
TurtleRabbit 2025 SSL Team Description Paper

Linh Trinh1⋆, Alif Anzuman1, Prasiddha Dhakal1, Aubrey Gamboa1, Lisa
Graf 2 , Darpan Gurung1, Tharunimm Jamal1, Austin Mckinder1, Adharshni
Mohanbabu1, Jason Ng1, Ali Essam Oun1, Tilman Rosenlicht2, Wing Lam

Tsang1, Thant Synn Win1, and Oliver Obst1

1 Cognitive robotics lab, Western Sydney University, Penrith NSW 2751, Australia
2 Neurorobotics lab, University of Freiburg, Germany
Corresponding author: o.obst@westernsydney.edu.au

https://www.turtlerabbit.org

Abstract. This team description paper describes the design and develop-
ment of the TurtleRabbit 2025 RoboCup SSL team, building on our 2024
experience. We introduce a new chip kicker design and enhancements
to our straight kicker to improve power and consistency, while following
our cost-effective, open-source approach. Our hardware setup employs
off-the-shelf components, including BLDC drone motors and off-the-shelf
controllers, all integrated within a chassis milled from aluminium that
also acts as a heat sink. We are working on improvements to the drib-
bler system and incorporated an on-board camera for ball detection. On
the software side, we explore multi-agent reinforcement learning and
implement a Voronoi-based path planning strategy to navigate dynamic
environments more efficiently.
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1 Introduction

For the TurtleRabbit 2025 RoboCup SSL team, we have addressed some of the
challenges of our 2024 team [11]. Our overall strategy remains to create a simple
and cost-effective design by utilising readily available electronic components and
accessible manufacturing techniques, including 3D printing and CNC milling.

For 2025, we introduce a new chip kicker design that our robots previously
lacked. Together with this new development, we also have improved perfor-
mance and consistency of our straight kicker. In addition, our initial explorations
into reinforcement learning are beginning to inform robot control and strategic
decision-making. The following sections outline our updated hardware compo-
nents, the integration of new control mechanisms, and the evolution of our
software architecture. As in the previous year, our hardware design is open
source.
⋆ Authorship: team lead first, contributors in alphabetical order, academic lead last.
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2 Hardware recap and revision

Our overall hardware setup has been described in detail in [11]. We provide
a brief summary below: the TurtleRabbit robots use Tarot 4008 BLDC drone
motors inside omni-wheels with a 3D-printed core (PETG) and aluminium covers
(6061-T6) on either side. Each of the 30 subwheels comprises two flanged ball
bearings (2 mm ×5 mm×2.5 mm) with NBR X-rings on each bearing.

The motor controller is an MJBots moteus-r4 board [7], unchanged from last
year’s setup. It employs three-phase FOC-based control and can be operated via
a CAN bus interface. For position feedback from the BLDC motors, we use a
diametrically magnetised magnet glued to the secondary (rear) shaft of the motors.
The encoder is integrated into the controller board, which requires mounting
the boards vertically behind the wheels. This design choice also influences the
main structure of the chassis, with the aluminium motor mounts securing the
controller on the opposite side and connecting the base plate to the midlevel
plate. This structure additionally functions as a heat sink for the motors.

The motor controllers are powered from a distribution board that safely
pre-charges high capacitance loads (MJBots power dist r4.x), and the on-board
Raspberry Pi 4b is paired with a MJBot pi3hat that provides 5 independent
CAN-FD interfaces. For our kickers and the dribbler, we use an Arduino Every
as a controller, with a drone ESC (20 A XRotor) for the dribbler motor. The
robot is powered using a 6S1P lithium polymer battery. Our 2024 robots used
an off-the-shelf push-pull solenoid powered using a boost converter as a straight
kick device. While functional, this kicker is not particularly strong, and one of
the components we investigated for improvement in our 2025 version.

A more detailed table with components and approximate prices can be found
in our 2024 team description [11]. In (US) dollar terms, overall costs to build our
robot have decreased from last year, e.g., the moteus-r4 board is now listed for
59 USD (down from 75 USD in 2024), making the build more affordable.

