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Abstract. This paper describes the efforts and improvements made by the
First Order Robotics Team to compete in the 2025 RoboCup Small Size League
Division B. It describes the major hardware improvements from the previous
year’s design, along with a newly developed codebase for the control and co-
ordination of the robots.

1 Introduction

The First Order Robotics Team is a newly formed student-run group from Imperial
College London under the umbrella of the Imperial College Robotics Society (ICRS).
Initially formed under ICRS FC in 2023, the team was unsuccessful in qualifying, as
it struggled with lacklustre student engagement, along with a plethora of mechanical,
hardware and software roadblocks. This year, the team has seen a significant recon-
solidation of its members’ effort to design a credible hardware system and codebase
by studying ETDPs and TDPs from successful teams, and learning from the team’s
past mistakes in 2024. This year, the team has also enjoyed a revitalized software
development team that has made substantial progress in the robotic control and co-
ordination algorithm design, as detailed in Section 5. This paper is divided into four
major categories: mechanical systems, hardware, embedded systems and software.

2 Mechanical Systems

2.1 Objectives

Last year was our first attempt at designing and building robots that fit the RoboCup
SSL competition criteria. The previous generation used a three-wheel omnidirectional
layout with a simple fixed-frame dribbler design. The kicker employed a spring-loaded
mechanism.

Looking back, many of these design decisions were not ideal. For example, the three-
wheel layout significantly restricted the dribbler module’s open-for-catch size when
receiving the ball. Another issue was that the chosen motor had a relatively long body
extending toward the wheelbase center, severely limiting the available space for the
solenoid, restricting shooting performance, and leaving no room for future upgrades.
Only two units were produced last year. The design from last year can be seen in
Figure 1 (1) and (2).

This year, our goal is to redesign from first principles, correct past mistakes, make
well-informed engineering decisions for mass production, and ensure expandability
for future iterations in the coming years. As a new team, we aim to achieve top-tier
mechanical performance in Division B and ultimately reach a level where we are com-
petitive with Division A teams.

The final design of the robot for SSL this year is shown in figure 1 (3)-(6), with
details discussed below.
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Fig. 1. Robot design comparison between SSL 24 to 25
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2.2 Wheelbase

The wheelbase defines the overall framework of the mechatronic system, and the de-
sign of each wheel actuator unit directly determines the available design space for
other modules. Therefore, it is made as compact as possible while ensuring sufficient
clearance for the dribbler and kicker at the front and middle, respectively.

In our final design, each wheel actuator unit comprises a motor secured to a carbon
fibre base using a CNC-machined aluminium alloy block, with a 3D-printed plas-
tic spacer in between for reinforcement. This structure ensures rigidity and prevents
yielding or bending. The CNC block is an off-the-shelf standard component with pre-
threaded mounting points, offering ease of assembly and cost efficiency. The assembled
design is shown in figure 2.

Fig. 2. Exploded view of the wheel actuator assembly

We used the DM3519, a brushless motor with built-in precision FOC control and CAN
communication. It delivers high power output, is compact, and remains cost-effective
at just £40 per motor. This outperforms other motors in the same price range. The
specifications of this motor is listed in Table 1.

Table 1. DM3519 Motor Specifications

DM3519 Motor Parameters

Rated Voltage 24V (Drive supports 15-52V supply)

Rated Phase Current (Power Supply Current) 9.2A (8.6A)

Peak Phase Current (Bus Current) 20.5A (16.1A)

Rated Torque 3.5Nm

Peak Torque 7.8Nm

Rated Speed 395rpm

No-load Maximum Speed 435rpm

With this crucial component finalized, the design space for other modules was estab-
lished. The whole robot assembly breakdown is shown in Figure 3, with important
specifications listed in Table 2.
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Fig. 3. Explode view of the wheel actuator assembly

Table 2. Essential Physical Specifications

Specification Value
Ball Exposure Area Percentage 82%
Robot Dimension (D x H) D: 178mm, H: 149mm
Wheel Diameter 53.6mm
Power Supply 6s BAK Li-ion 18650 22.2V 2500mAh
Approx Weight 2.1kg

2.3 Dribbler System

The dribbler is the most complex mechanical unit in an SSL robot. Based on insights
from previous TDPs of other teams, a well-designed dribbler should have the following
key features.

– High RPM: Ensures the ball remains in contact with the rod both at rest and
during motion.

– Shock Absorption: Effectively dampens impact when the ball enters the dribbler
at high speed.

– Self-Centering Capability: Improves precision shooting and enables the robot to
execute sharper turns with higher angular velocity.

