
2025 Team Description Paper: UBC Thunderbots

Abraham Bahramic, Ahmad Abousalehd, Alanna Yipf , Alex Shenf , Amtoj
Sidhua, Arun Balamuralib, Avi Guhad, Clint Leec, Defne Sametogluc, Enoch

Chiuf , Gilbert Foof , James Coffind, Justin Jungf , Lauren Cheea, Leah Songc,
Lucie Lif , Miguel Rillerac, Paul Zhoua, Raiaan Khana, Ryan Nedjabatc, Suchir
Srivastavac, Swarna Rajac, Tara Kongd, Thomas Frewa, Tiffany Yangf , Vera

Koc, Will Grelliere, William Hac, Yichen Zhoua, Youssef Elhagrasyd

Departments of: (a) Mechanical Engineering, (b) Computer Science, (c) Electrical
and Computer Engineering, (d) Engineering Physics, (e) Integrated Engineering,

(f) Applied Science,
The University of British Columbia

Vancouver, BC, Canada
www.ubcthunderbots.ca

robocup@ece.ubc.ca

Abstract. This TDP details design improvements and innovations UBC
Thunderbots has made in preparation for RoboCup 2025 in Salvador,
Brazil. The team’s primary goal was to investigate and resolve issues
surrounding our motor driver and power board system in the newest
generation of robots used at RoboCup 2024. The secondary goal was to
innovate on previous systems in these robots for design efficiency and
usability. We are also redesigning the mechanics of our drivetrain sys-
tem, which has been unchanged for the past 3 years - with a plan to
shift to direct drive. We additionally describe the wide-ranging software
architecture improvements to robot software, motion planning, strategy
and planning, simulation, and visualization that were implemented since
RoboCup 2021.

Keywords: RoboCup 2025 · Small Size League · Robotic Soccer.

1 Introduction

UBC Thunderbots is an interdisciplinary team of undergraduate students at the
University of British Columbia. Established in 2006, it pursued its first compet-
itive initiative within the Small Size League at RoboCup 2009. The team has
consecutively competed in RoboCup from 2009 to 2024 and is currently seek-
ing qualification for RoboCup 2025. Over the past year, the team has tried a
variety of new solutions and upgrades in pursuit of the Division B title. This pa-
per details UBC Thunderbots’ new developments in mechanical, electrical, and
software systems to compete in RoboCup 2025.

2 Khan et al.

2 Mechanical

For 2024-2025, our mechanical team has focused on making improvements to our
previous robot design, including major upgrades to the drivetrain and the drib-
bler. We have also been improving our robots’ robustness and manufacturability
by optimizing several component designs, as detailed in the following sections.
Our most recent CAD model is shown below in Figure 1.

Fig. 1. Mechanical Top Level Assembly

2.1 New CAD Software

This year, our team underwent a significant transition by moving from Solid-
Works to OnShape, a cloud-native computer-aided design (CAD) software sys-
tem. Given that a substantial portion of our robot assembly required modifi-
cations to accommodate our new electrical stackup, we decided that this year
was an ideal opportunity to make this change. OnShape offers a free and user-
friendly cloud-based platform where multiple people can collaborate on the same
document in real time without the need to push changes such as with regular
PDM systems. The software can be accessed from any device without requiring
any downloading, making it convenient to modify parts on the go.

2.2 Drivetrain

This year, we moved away from our internal gear setup[1] to a direct drive,
offering us a compact design and better consistency. Our previous drivetrain
setup was also prone to have the omniwheel rollers fall off, as the copper wire
used to hold it together was difficult to keep in place.

2025 Team Description Paper: UBC Thunderbots 3

Omniwheels We decreased from 21 to 19 rollers in our new omniwheel design
(Figure 2), with each roller consisting of a bushing, rubber X-ring, and a dowel
pin. We opted to use X-rings over the traditional O-rings [1], due to their in-
creased surface area and contact with the ground. These qualities mean that
X-rings have improved traction and stability over O rings.

Fig. 2. New Drivetrain

From our design 2020 onwards,[1], the omniwheels were placed around a copper
wire, which was then secured between the wheel cover and wheel base. While
functional, this design made repair and disassembly very inefficient, as it required
removal of the entire omniwheel system each time and the rollers would get
displaced. This year, we replaced the copper wire with individual dowel pins for
each omniwheel. With this change, we are able to isolate each omniwheel for
easier removal and maintenance.

