
SPbUnited TDP for RoboCup 2025

Alexandr Fradkov1,3, Sergey Filippov2, Alexandr Meshcheryakov2, Boris
Viktorov1,2, Iulia Merzlyakova2, Ilia Ustinov2, Vasilii Ivanov2, Mikhail

Lipkovich1,3, Yurii Glazov2, Arsenii Iarmolinski2, Saveliy Malyshev2, and
Semyon Medvedev2

1 Department of Theoretical Cybernetics, St. Petersburg State University, Russia
https://english.spbu.ru/

2 Presidential Lyceum of Physics and Mathematics 239, Russia
http://www.239.ru/

3 Institute for Problems of Mechanical Engineering (IPME), Russia
https://ipme.ru/

Abstract. This paper presents the SPbUnited Team Description Pa-
per (TDP) for RoboCup 2025, detailing significant advancements since
our previous participation under the name URoboRus. We highlight sig-
nificant hardware improvements, transition from MATLAB to Python,
which streamlined development workflows and improved system integra-
tion. The team’s architecture follows the strategy-bridge concept, en-
abling robust multi-threaded processes for data acquisition, decision-
making, and robot control. Key innovations include an enhanced role
assignment mechanism based on priority-driven selection metrics, a mod-
ular action composition framework for dynamic robot behavior, and an
optimized pass-finding algorithm utilizing the Nelder-Mead method for
efficient point evaluation. These developments collectively enhance our
team’s strategic flexibility and on-field performance, ensuring adaptabil-
ity to diverse match scenarios.

Keywords: RoboCup SSL, multi-agent systems, robot behavior management,
role assignment, pass optimization, architecture, Nelder-Mead method, Python
robotics development.

1 Introduction

SPbUnited is a team participating in the RoboCup Small Size League. We pre-
viously compete under the name URoboRus, but due participants changes we
decided to rename our team to SPbUnited in 2023. Although we haven’t par-
ticipated in the world stage of RoboCup competition yet (only in online one),
we attended the RoboCup Brazil Open three times and achieved second place
in 2024. This paper presents our recent developments in hardware and software.
It focuses on improved robot behavior, optimized passing strategies, and system
architecture enhancements.

2 Hardware

Our team still uses the same hardware described in the previous TDP [1], though
several significant modifications have been made mainly to improve ball handling
capabilities. The rest of changes were aimed at improving stability of the robots.

Overall specifications of our current robots are given in a table 1.

Table 1. Robot parameters

Design version 2024

Robot dimensions �179.5 x 148 mm

Robot weight (with battery) 3.8 kg

Drive motors Maxon EC 45 flat, 50 W, 400106

Drive gear ratio 18:60

Wheel dimensions �57 mm

Dribbler motor Maxon EC-max 22, 25 W, 283856

Dribbler gear ratio 50:30

Dribbler roller dimensions �17 X 78 mm

Kicker chip, straight kick

Kicker energy 59 J (250 V, 1880 µF)

Battery 7S, 3 Ah, with BMS, avg. 25.9 V

Motor drivers Custom BLDC driver

Microcontroller STM32F429

Radio Control - NRF24L01, telemetry - ATSAMR30M18

Sensors Encoders, Hall sensors, IMU, ball presence sensor

2.1 Dribbler

During previous competitions our robot‘s dribbling capabilities were poor and
inconsistent. 2022 design of the dribbler was highly dependent on a number of
fine adjustments since it worked as unstable 2-touch-point model described in
ZJUNlict‘s 2019 TDP [6]. Without correct tuning for specific ball and carpet
surface dribbler would not hold ball properly oscillating between locked and
ejected ball states. Also material used for dribbler rollers had very low wear
resistance, producing a lot of rubber shavings during it‘s operation. For the new
version of dribbler we set following requirements:

– Fit inside existing robots
– Eliminate need for the accurate tuning
– Improved wear resistance
– Automatic ball-centering, since ball kicked from the side of the dribbler has

unpredictable trajectory
– Improved pass catching

We performed a lot of tests varying both dribbler geometry and roller ma-
terial trying to achieve periodical dynamic steady state between 2-touch-point

2

and 3-touch-point models described in [6], as 3-touch-point model seems more
stable and controllable. But considering tightly packed elements of robot around
the dribbler we could not get 3-touch-point model to work, so we stayed with
the 2-touch-point model.