Due to budget limitations, we were unable to source for a dribbler motor with similar
specifications (>35W, 20K+ RPM) as described in other papers [11]. To minimize
design limitations, we selected a 12W BLDC motor with a built-in Hall sensor and
a speed of over 12K RPM, originally designed for surgical applications (e.g., plaster
removal). The actual performance of this motor is still under evaluation, but based
on initial observations, it performs satisfactorily.

Recognizing that the motor speed of the dribbler is crucial for ball control, we de-
signed a ball feed-in status feedback mechanism to enable closed-loop control.
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2.3.1 Design Considerations & Mechanisms We studied the dribbler designs
of teams such as ZJUNLICT [3] and TIGER [4], implementing a single DoF rota-
tional mechanism for our dribbler. Additionally, a spring-damper system, commonly
used in RC car models for shock absorption, was installed between the dribbler rotor
frame and the wheelbase. The spring constantly pushes the dribbler rod forward, and
when the ball enters, the compression of the spring and damping oil counteract the
shock impact. Both the spring and damping oil are replaceable, allowing us to test
different damping levels and spring constants.

A parallelogram linkage is constructed within the dribbler, with one side fixed to
a stationary screw and the other attached to an incremental rotary encoder. This
synchronizes rotary motion and provides angle feedback. The system informs the
robot of the ball’s behaviour — whether it is feeding in, leaving the rod, or bouncing
against it. This feedback can dynamically adjust the dribbler speed, ensuring precise
control. A visual illustration is shown in Figure 4.

Fig. 4. Visual illustration of the dynamic interaction between ball and spring damper

Furthermore, the robot’s forward/backward speed and angular velocity can be used
as feed-forward inputs in the control loop. This helps regulate the dribbler speed,
maintaining an upright ball position with three stable contact points — the carpet,
chip shovel, and rod — for stable ball control.

Lastly, for self-centring, we are using a lathed aluminium rod as the core, with silicone-
moulded outer features. This allows for quick iterations and geometry testing. Several
design iterations have been implemented, proving that a variable pitch spiral design
is effective. In some cases, the ball oscillates back and forth on the rod, which we
suspect is due to improper damping and spring tuning. Further refinements will be
made to optimize stability.

2.4 Kicker Actuation

The kicker of the robot, although designed and manufactured, has not been thor-
oughly tested due to the unfinished control board. The primary goal is to maximize
the kicking speed.

From a research paper from Eastern Washington University [14], we know that the
force generated by a solenoid is proportional to certain key parameters, as shown in
the equation below. A simple conclusion can be drawn: winding factor and internal
resistance are crucial in solenoid coil design. A solenoid with thin wire and a high turn
count is less desirable than one with thicker wire and fewer turns if the resistance is
too high.
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Where ρ is the resistivity of the material, ıs the cross-sectional area of the wire, łis
the coil length, µ0 and µr are permittivity, V is the applied voltage, N is the number
of windings, r0 is the internal radius of the coil.

Additionally, the plunger material must have high magnetic permeability and high
saturation flux density to ensure optimal performance. According to previous studies,
1020 steel is a suitable material for this application. However, after further research,
we found that DT4 is also a viable alternative. DT4 is also readily available, easy to
manufacture, and cost-effective. A comparison between DT4 and 1020 steel is pro-
vided in Table 3.

Property 1020 Steel DT4 (Soft Magnetic Alloy)

Composition Low-carbon steel (0.18-0.23% C) High-purity iron

Magnetic Permeability Moderate High

Saturation Flux Density ≈ 2.1T ≈ 2.0T

Coercivity Higher Lower

Electrical Resistivity 10−7 Ω · m Slightly higher than 1020 steel

Machinability Good Moderate

Corrosion Resistance Low Low

Cost Lower Higher

Table 3. Comparison of 1020 Steel and DT4 Material for Solenoid Plungers

In order to produce the coil with good winding factor in-house, a winding machine
was made to facilitate this process, as shown in Figure 5. Additionally, for simpler
routing & assembly, the solenoid coil ends are connected to an XT30 ports installed
on a PCB. The full model of the kicker is shown in Figure 6, with the upper coil for
parallel kicking and lower one for chip kicking. The chip kicking uses a percussion
mechanism described in a ZJUNLICT TDP [5]. A preliminary test was done using
a boost converter that charges a capacitor array to 90V. This was discharged imme-
diately through a mechanical switch. From the accompanying video submission, the
ball can be seen to eject at roughly 3m/s. Please note that in our qualification video,
the high-power kicker board responsible for controlling the charging and discharging
of the kicking actuation is still under development. As a result, we have used the
robot to collide with the ball and push it toward the goal instead. The video of the
capacitor array discharge is attached at the end, which should perform effectively the
same for our final version [12]. More supplementary media materials will be posted in
the future under the same channel.