3 Hardware development

The main development in our hardware is a combined kicker / chip-kicker. We
are also still working on improvements to our dribbler, as well as an on-board
camera for ball detection.

To utilise the space between the front wheels of the robot and to build a
better kicker, including a chip-kicker, we followed the approach of RoboTeam
Twente [5] and designed custom solenoids.

3.1 Chip-Kicker Design

Previously, our robots could only kick the ball in a straight line without any
acceleration in the z-direction. This year we have added a chip kicker that can
accelerate the ball in the z-direction, allowing it to kick over obstacles. Our design
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Fig. 1. Left: Base plate with the front wheel groups including motor mount and
controllers. The front wheel angle is 60 degrees to increase the space for kicker and
dribbler. Right top: A render of the two level kicker device, shown without the wire
windings, and the straight (top) kicker without the frame for the windings. Right
bottom: Render of the base plate with the new kicker, with the left front wheel group
removed.

combines both types of kicker in a single housing. We have also improved the
power behind straight kicks, which previously tended to decrease over time.

Our requirements were as follows: The chip kicker should produce enough
power to kick over at least one robot; it should be controllable by our on-board
Arduino and work with the available power source (6S LiPo, nominal 22.2 V). As
in the RoboTeam Twente [5] approach, we are using two rectangular solenoids
stacked on top of each other.

Our aim was to fit the new kicker into our existing design, with the base plate
and wheel setup providing the main constraints (see Fig. 1). Our prototype was
constructed using mild steel as the kicker core, with 3D printing used to create a
frame for the enamelled wire windings (0.5 mm wire). The steel was cut using
waterjetting, while the front extension of the plunger was milled from 6061-T6
aluminium.

The height and distance of the chip kick were measured using a slow-motion
camera and a reference grid in the background. In the course of our experiments,
we systematically varied the voltage within the range of 120–220 V, using a
voltage booster integrated into the kicker circuit to achieve this adjustment. The
results of the experiments are shown in Figure 2. The results suggest that there
may be a linear relationship between voltage and kick distance/height. In the
experiments, we were able to kick the ball over up to six robots placed directly
next to each other in a line. So far, the kicker has only been tested attached to
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Fig. 2. Experimental results showing the relationship between the voltage and the kick
distance and height.

a stationary base plate. The next step will be to finalise the design and fully
integrate it into the robots.

3.2 Dribbler and ball detection

Our current dribbler is driven by a small BLDC motor (for RC cars), with an
ESC connected to the Arduino. We are currently experimenting with different
motors to determine a good speed / torque trade-off. With the current motor, we
achieve a high speed but also observe high wear on the (3D printed) nylon gears
(Nylon 6, Taulman Alloy 910). The dribbler motor with nylon gearing drives a
roller, 3D printed from TPU. We are currently testing different shapes and levels
of softness for the roller design.

To complement the dribbler system and improve overall ball interaction, we
have implemented an on-board camera for ball detection. The ball detection
system implemented with an onboard camera yields real-time position feedback
via OpenCV.

4 Software development

One main focus of our software development is to create an environment for
reinforcement learning experiments. Other aspects of our software development
are to address issues of our robots connecting and executing our strategy, as well
as components like ball detection and improvements to the path planning.

4.1 Reinforcement Learning

Multi-agent reinforcement learning (MARL) continues to be a dynamic area
of research, and the RoboCup Small Size League (SSL) provides an excellent
platform for experimentation. The SSL environment is well-suited for studying
MARL techniques because it allows unrestricted communication between all
robots, with each robot having access to the positions of all other robots, its own
position, and the position of the ball throughout the game. This setup facilitates
centralised training and execution, making it an ideal testbed for developing and
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Fig. 3. A simple Isaac Sim environment of the field with multiple robots and a ball.

testing MARL algorithms. We have conducted some initial experiments using
NVIDIA Isaac Sim [6] as well as MuJoCo [10]. Isaac Sim gives us the ability to
start with a high-level representation of the robot in a powerful physics engine
and later increase the robot’s complexity to reduce the sim-to-real gap. The
robots currently used in the simulation consist of a cylinder with the robot’s
dimensions and all the essential actions required in a real match (see Figure 3).
They can move around freely in all directions, turn on the spot, dribble the ball,
and kick the ball either straight or over other robots.

