
at the same time, since continuous integration of IMU data to obtain velocity can
accumulate errors. Therefore, calibration is necessary to ensure consistency. We
correct the IMU coordinates using visual data, ensuring that the IMU coordinate
system aligns with the visual system for stable angular velocity planning. In
practical, since the IMU is installed horizontally on the robot, the coordinate
system calibration is only related to the yaw angle, so only the yaw angle needs
to be calibrated. We adjust the IMU’s yaw angle based on the visual robot’s
yaw angle during each visual update, and no corrections are needed for the
angular velocity. The IMU yaw angle is transmitted from the embedded layer to
the software layer, enabling the software to access the precise robot orientation.

6 Z. Wu et al.

Simultaneously, the target yaw angle is sent to the embedded layer, where the
angular velocity is planned.Thus, it is essential to correct the IMU angle in the
software layer to align with the visual coordinate system, while also converting
the target yaw angle from the visual coordinate system to the IMU coordinate
system in the embedded layer. The conversion formula for the IMU yaw angle
coordinate system is as follows:

∆θ = θIMU
c − θSSL

c

θIMU
t = θSSL

t +∆θ
(3)

Where θIMU
c is the current angle of the yaw angle in the IMU coordinate

system, θSSL
c is the current angle of the yaw angle in the visual coordinate

system, θIMU
t is the target angle of the yaw angle in the IMU coordinate system,

and θSSL
t is the target angle of the yaw angle in the visual coordinate system.

Following the integration of the IMU, we moved angular velocity planning
from the software layer to the embedded layer. The advantages of this approach
include: 1. Direct access to the accurate angle information provided by the IMU
for velocity planning in the embedded layer; 2. Higher planning frequency in
the embedded layer compared to the software layer, resulting in reduced state
estimation errors and enhanced robustness in robot control.

To evaluate the robot’s angular control and velocity planning capabilities,
we conducted an experiment to assess the overshoot in motion caused by angu-
lar velocity control. The experiment involved moving the robot from a starting
point to a fixed straight line, and then along the trackline. The effectiveness
of angular velocity control was measured by the maximum offset between the
robot’s Y-coordinate and the target line. The experimental results, shown in
Fig.5, demonstrate that after incorporating the IMU for angular velocity plan-
ning, the robot’s Y-direction lateral offset along the trackline was significantly
reduced. This indicates that the IMU has improved the robot’s angular velocity
planning and angle control, enhancing stability and precision.

3.2 Ball Pursuit Prediction

In the past, we developed a series of robot skills for ball pursuit such as self-
pass[1], which enhanced our ball possession rate and dribbling efficiency. Based
on the search-based interception prediction method from 2019[4], we developed a
ball pursuit prediction technique that can forecast the time and final position at
which a robot will catch up with and gain control of a moving ball. Considering
the stability of the pursuit process, we posit that the relative velocity between
the robot and the ball at the moment of contact should be approximately equal.
Building on this principle, we designed the algorithm with the following general
procedure: first, at each time step, we collect the position, velocity, and other
relevant data of both the pursuing robot and the ball. Since the pursuit point
must lie on the ball’s trajectory, we extend the search starting from the ball’s di-
rection. For each point on the trajectory, we calculate the time required for both

ZJUNlict Extended Team Description Paper SSL 2025 7

Fig. 5. Comparison of Y-direction offset along the trackline with angular velocity plan-
ning using IMU versus vision-based planning.

the robot and the ball to reach that point at the same speed, using our exist-
ing ball deceleration model and the robot’s trapezoidal motion planning model.
These times are denoted as tball and trobot, respectively. Ultimately, when the
difference between tball and trobot for a particular point falls below a predefined
threshold, it is deemed that the robot can catch up and control the ball, at which
point the algorithm exits the loop.