2.3 Dribbler Assembly

One of the bigger changes for our dribbler assembly is redesigning the sideplates
to create space for the breakbeam PCBs, which will now be placed directly on
the sides without the need for long wires that would often interfere with the
fast-spinning dribbler motor. The new PCB schematics for the breakbeam have
been discussed in Section 3.4.

Roller Our previous iterations of rollers were molded using polyurethane [2],
the process for which required a lot of PPE, was prone to failure, and was in-
credibly time-consuming, which slowed down the speed of prototyping iterations
of the design. Additionally, it was susceptible to tearing (especially the threads

4 Khan et al.

for centering) and required frequent replacements as the polyurethane hardens
over time. To address this, we explored 3-D printing the rollers instead with
TPU with a shore hardness of 60A1. Although challenging to print, teams that
have previously used this filament have seen success with its replicability and
robustness compared to polyurethane molds [3]. However, the threads previously
used for centering were foregone in favor of a smooth cylindrical roller due to the
filament’s tendency to shred with the threads on and its difficulty in printing.
Preliminary prototypes have shown promising results for the final product, but
further adjustments to print settings are still needed for consistent results.

2.4 Solenoid Winding Machine

The previous iterations of chipper and kicker solenoids were produced by man-
ual hand-winding of the magnetic coils. This led to inconsistent coil flux density
which had to be corrected for with software calibration for each robot separately.
In an effort to reduce this time consuming process and increase the uniformity
between robots, this ongoing project aims to create a machine capable of pro-
ducing custom solenoids. Previous attempts at building such a machine were
unsuccessful due to difficulty applying adequate tension to the wire since the
machine was largely made of 3-D printed components, which lacked the neces-
sary rigidity. Our new design is made from 20x20 T/V Slot Aluminum extrusion.
Figure 3 shows the CAD for our ongoing design. Two key features of this de-

Fig. 3. Solenoid Winding Machine

sign are the coil tensioning system and the adjustable wire feeder. The tensioner
works by tightening nuts on the spool holder bolt, squeezing the spool. The ad-
justable wire feeder can be moved in closer or farther from the solenoid to get
very close to the solenoid during winding such that wire cannot drift from its
1 Recreus Filaflex 60A

2025 Team Description Paper: UBC Thunderbots 5

intended location.

3 Electrical

3.1 Electrical System Overview

This year, the biggest project in our team was a complete overhaul of the electri-
cal subsystem. Many issues were arising with our past motor drivers, and after
observing our performance during RoboCup 2024, we decided that a redesign
was necessary. Another massive change from RoboCup 2024 was shifting from
the Jetson Nano to the Raspberry Pi 5 [4] for our main processing unit, requiring
further modifications to our boards. This year, we had to change almost all of
our electrical systems to accommodate both of these reasons. In addition, we
deprecated a lot of older systems that were not currently in use; these include
the geneva drive, radio, and CPU heartbeat.

3.2 Power Board

The flyback controller used the LT3751, which is now discontinued and caused
problems with overheating in the last competition. Currently, the flyback is be-
ing redesigned with the LT3750. The LT3750 and the LT3757 were both modeled
on LTSpice, and the LT3750 performed better, ramping to the necessary volt-
age faster and with a smaller transient. We continued to reiterate our design
with the LT3750 and optimized it for performance and speed. Another ma-
jor design change in our power boards was introducing isolation between the
high-voltage and low-voltage components, in order to reduce interference from
the high-current discharge circuits appearing in our low voltage signals; isolated
gate drivers and an isolated 24V-12V DC-DC converter were used to achieve this
isolation.

3.3 Motor Driver Board

The motor driver board is currently undergoing its two-year redesign cycle with
the aim to modularize the hardware into five separate boards. The previous
iteration of the motor driver board (MD V5) presented issues with price, solder-
ability, debugging, and overall complexity. With the latest version (MD V6), each
individual board will consist of its own power stage (inverter circuit), integrated
magnetic encoder, and current sensing circuits.