First of all, to prevent ball from locking between the roller and the ground
we switched material of the roller to the harder one with a smaller coefficient
of friction. Than we were able to minimize ball vibrations absorbing them with
dribbler by giving it more small-range freedom of movement (we increased play
in the dribbler axle to several millimeters).

Furthermore we designed roller with highly flexible spiral ridges. Such flexible
ridges combine advantages of extremely soft roller material (see fig. 1) (absorp-
tion of small ball vibrations that could not be absorbed by the dribbler itself due
to it‘s high inertia) with advantages of harder materials (higher wear resistance).

Fig. 1. Testing of different forms variations and materials

By giving flexible ridges spiral form we were able to use them as automatic
ball-centering mechanism. Also in our test flexible ridges were able to produce
significantly more lateral force to the ball compared to the hard groves typically
seen in roller designs. Apart of spiral ridges new roller has central grove to
provide as much holding force to the centered ball as possible.

Final design (see fig. 2) of our dribbler has enough holding and centering
force to allow lateral and turning movements with the ball at lower speeds even
with open loop motor speed controller.

3

Fig. 2. Old version of dribbler on the right and redesigned on the left

2.2 Ball damper

To improve pass catching we designed additional ball damper (see fig. 3) that
was thought to absorb kinetic energy of the ball. But during tests we found
out that majority of kinetic energy is absorbed by dribbler‘s damper and not
this device, making it almost useless. Though overall pass catching have been
improved a lot.

Fig. 3. Ball damper

4

2.3 Kicker

Also in our 2024 robots design kicker schematics and mechanics have been im-
proved a lot. First of all kicker charger voltage have been risen from 150 volts
to 250 volts to make faster kicks. This change resulted in a lot of stress on a
number of kicker parts. So we had to redesign them accounting to the higher
stresses. For example new chip kicker‘s shovel is made from the steel instead of
aluminum.

Also during development of passes between our robots we experienced the
need to quickly discharge capacitors to adjust kick strength. Discharge resistors
originally placed at the kicker PCB were miscalculated in terms of dissipated
power and have failed during first discharges, but this was not a problem until
active development of passes have began. So in the current version of robots
additional 25 W 25 Ohm resistors are added to fully discharge kicker capacitors
within a second.

Fig. 4. Discharge resistor bolted to the aluminum plate and connected to the kicker
PCB

To improve power dissipation this resistor are bolted directly to massive
aluminum bottom plate of robot which acts like a huge radiator. With this
setup we are able to constantly perform charge-discharge cycle during a game
without overheating anything.

2.4 Battery

Battery packs also have been redesigned due to ware and tear. Previous version
of batteries were built on Texas Instruments’ bq40z80 AFE and experienced lots
of issues with last cell due to chip bug. New version uses BQ7693000DBT which
monitors all cells correctly. All necessary safety protections like reverse polarity,
cell over/under voltage were also been implemented on upgraded boards.

5

3 Motion control

Till these year we controlled robot only using velocities, but we had a lot of
problems with angle. Mostly it was in two situations: 1) When robot needed high
precision to kick, 2) When robot had to dramatically increase his linear velocities,
it usually couldn’t handle his desired angle. We decided to use a gyroscope as a
solution to these problems. To calculate angle, robot integrates angular velocity
that was given by gyroscope. Then it used the difference between desired angle
and calculated as error for PD regulator. To minimize error of calculation we
send the desired angle transition and when robot get it he resets his calculated
angle to zero. This approach showed a great results in test and real competition.
Another problem is that angle transition value can be bigger than byte, so we
decided to convert it instead of using two bytes to minimize size of message.
Also, we wanted to have more accuracy when sending small values, because it
was needed for precise shooting. To meet our requirements we use this function:

f(x) = 10

(
exp

(
|x| · ln(19)

127

)
− 1

)
· sign(x) · π

180

4 Software

4.1 General Code Structure

Since the previous TDP [1], the most significant change is transition from using
MatLab for high-level coding to Python, which has facilitated the integration of
new team members and opened up a range of modern libraries and tools.