We decided to use Proximal Policy Optimisation (PPO) [8] as a starting point,
since it is already a widely used reinforcement learning algorithm in MARL for
both cooperative and competitive scenarios. We began with rather simple tasks
and then progressed to more complex problems. Initially, we trained a single
robot to perform tasks such as moving to specific positions in the environment,
approaching the ball, chasing a moving ball, and kicking the ball into the goal.
Some of our next goals include introducing more robots into the environment
and training them in an adversarial setting. Our ultimate aim is to train the
behaviour for an entire team of robots using reinforcement learning and then
apply it to the physical robots.

To break down this task of training a whole team strategy into more manage-
able steps, a simpler scenario is to implement the 3-vs-2 keepaway task that has
been successfully used for reinforcement learning in the RoboCup (2D) soccer
simulation league [9].

While learning an optimal overall strategy would be the most “automatic”
approach, the goal of an intermediate solution is to give us useful behaviours as
components that still allow us manually adjust the team strategy. A reinforcement
learning approach to legged (humanoid) robots has been described in [2]. The
similarities in the approaches are a multi-step approach towards learning the
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Fig. 4. A Voronoi diagram computed by our planner. The Voronoi edges are used only
as part of the path planning if obstacles are present on the initial part of the direct line
from the current position to the target.

overall behaviour. Importantly, a key difference is that the humanoid robots in [2]
use a single robot on each side. While the individual robots are more difficult
to control than the SSL robots, playing in the SSL requires the coordination of
multiple robots and complying with the rules of the game.

4.2 Path planning improvements

For our 2024 team, we employed a Probabilistic Roadmap (PRM) approach [3]
for path planning. One of the main advantages of this approach is its simplicity:
PRM uses a set of n random samples distributed across the soccer field to identify
collision-free paths between those points. However, to consistently achieve short
paths, many samples are required, which in turn increases processing times (see
also [4] for alternatives to random sampling). In dynamic environments requiring
frequent replanning, we found this approach to be too inefficient. We modified
our planning to adapt to a Voronoi-based approach, where the robots on the
field are used as the centroids of the Voronoi cells. The edges of the diagram
describe paths that are furthest away from obstacles. We use the Voronoi paths
only if the initial portion of the intended trajectory is obstructed, and employ a
direct connection otherwise (even if an obstacle appears later along the route).
This results in more efficient planning and shorter paths in a highly dynamic
environment. The fundamentals of this idea using a generalised Voronoi diagram
can be found in [1].

Figure 4 shows a screenshot of the paths planned for the robots to go to
different targets. The planning procedure is implemented in python (using
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Fig. 5. Robot-client Software Multiprocessing Flow Diagram

scipy.spatial for the Voronoi calculations), and takes 5–7 ms per step for
the team.

4.3 Software changes and improvements

Our robot controlling software (robot-client) has been developed in Python
and improved over the past year. The robot-client is responsible for responsive
behaviour of our robots. We use Python multiprocessing to run multiple processes
in parallel at the same time. An overview of the different operations within the
robot has been shown in Fig. 5.

We make use of multiprocessing to integrate our motor controllers operating
in asynchronous mode, receiving data packages via UDP, and making adjustments
to the motor velocities or executing other commands. To better cope with the
multiple operations, the Raspberry Pi4 had to be equipped with a better heatsink.

Networking One of the issues we faced participating in the 2024 competition
was related to the networking. We have addressed some of these issues by
implementing a more reliable, scripted control, setting initial static IP addresses,
and working on enhancing the backlog and troubleshooting functions. If the
robot-client does not receive any UDP messages over a short period of time (0.5 –
1 seconds), the robot stops and cancels its current operation.

5 Conclusion

We presented the continuing development of the TurtleRabbit 2025 RoboCup
SSL team. We introduced a chip kicker with enhanced performance compared
to our last year’s approach, and also ongoing work around dribbler and ball
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detection. On the software side, our experiments in reinforcement learning and
the implementation of a Voronoi-based path planner aim to result in a robust
strategy for our team. We are planning to test our approach during the 2025
Japan Open (funding permitting).
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