Power MOSFET Selection For MD V5, the NTTFD4D0N04HLTWG mos-
fet served as the power switch. Referring to Figure 5a, the mosfet possesses
the lowest overall loss. However, it has a high temperature rise during switch
mode operations, which incur power loss due to the positive thermal coefficient.
In addition, it is expensive to purchase. As a result, we selected the Infineon

6 Khan et al.

Fig. 4. High Voltage Measurement

OptiMOS-6 IAUC45N04S6 dual package power MOSFET to implement into the
power stage of the next iteration of the motor driver boards. As shown in Figure
5a and Figure 5b, the OptiMOS-6 has a comparable conduction loss to the NT-
TFD4D0N04HLTWG, but a lower temperature rise. This not only reduces power
loss, but also mitigates the potential for thermal runaway. The OptiMOS-6 is
four times cheaper compared to the NTTFD4D0N04HLTWG, which is ideal for
a student design team. From Figure 5a, it can be observed that the OptiMOS-6
has less switching and gate charge loss. This is crucial because it entails signifi-
cantly lower gate charge, which is a critical parameter in calculating the figure
of merit of a power mosfet (FoM). The FoM is determined by the product of the
RDS−on and Qg, and it represents the efficiency of a power mosfet in high-speed
switching applications.

FoM for OptiMOS = Qg ·RDS−on = 9 · 5.6 = 50.4nC ·mΩ

FoM for NTTFD4D0N04HLTWG = Qg ·RDS−on = 18 · 4.5 = 81.0nC ·mΩ

From the FoM calculations above, it can be seen that the FoM of the OptiMOS-6
is less than that of the NTTFD4D0N04HLTWG, which shows that the OptiMOS-
6 would sustain less overall loss during operation. The OptiMOS-6 is the most
optimal choice for a switch for the newest revision of the motor driver boards
due being highly efficient and cheap.

Current Sensing Circuit The layout complexity of MD V5 was substantially
increased due to each phase of every power stage possessing its own shunt resistor
for current sensing. To simplify the design, a single shunt resistor has been
allocated per power stage in MD V6, as shown in Figure 6.

2025 Team Description Paper: UBC Thunderbots 7

(a) MOSFET switch selection based on
conduction, switching, deadtime, and gate
charge loss

(b) Temperature rise of the MOSFETs

Fig. 5. MOSFET Selection

Fig. 6. MD V6 power stage with shunt resistor and DC link capacitor bank

However, illustrated in Figure 7, it can be observed that there is a long return
path for the current sensing signal for the half-bridge circuit furthest away from
the shunt resistor back to power ground (PGND). Thus, creating a large hot loop
between the power stage and DC link capacitor bank that induces a significant
amount of ringing. To address this issue, we plan to implement shunt resistors
for two of the three half-bridge circuits in the power stage. By doing so, this will
minimize the area of the hot loop, thereby reducing ringing. The trade-off to this
solution is that another differential op-amp circuit will need to be implemented
to read the voltage drop across the second shunt resistor, which would increase
area and complexity of the board.

3.4 Breakbeam Board

Breakbeam v2.0 We further enhanced our breakbeam design by removing one
IR LED as we found that 2 IR LEDs were redundant. Due to them causing
interference and accidentally triggering the breakbeam when the robot does not
possess a ball. We also changed resistor values to 10MΩs for optimal sensitivity.
We redesigned the board shape to connect the IR LED and Phototransistor

8 Khan et al.

Fig. 7. PCB layout of shunt resistor and DC link capacitor bank connected to
power stage on MD V6

PCB Boards to the main breakbeam board. This allows these longer PCBs to be
attached to the side of the dribbler which provides a shorter connection distance
and a more secure connection while also removing the need for wires running
down the side of the dribbler.

Fig. 8. New Breakbeam Design

3.5 IMU

The inertial measurement unit (IMU) takes measurements of the acceleration,
angular velocity and orientation during gameplay, to allow for accurate data to
be relayed to our software systems. This will be used in tandem with the camera
data in order to accurately and effectively plan the motion of our robots. The
IMU is located closer to the bottom of the robot’s center of gravity to minimize
the effect of rotational acceleration. This ensures that we have the most accurate
representation of the robot’s motion. We selected the LSM6DSL iNEMO Iner-
tial Module as our permanent implementation. Regarding design specifics, we
attached connectors and added test points to aid with future debugging.