Fig. 5. Coil winding Machine in use



First Order Robotics Team Description Paper 7

Fig. 6. Kicker system assembly

3 Hardware

The robot’s operation is managed by three primary boards: the main control board,
the kicker board, and a Raspberry Pi. The main control board communicates with
the central computer via the onboard NRF24 module, controls five BLDC motors
(four for movement and one for dribbling), and processes inputs from various sensors,
including infrared sensors, encoders, and a compass. The kicker board is responsible for
distributing power across the robot’s voltage rails (24V, 5V, and 3.3V) and supplying
power to the two kicking solenoids. Finally, the Raspberry Pi is dedicated to handling
the camera, which provides additional data to enhance the robot’s decision-making
capabilities.

3.1 Main Control Board

In this year’s iteration, a robotics specific STM32H723VGT6 development board is
used for the following reasons:

– The DM-MC02 - STM32H723VGT6 development board can be procured at a
decent price with very compact physical dimensions.

– The board comes with most of the peripherals needed, such as USART, SPI, CAN
ports, saving manpower and costs related to prototyping.

However, a key limitation of this approach is the insufficient number of GPIO pins
to meet the robot’s requirements. To address this constraint, an additional extension
board was designed and stacked above the main board, utilizing the extension BTB
port for expanded functionality. Future development will focus on developing a new
hardware unit with same MCU that server as a role of a master transmitter, which
communicates between the main decision-making PC and all 6 robots in the field.
This board will have features such as a screen and buttons for debugging and status
input, and multiple NRF24 and antennas installed.

3.2 Kicker Board

In the previous year, challenges arose in the design of the robot’s kicker due to the
use of relays for discharging the capacitor bank. Over time, the relay contacts ex-
perienced wear and tear, leading to reliability issues. In the current iteration, power
MOSFETs have been implemented as a more reliable alternative, ensuring faster and
more consistent discharge performance.

3.2.1 Capacitor Array The kicker is powered by a capacitor bank consisting of 12
265uF 330V electrolytic capacitors connected in parallel. This configuration provides
a theoretical maximum energy of 173J. However, the capacitors are only charged up
to 120V, as this voltage is sufficient to propel the ball at the speed limit of 6.5m/s.

3.2.2 Charging Architecture The capacitor bank is charged using the LT3751
high voltage capacitor charger. This chip enables rapid charging, allowing the capac-
itor bank to fully charge in under 2 seconds, ensuring minimal downtime between
kicks. This is a huge improvement from last year’s charging time, allowing for higher
frequency of passes and an improved strategy.
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Fig. 7. Kicker 2025 Version

Fig. 8. Capacitor Board

3.2.3 Safety and Isolation Given the high voltages involved, the kicker board is
designed with safety in mind to protect the user:

– Galvanic Isolation: The board is divided into low and high-voltage sections, which
are galvanically isolated to protect the MCUs. Transformers handle power delivery,
while optocouplers transmit digital signals. This isolation has proven effective in
safeguarding the low power control system, especially during high-power testing.

– Automatic Discharge: To prevent accidental shocks, the capacitor bank automat-
ically discharges through a power resistor when the battery is disconnected.

One limitation of the current design is that the kicker’s strength cannot be easily
adjusted due to galvanic isolation. Future iterations will incorporate a variable volt-
age charging mechanism, allowing for adjustable kick strength and greater strategic
flexibility in gameplay.

3.3 Wireless Communication

Last year, we selected the NRF24L01 as the RF solution for communication between
the controller PC and each bot. A PCB was designed with this chip and its periph-
erals, with signals output through an on-board PCB antenna. This setup has proven
effective, and we continue to use this model this year. Two improvements have been
proposed.

– To enhance transmission stability and ensure a secure connection, each NRF24
module is now decoupled from the main control PCB and installed in a dedicated
area, making it easier to replace if damaged. Additionally, each module is equipped
with a power amplifier, low-noise amplifier, and an SMA antenna connected via
an IPEX coaxial cable.

– Each robot is now equipped with two NRF24 modules, with one dedicated solely
to receiving (Rx) and the other to transmitting (Tx). This allows for greater com-
munication bandwidth. Although considerable redundancy is reserved for current
software development, this setup ensures sufficient data transfer bandwidth in the
future.
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3.4 Raspberry Pi

Each bot is equipped with a Raspberry Pi 4 that serves as a reserve on-board com-
puting platform with wireless connectivity. While software development is still in
progress, it will eventually support high-computing tasks, such as edge ML and vision
processing, that the STM32H7 cannot handle. The following functions are proposed
for development.

– Robot Status Broadcasting: The Raspberry Pi connects the H7 and Kicker (high
power) board via the UART protocol, receiving utility data such as real-time
power consumption, computational resource usage, and system logs. This infor-
mation can be broadcasted over the on-board Wi-Fi to a central server for remote
monitoring.