The architecture of our system is based on the strategy-bridge concept [1].
Several key processes run concurrently and communicate as needed. For instance,
one dedicated process collects and processes data from SSL-Vision, while another
sends commands to the robots. The most innovative aspects of our architecture,
however, are the decision-making process and the ”pass-finding” process. (Fig.
5)

6

Fig. 5. Thread interactions and inter-process communications.

4.2 Role Assignment and Behavior Management for Robots

In our system, robots are assigned specific roles such as wall defender, pass
defender, pass receiver, etc. Each role is characterized by three key components:
role priority, a selection metric to determine the most suitable robot, and
role-specific behavior.

Role Priority Roles are assigned based on their priority levels. The selection
process is as follows:

– All available robots are evaluated.
– The role with the highest priority selects the most suitable robot according

to its specific metric.
– Subsequent roles select from the remaining robots until all roles are filled.

This ensures that critical roles are filled first, maximizing overall team efficiency.

Selection Metric The selection metric evaluates how suitable a robot is for
a specific role. In simple cases, it is based on the distance the robot must
travel to reach its designated position. For example:

– A wall defender is selected based on the distance between the robot and the
wall formation point, with preference given to the closest robot.

7

Role Behavior Role behavior defines the actions a robot performs once as-
signed. In most cases, the behavior involves navigating to a designated target
point.

– For example, the defensive wall’s position remains constant regardless of
which robot is assigned.

Single Strategy Iteration Process Each strategy iteration involves the fol-
lowing steps:

– Role Determination: The system identifies the required roles based on
the current field situation.

– Metric Calculation: Key points relevant to each role’s selection metric are
computed (e.g., the ideal position for a defensive wall).

– Robot Assignment: Roles are assigned in order of priority, with the most
suitable robot selected for each role.

– Behavior Computation: After assignment, the system computes the be-
havior for each robot. In some cases, behaviors are interdependent:

• For instance, ”pass interceptors” coordinate to evenly distribute coverage
of threatening opponents.

4.3 Actions

The assigned role only tells what to do, but it doesn’t tell how to do it.
”Actions” are used to control the movement of robots at a high level.
Action is a function that accepts the state of the game (position of the

robots and ball on the field, a command from referee, etc.), as well as current
instructions for robots (speeds, voltage, etc.). This function also has a scope of
definition (for example, obstacle avoidance is an action whose scope of definition
is to find an obstacle in its path). The main point is the ability to compose
Actions. For example, to kick a ball, no additional behavior needs to be described.
There are separately implemented Actions (possibly also being a composition of
others). Using them, kicking the ball is literally described as: go to the ball, grab
the ball, avoid obstacles, hit the ball. Each subsequent action in the chain can
overwrite the commands of the previous one, if it needs to.

4.4 Pass Finding

Finding positions from which to score is essential for creating a dynamic and var-
ied game. To address this, our team initially explored standard methods to avoid
overloading our system. Although we considered implementing neural networks,
we opted for a more straightforward approach.

We established criteria to evaluate the ”quality” of a point, taking into ac-
count factors such as positions of opposing robots, possibility of a subsequent
kick, etc.

8

Fig. 6. Heat maps. red indicates ”bad” points, green indicates ”good” points.

The challenge is to find a ”good enough” solution. A brute-force search over
all points could be too time-consuming or result in a coarse step size. An alter-
native approach is to compute the metric’s gradient and search for local minima,
but this method can be complex and not universally applicable. Therefore, we
use the Nelder-Mead method [3], which starts the local minimum search from
both previously identified points and a set of randomly generated points.