3.6 Kick-speed Test Jig

We are developing a test jig to measure the speed of a kicked ball. This will
allow us to measure the performance of the robot’s kicker, allowing us to make
improvements as we see fit. The test jig is in the shape of an arch and consists
of 2 PCBs, mounted on its sides. The PCBs include an ESP32 microcontroller,

2025 Team Description Paper: UBC Thunderbots 9

IR emitters, and phototransistors. The ESP32 uses timers to save the times at
which the first and second IR emitter beams are broken and calculates the speed
using a set distance.

4 Software

All of our software and firmware is open source and available from our git repos-
itory: https://github.com/UBC-Thunderbots/Software.

4.1 Communication Latency

A key requirement for any RoboCup SSL team is low-latency communication
between the high-level control software and the 11 robots on the field. This
requirement is important because of the high speed of the robot in a constrained
space. High latencies impact the robot’s ability to follow its path and significantly
increases the risk of collisions.

Since RoboCup 2022, we have used 5 GHz WiFi as its main communication
medium. This choice offered significant advantages over 2.4 GHz radio commu-
nication, namely:

– An increase in the maximum payload size that could be carried in a single
network transaction. Generally, the Maximum Transmission Unit is deter-
mined by the frame size of the Ethernet layer, which is typically 1500 bytes.
In contrast, the NRF24L01 2.4 GHz radio transceiver [5]—a popular choice in
the league—supports a maximum payload of 24 bytes in a single transaction.
The increased payload size allows for more communication and diagnostics
from the robots.

– More maintainable and portable code. We can leverage the Linux socket
API to create portable transport code that works on various computers and
across both ethernet and WiFi networks, improving accessibility and reduc-
ing barriers for new members to work on robot testing.

– Less hardware maintenance. A 2.4 GHz radio solution necessitates a carefully
designed radio board with appropriate grounding and power specifications
as well as base station(s) for the host laptop. In addition, the ability to run
robots in a testing environment is limited by the number of working base
station modules and compatible USB-SPI drivers.

Despite these benefits, our team identified critical WiFi 5 GHz limitations during
SSL games. These included:

1. High packet latencies. The recorded packet round-trip times were as high as
100 ms in Robocup 2024.

2. High packet loss. The packet loss recorded was as high as 20% in Robocup
2024.

https://github.com/UBC-Thunderbots/Software

10 Khan et al.

3. Network congestion in a venue environment. Due to the crowded venue and
the presence of unrestricted WiFi hotspots, the crowded signal environment
at RoboCup appears to lead to poorer WiFi performance.

This year, we have tested various factors that could impact WiFi latency to
improve its reliability in games.

Test Setup The following tests present the results of a host computer directly
connected over Ethernet to the router and a single robot with a Raspberry Pi
5 3 m away from the router connected via WiFi. The primary node running on
the host computer synchronously sends 200 1000-byte payloads using UDP to
the robot. Once the secondary node running on the robot receives the packet, it
immediately sends it back to the primary node. Then, the primary node records
the round trip time once it receives the response or restarts transmission in the
event of a timeout. Both primary and secondary nodes are implemented in C++
through the boost::socket API.

Factors The team studied the following factors in overall WiFi performance:

– AC wall power compared to DC batteries

– The use of external WiFi cards instead of the onboard option.

– WiFi 5 and WiFi 6E GHz

– Multicast and unicast communication

Power The team did not observe significant differences in WiFi performance
when the robot was powered through the AC wall adapter or DC batteries.
We expected that the power demands of the Raspberry Pi 5 as well as other
robot components would cause a degradation in the performance of the WiFi
cards due to possible power instability when using DC batteries. Surprisingly, we
encountered occasional performance degradation regardless of the power source;
These degradations were marked by sporadic bursts of 100-ms round-trip times.
The team strongly suspects that the Linux network power management behavior
is at fault. On both Jetson Nano and Raspberry Pi 5 embedded hosts, disabling
wifi.powersave seem to have eliminated these round-trip time spikes.