This algorithm accounts for several special cases that require attention. The
first case occurs when the ball has already stopped before the robot can gain
control. This situation is represented in the algorithm as the search loop reaching
its end, and the stopping position of the ball is directly considered the pursuit
point. The second case arises when the ball and robot are moving toward each
other. Although the robot’s decision-making is more inclined toward intercepting
the ball rather than pursuing it in such scenarios, prediction still proceeds. Since
the prediction does not inherently account for the need for the robot to maneuver
around the ball before pursuing it in the opposite direction, we introduce a
maneuvering cost to make the prediction more reasonable. The designed detour
cost function takes into account the angle θ between the robot’s direction and
the ball’s velocity vector, as well as the distance r between the robot and the
ball. Intuitively, as the robot moves closer to the ball’s motion direction and as
the distance decreases, the maneuvering cost should increase. Hence, we adopt

ω1e
− r

ω2 (1− cos θ) (4)

as the detour cost function model, where ω1 and ω2 are predefined constants.
The heatmap in Fig.6 illustrates the results of the predictive algorithm. The
prediction scenario is as follows: the ball starts at the coordinate (0, 0) and
rolls along the y-axis at speeds of 0.5 m/s and 1.5 m/s, respectively. The color

8 Z. Wu et al.

intensity at each point on the heatmap represents the predicted time for the robot
to chase the ball to that position (assuming the robot’s initial velocity is 0 in
the scenario). Lighter colors indicate shorter predicted times, while darker colors
correspond to longer times. From the heatmap, it can be observed that the robot
requires less time to chase the ball when approaching from behind the direction
of the ball’s motion. This outcome aligns with both intuitive expectations and
actual performance.

Algorithm 1 search-based ball pursuit prediction algorithm
1: Require: ∆t, ball initial position P0 and velocity v0, robot initial position Pr and

velocity vr
2: k ← 0
3: repeat
4: Pk ← predictBallPosition(P0, V0,K∆t)
5: vk ← predictBallVelocity(V0,K∆t)
6: Tk ← predictRobotArrivalTime(Pr, vr, Pk, vk)
7: k ← k + 1
8: until |Tk − k∆t| ≤ tthres or Pk out of the field
9: Pbest ← Pk

10: Tbest ← Tk

Fig. 6. time heatmap with ball speed 0.5m/s (left) and 1.5m/s (right)

3.3 Ball Possession Prediction

Ball possession prediction is crucial for our decision-making process, as it deter-
mines whether an aggressive or conservative strategy should be employed. In a
match, ball possession refers not only to the robot which is currently controlling

ZJUNlict Extended Team Description Paper SSL 2025 9

the ball but also to which team is more likely to gain control of a free ball.
We developed a comprehensive ball possession prediction feature that can assess
possession status at any given moment on the field. This feature is based on the
existing interception and pursuit predictions, with the following general algo-
rithm: initially, we predict both interception and pursuit times for all non-goalie
robots on the field. For our team, the decision algorithm uses the same criteria
as the actual decision-making process to select either the interception or pursuit
time. For the opposing team, the approach is adjusted dynamically based on the
specific opponent. Then, we compare the times for the robot with the shortest
predicted time to gain possession of the ball for both teams. If our robot’s time
is shorter, it is considered our possession; conversely, if the opponent’s robot has
a shorter time, possession is attributed to them. Fig. 7 shows the whole process
of the possession prediction.

Fig. 7. ball possession prediction

3.4 Strategy Module

In our software framework, the strategy module is located at the top layer and
plays a role in overall planning and decision-making. In the past year, we have
integrated and optimized our strategy modules, improved decision-making effi-
ciency, and added multiple sets of tactics.

10 Z. Wu et al.

Fig. 8. Improved Strategy Module

In the past, our strategy module had a large number of repeated decisions,
which were distributed at different decision-making levels. This greatly reduced
the efficiency of our decision-making and made the actions that our robot should
have insisted on executing inconsistently. To address the issue, we reorganized
our strategy module, optimized our hierarchical decision-making framework us-
ing the idea of hierarchical control systems, and used the decision tree structure
in it to avoid repeated decision-making. We tried to organize the paths between
the three levels of our strategy framework so that the three levels only partic-
ipate in their own decision-making tasks and pass their decision results to the
adjacent levels.