Fig. 7. Algorithm results. Red dot with a white outline indicates the pass initiation
point; green shows the best pass point; orange indicates some other pass points(good,
but not the best); purple is derived from a comprehensive search.

While this method does not guarantee a global minimum, it has proven ef-
fective in practice by reliably identifying the best point according to our metric,
all within an acceptable computation time.

9

Fig. 8. Algorithm execution. Points that were checked during the process are indicated.
The color indicates the metric value at that point.

5 Movement with ball

In situations where an opponent is near the ball, our main goal is to take control
of the ball as soon as possible. To do this, we aim directly at the ball and attempt
to grab it as fast as we can, then we turn around with the ball in our possession.

To move the robot with the ball, we calculate necessary angular velocity to
maintain smooth turn around the given point at the field. The picture of the
robot performing this movement is shown below (Fig. 9):

B

R

−→ω

Lcb

Lbr

C
−→r

−→v

Fig. 9. Robot movement with rotation during ball capture

10

The formula for calculating the speed of the robot’s rotation is:

−→v = −→ω ×−→r

The robot’s angular velocity matches the speed of its rotation around a given
point. This movement allows us to spin the robot at high speed while keeping
the ball under our control. However, a sudden change in the angular velocity
can cause the robot to lose the ball. Therefore, it’s important to turn the robot
smoothly when moving with the ball to avoid losing it.

We use the following function to achieve this:

ω =
kx1 + ω0

x2
1

x2 +

(
−k − 2ω0

x1

)
x+ ω0

where k is final angular acceleration, x1 is final angle to which robot is turning,
ω0 is the actual angular speed of the robot, and x is the current position (Fig.
10).

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

x

w

Initial trajectory

Recalculated trajectory

-//-

Fig. 10. Example of smooth angular velocity function with k = −2, x1 = 2, and ω0 = 0
and several recalculations with artificially added execution errors

This parabolic trajectory is used to guide the robot to a specific angle with
limited angular acceleration.

This parabolic trajectory has the advantage that it can be rebuilt at each
iteration and will always converge at target angle regardless of accumulated
errors from measurments or execution. Additionally, if the desired angle changes
during the movement, the robot can adjust it’s movement to accommodate the
new angle and still maintain possession of the ball (Fig. 11).

11

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

x

w

Initial trajectory with target angle x1 = 2

Projected initial trajectory

Recalculated trajectory with target angle x′
1 = 1

Fig. 11. Example of the ability to recalculate angular velocity on the fly to new target
angle

6 Conclusion

In this paper, we have presented our main improvements, both in software and
hardware. Our primary goals for the near future are to significantly enhance
motion control, develop and implement new collision avoidance algorithms, and
refine our dribbling.

Acknowledgment

The SPbUnited team gratefully acknowledges the support of PJSC ”Gazprom
Neft”, IPMash RAS, the charitable foundation ”Finist”, the Research and Man-
ufacturing Association ”StarLine”, and LLC ”KRAVT”.

References

1. Petr Konovalov, Mikhail Lipkovich, Tseren Frantsuzov, Alexandr Meshcheryakov,
Yury Glazov, Boris Viktorov, Andrey Sviridov, Alexander Fradkov, and Voloshina
Anastasiia, URoboRus 2022 Team Description Paper.

2. J. A. Nelder, R. Mead, A Simplex Method for Function Minimization.
3. K. I. M. McKinnon, Convergence of the Nelder–Mead Simplex Method to a Nonsta-

tionary Point.
4. N. Ommer, A. Ryll, and M. Geiger, TIGERs Mannheim 2019 Extended Team De-

scription Paper.
5. A. Wendler and T. Heineken, ER-Force 2020 Extended Team Description Paper.
6. Z. Huang, L. Chen, J. Li, Y. Wang, Z. Chen, L. Wen, J. Gu, P. Hu, and R. Xiong.

ZJUNlict Extended Team Description Paper for RoboCup 2019

12