On-board WiFi and external WiFi Next, the team compared WiFi perfor-
mance with the Infineon CYW43455 WiFi 5 card onboard and an Intel AX210
WiFi 6 card connected via the PCIe interconnect to a M.2 adapter HAT. The
Infineon chip only supports 2.4 GHz and 5 GHz bands while the AX210 supports
2.4 GHz, 5 GHz and 6 GHz bands. As seen in Figure 9, the team was unable
to find a statistically significant difference in performance between the onboard
card and the external card.

2025 Team Description Paper: UBC Thunderbots 11

WiFi 5 and WiFi 6E The main advantage offered by the Intel AX210 card
over the onboard Infineon CYW43455 WiFi 5 is the expanded access to 6 GHz
networks. In an evaluation of WiFi 6E in industrial contexts, Rong [6] describes
how the reliability of a multi-robot latency-sensitive application declines with
the number of robots on the network. In simulations, Rong shows that WiFi
6E offers improved reliability for multi-robot scenarios, achieving 90% reliability
for a system with 24 robots with a 20 ms traffic periodicity with WiFi 6E while
only achieving the same reliability with 18 robots using WiFi 5. However, Figure
9 shows that in our test environment, performance on the 6 GHz network was
similar to 5 GHz, but with a much larger performance variance. Nevertheless,
the team’s test environment does not simulate venue conditions well; The com-
petition environment is densely populated with many devices contributing to
WiFi congestion. In this environment, the relatively lower WiFi 6 adoption and
larger 6 GHz spectrum available may be key for delivering low-latency commu-
nication. As such, the team plans on continuing to test both WiFi 5 and WiFi
6E in Robocup 2025 before making any conclusions.

Multicast and unicast Finally, the team considered the effect of networking
architecture of latency. IP multicast is a one-to-many architecture that allows
a single node to send a message to all nodes who have chosen to join that
membership group. This architecture is an elegant solution to manage robots
and computers on the network without needing to share IP addresses; On boot,
robots join the multicast group on boot and will receive control messages. Mean-
while, interested computers will join the multicast group to receive diagnostics
and error logs from the robots. In contrast, unicast is a one-to-one architecture
where any two nodes directly communicate with each other using each other’s
IP addresses. This architecture requires both nodes to know each other’s IP
addresses.

Since moving to WiFi communication, we have exclusively used multicast to
communicate with robots. However, RFC 9119 [7] advises against using mul-
ticast over WiFi. In essence, multicast over WiFi may be sent at a lower rate
to maximize the likelihood of all nodes on the network receiving the packet
while unicast may offer up to three orders of magnitude improvement over mul-
ticast/broadcast because the router can transmit at a higher transmission rate
to capable receivers while technologies such as Multiple Input Multiple Output
(MIMO) can be more effectively used.

In our tests, we have found that the WiFi architecture does make a significant
difference reducing round-trip time latencies. On average, it resulted in a 24%
improvement in round-trip times across the chipset and the WiFi 5/6E spectrum.
As a result of this finding, we have adopted a unicast-based communication
architecture for control messages and diagnostics logs with a low-rate, low-data
multicast background rountine to facilitate automatic IP discovery between the
robot and control node.

12 Khan et al.

Fig. 9. The WiFi round-trip times of the onboard Infineon CYW3455 chip is
similar to the external AX210 card, regardless of whether the AX210 chip was
connected to a 5 GHz or 6 GHz network. This test leverages multicast communi-
cation with a stationary single robot under a load on the four wheel motors and
dribbler motor and averages across three trials with the error bars highlighting
the 95% confidence interval.

In Robocup 2025, we look forward to testing our efforts in low-latency WiFi
communication.

4.2 Skill-Based Reinforcement Learning

For the past decade, our team has used the Skill, Tactics, Plays (STP) framework
[8] to implement our AI. Our rule-based STP system, while easy to understand
and control, often struggles to adapt dynamically to the unpredictability of a
fast-paced soccer environment. This year, we experimented with introducing
reinforcement learning (RL) into our AI, with the aim to explore a wider variety
of gameplay behaviours and enable our AI to intelligently react to a diverse
range of scenarios.

Background Reinforcement learning is an area of machine learning concerned
with teaching agents how they should optimally behave in a dynamic environ-

2025 Team Description Paper: UBC Thunderbots 13

Fig. 10. The round-trip times regardless of the chipset and bands decline when
using unicast-based communication when compared to multicast. On average,
there appears to be a 24.4% improvement in our testing conditions.

ment. Agents learn this optimal behaviour by interacting with the environment
through trial and error and by receiving rewards as feedback.