As shown in Fig.8, the top layer, global planning layer takes the global vision
and referee box as input, sequentially judges attack and defense state of the
match and generates responsive decisions. This layer also considers three special
tactics according to the situation on the field to adapt to different opponents. At
the same time, since the first layer needs to run at the same frequency of 74 Hz
as the visual information, the calculations in it are accelerated by CUDA parallel
computing. Individual decision making layer, the second layer, takes the attack
and defense decision as input, generates the action decision for a single robot as a
skill, the skill includes a continuous sequence of actions, including shooting, chip,
flat passe, and dribbling. These actions are organized in the form of decision trees
and have state retention mechanism according to the situation. The bottom layer
is named as Multi-robot execution layer, it receives the multi-robot execution
information of the first level and the skill information registered to lua of the
second level, and implements multi-robot execution to play a match through
multi-state switching, team task allocation, and dynamic roles matching.

ZJUNlict Extended Team Description Paper SSL 2025 11

In general, the new strategy module makes decisions more efficient because
the paths between levels are clearer and duplicate decisions are avoided. The
addition of multiple tactics in the global planning level improves our ability to
respond to different game situations.

3.5 CUDA Module

CUDA module is an important module in our software module, the passing
point, the dribbling point and other important information that describe the
situation in match used in our strategy are calculated by CUDA in parallel. Due
to frequent and unreasonable calls to CUDA modules in the past, our CUDA
module often causes frame rate drops and misses some important passing points,
thus we improved the call mode of our software CUDA module.

Fig. 9. Improved CUDA Module

In the past, the CUDA module was not reasonable enough to calculate the
information points calculated by CUDA, such as passing points and passing
modes. This is because some regular information does not need to be calculated
and updated in real time, such as a passing point in a period. On the contrary,
they need to be calculated at a certain frequency and have a certain state reten-
tion mechanism to ensure that the robot can persist in performing this task in
a short period of time and avoid confusion between the task and the state due
to the frequent switching of passing points. For example, our ball-carrying robot
should insist within five seconds that it needs to pass the ball to a certain point.
The five-second pass point state holding time is used for the robot to complete
this action. Different from the regular tasks above, when the ball-carrying car
turns around towards the passing point within five seconds, due to the speed
generated by the rotation, the ball-carrying car should calculate in real time the
landing point of the ball in the current state, and whether teammates can catch
the ball at its landing point. These considerations are called direct actions (di-
rect pass and direct shoot) by us, it should be calculated in real time as they are
changed significantly every second and therefore we should judge their feasibility
with high frequency in our CUDA module.

To address this issue, we changed the CUDA module to a hierarchical two-
call mode, as shown in Fig.9. The usual tasks organized into a skill decision

12 Z. Wu et al.

tree: dribble, break, shoot, pass are obtained by the first periodic low-frequency
CUDA call, accompanied by a state-holding mechanism.

When executing a task in the state decision tree, if the robot is rotating,
which means that the angle of the kick and the angular velocity of the kicking
ball are constantly changing, we will make a second high-frequency real-time call
of CUDA to search for whether the ball can be kicked directly at the current
moment in real time, so as to form a direct pass and direct shot, and improve
the efficiency of the robot in kicking the ball.

References

1. Miyajima D, Naito K, Mitsuda H, et al. KIKS Extended Team Description for
RoboCup 2023[J].

2. Ommer, N., Ryll, A., Geiger, M.: TIGERs Mannheim - Extended Team Description
for RoboCup 2022 (2022)

3. Huang Z, Han C, Shen N, et al. ZJUNlict Extended Team Description Paper[J].
4. Huang Z, Chen L, Li J, et al. ZJUNlict extended team description paper for

RoboCup 2019[J]. arXiv preprint arXiv:1905.09157, 2019.