We formalize the RL problem as a Markov decision process (MDP), which is
defined by a tuple (S,A, P,R) with state space S, action space A, transition
probability function P (s, a, s′), and reward function R(s, a, s′). At each time
step t, the agent receives the current state st ∈ S from the environment and
responds by taking some action at ∈ A. The environment then transitions into
a new state st+1 ∈ S with probability P (st, at, st+1) and awards an immediate
reward rt given by R(st, at, st+1).

The agent selects actions following a policy π(s) that defines a probability dis-
tribution on A for each state. The goal of the agent is to find an optimal policy
π∗ which maximizes the expected return—the cumulative, discounted reward
over all time steps—defined as R =

∑∞
t=0 γ

trt where γ ∈ [0, 1] is the discount
factor.

Q-learning is a popular reinforcement learning algorithm used to learn the opti-
mal policy π∗ via a function Q(s, a) which estimates the expected return for tak-
ing action a in state s. The optimal Q∗ satisfies the Bellman equation [9]:

14 Khan et al.

Q∗(st, at) = Est+1

[
rt + γmax

at+1

Q∗(st+1, at+1)

∣∣∣∣ st, at]
To approximate Q∗, we train a deep neural network that takes input s and
outputs Q(s, a1), ..., Q(s, a|A|). The network is parameterized by θ and trained
with the loss function [10]:

L(θ) = E(st,at,rt,st+1)

[(
rt + γmax

at+1

Q(st+1, at+1; θ
−)−Q(st, at; θ)

)2
]
.

where θ− represents the parameters of a target network, which is updated
less frequently to stabilize learning. This network is called a deep Q-network
(DQN).

Setup In our AI, we designate the robot with possession of the ball as the
attacker. The attacker agent can execute a set of rudimentary skills (e.g. pass,
kick on goal, dribble away from enemies, etc.) and uses a DQN to select which
skill to execute given the current game state. We implement skills using hand-
crafted finite-state machines (FSMs) written with the [Boost::ext].SML C++
library [11]. A skill FSM instructs a robot how to move and execute the skill
using rule-based and heuristic-based algorithms. The remaining robots on the
team are controlled by existing Tactics [12] implemented in our AI for offensive
positioning and receiving passes.

We use PyTorch [13] to implement our attacker DQN. We extend our DQN with
prioritized experience replay [14] to improve sampling efficiency. For the training
environment, we use a modified version of ER Force’s SSL Simulator [15] with
TIGERs AutoRef [16]. We represent the state of the game as a 57-dimensional
vector summarizing the ball position and velocity; coordinates, orientations, and
velocities of all the robots; the current attacker robot; and the referee state
(yellow cards, red cards, time remaining, etc.). We use a simple reward function
that awards a +1 reward when a goal is scored, a −1 penalty when a goal
is conceded, and a small positive reward that scales proportionally with the
distance the ball travels towards the enemy goal, measured using the position of
the ball before and after each skill is executed.

Experimental Results As a small-scale inquiry, we trained with self-play for
10,000 steps. The agent followed an ϵ-greedy policy with ϵ annealing during
training.

2025 Team Description Paper: UBC Thunderbots 15

Fig. 11. Average reward awarded to the attacker agent per episode during train-
ing.

Our DQN attacker agent demonstrates promising results and some emergent
strategic behaviour. As a benchmark, we played our DQN agent against our
rule-based AI, and the DQN agent managed to consistently beat our rule-based
AI across three repetitions of the experiment. We will continue to evaluate and
improve the performance of our RL agent with more training time and enhance-
ments to the DQN algorithm.

5 Conclusion

We believe that the design changes detailed above will lead to significant im-
provements in performance. We look forward to implementing these designs at
RoboCup 2025.

6 Acknowledgements

We would like to thank our sponsors as well as the University of British Columbia,
namely the Faculty of Applied Science and the departments of Math, Mechani-
cal Engineering, Electrical and Computer Engineering, Integrated Engineering,
Manufacturing Engineering, and Materials Engineering. Without their support,
developing our robots and competing at RoboCup would not be possible.

16 Khan et al.

References
1. P. Dumitru, G. Ellis, J. Fink, B. Hers, J. Lew, M. MacDougall, E. Morcom, S. H.,

C. Sousa, W. Van Dam, G. Whyte, L. Zhang, S. Zheng, and Y. Zhou, “2020 Team
Description Paper: UBC Thunderbots,” 2020.

2. A. Senthilkumar, A. Sidhu, A. Balamurali, D. Sturn, D. Antoniuk, D. To, F. Muh-
staq, F. Crema, H. Bryant, H. Rovner, J. Lew, K. Wakaba, N. Zareian, O. Levy,
R. Khan, R. Cao, R. Nedjabat, T. Kong, S. Ajmal, S. Ly, and Y. Zhou, “2023 Team
Description Paper: UBC Thunderbots,” 2023.

3. N. Ommer, A. Ryll, M. Ratzel, and M. Geiger, “Extended Team Description for
RoboCup 2024,” 2024.

4. A. Abousaleh, A. Balamurali, B. Blair, R. Cao, M. Charara, L. Chee, J. Cof-
fin, J. Guo, W. Ha, F. Haas, T. Kong, R. Khan, C. Lee, O. Levy, R. Nedjabat,
M. Phung, A. Sidhu, D. Sturn, M. Tong, B. Vasilchikov, K. Wakaba, N. Zareian,
S. Banna, P. Zhou, and Y. Zhou, “2024 Team Description Paper: UBC Thunder-
bots,” 2024.

5. nRF24L01 Single Chip 2.4 GHz Transceiver Product Specification, 2007.
6. W. Rong, Wi-Fi 6E Performance Evaluation in Industrial Scenarios. PhD thesis,

KTH Royal Institute of Technology, 2021.
7. C. E. Perkins, M. McBride, D. Stanley, W. A. Kumari, and J.-C. Zúñiga, “Multicast

Considerations over IEEE 802 Wireless Media.” RFC 9119, Oct. 2021.
8. B. Browning, J. Bruce, and M. Veloso, “Stp: Skills, tactics, and plays for multi-robot

control in adversarial environments,” Proceedings of the Institution of Mechanical
Engineers, Part I: Journal of Systems and Control Engineering, vol. 219, no. 1,
p. 33–52, 2006.

9. R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. The MIT
Press, second ed., 2018.

10. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” 2013.

11. K. Jusiak, “boost-ext/sml.” https://github.com/boost-ext/sml, 2021.
12. A. Almoallim, C. Sousa, D. Sturn, D. Antoniuk, F. Crema, H. Bryant, J. Lew,

J. Liu, K. Wakaba, L. Bontkes, and Y. Zhou, “2022 Team Description Paper: UBC
Thunderbots,” 2022.

13. J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky, B. Bao, P. Bell,
D. Berard, E. Burovski, G. Chauhan, A. Chourdia, W. Constable, A. Desmai-
son, Z. DeVito, E. Ellison, W. Feng, J. Gong, M. Gschwind, B. Hirsh, S. Huang,
K. Kalambarkar, L. Kirsch, M. Lazos, M. Lezcano, Y. Liang, J. Liang, Y. Lu,
C. Luk, B. Maher, Y. Pan, C. Puhrsch, M. Reso, M. Saroufim, M. Y. Siraichi,
H. Suk, M. Suo, P. Tillet, E. Wang, X. Wang, W. Wen, S. Zhang, X. Zhao, K. Zhou,
R. Zou, A. Mathews, G. Chanan, P. Wu, and S. Chintala, “PyTorch 2: Faster Ma-
chine Learning Through Dynamic Python Bytecode Transformation and Graph
Compilation,” in 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2 (ASPLOS ’24), ACM,
Apr. 2024.

14. T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,”
2015.

15. P. Bergmann, T. Engelhardt, T. Heineken, V. Hopf, M. Schmid, M. Schmidt,
F. Schofer, K. Schuh, and M. Stadler, “Er-force 2022 extended team description
paper,” 2022.

16. L. Magel, “Development of an autonomous referee software for the small size
league,” 2016.

https://github.com/boost-ext/sml

	2025 Team Description Paper: UBC Thunderbots