– On-device MCU Firmware Downloader/Debugger: Our current toolchain involves
using STM32CubeMX to generate the necessary driver code for the H7 board,
followed by compiling the code into firmware using makefile, and then flashing it
onto the MCU via ST-Link. This process can be tedious, especially when tuning
the robots in motion. With a Raspberry Pi on the bot, we can use it as a Linux
platform to modify, compile, and wirelessly connect to the MCU for flashing,
offering significant convenience.

– Vision Processing: An HD 30 FPS USB camera, mounted on top of the dribbler,
serves as the only on-device perception sensor for each bot (apart form the IR
gate sensor). Compared to the top global camera, this provides lower latency
and eliminates reliance on the master PC for tasks like ball detection [13], auto-
aiming/catching, self-ball centering, and in the future for collision avoidance, and
FPV recording for AI training. These features require an on-board device such as
a Raspberry Pi.

4 Embedded Systems

4.1 Movement

Unlike traditional wheeled robots which can only perform translational and non-
stationary rotational movement, our robot has 4 omnidirectional wheels located roughly
equidistant around the circumference of the robot. This enables simultaneous trans-
lational and rotational movement. Prior research on the simultaneous translation and
rotation of omniwheeled robots has been done by decomposing the overall movement
into individual velocity components for each wheel, parallel to the direction of the
wheels [9]. However, an additional velocity component must also be added to each
wheel, proportional to the radius of the robot.

4.2 Communications

As mentioned previously in the hardware section, we used the NRF24 module with
the STM32H7 board to enable rapid communication between the team controller and
robots. The NRF24, a low-cost IC operating in the 2.4GHz ISM band, supports the
Enhanced ShockBurst™ (ESB) protocol, which automates packet assembly, acknowl-
edgment, and retransmission to ensure fast, low-latency data transfer.

Furthermore, to minimise latency, we developed a custom message protocol which
encapsulates all the possible data which is needed for operation of the team controller
and individual robots. The message protocol is designed to be as succinct as possible
to minimise the latency involved in transmission and processing the individual data
fields in the overall message. The schematic for our protocol is shown in the table
below:

– Local Forward Velocity is a 16-bit signed floating point for m/s
– Local Left Velocity is a 16-bit signed floating point for m/s
– Angular Velocity is a 16-bit signed floating point for deg/s
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Table 4. Custom Instruction Protocol

Bits 0 - 15 16 - 31 32 - 47 48 49 50 51 - 55 56 - 63
Function Local Forward Local Left Angular KB KT DB Robot ID Spare

Velocity Velocity Velocity

– KB (Kicker Bottom) is a Boolean
– KT (Kicker Top) is a Boolean
– DB (Dribbler) is a Boolean
– Robot ID is a 5-bit unsigned integer representing the robot IDs. While we only

use 6 robots, we provide 5 bits for extra redundancy (0 to 31)

5 Software

We transitioned to Python due to its rapid development time and the team’s familiar-
ity with the language, ensuring that all members could contribute effectively. Another
key advantage is that Python is an interpreted language, making debugging signifi-
cantly easier. However, we plan to transition to C++ in the future once we encounter
performance limitations due to Python’s time complexity constraints.

5.1 Simulated Environments

We continue to use grSim to simulate real-world gameplay as closely as possible while
simultaneously developing our physical robots. This approach allows us to mitigate
potential delays caused by embedded and mechanical components, ensuring that soft-
ware development progresses smoothly.

This year, we also incorporated the rSoccer environment framework with rSim run-
ning as backend simulator [10]. Designed for reinforcement learning by RoboCin, we
found the software to be particularly useful as a lightweight simulation environment
for the initial development of specific skills (see Section 5.6.1 for the definition of
skill). As rSoccer renders with Pygame, we were able to build further visualisation
tools such as geometry overlays on the UI for better insights into errors within our
algorithms. Furthermore, unlike grSim, rSim does not require UDP ports, reducing
potential networking-related issues during the development process.

5.2 Velocity Calculations & Next Frame Predictions

Using the vision data we estimate the velocity of all objects on the field. This is done
simply by taking the difference in position between two adjacent frames and dividing
by the time between frames (which is assumed to be a constant based on the ex-
pected frame rate of 60fps). This information is then used to predict the position of
all objects on the field after a fixed period of time for scenarios such as ball blocking
by the goalkeeper. This prediction is performed using standard SUVAT equations for
the estimated velocity and acceleration, which caps the position when the object is
predicted to have stopped.

We also incorporated acceleration estimation for position extrapolation. This proved
to be challenging as position noise detected by the camera led to large errors in ex-
trapolation. We therefore performed smoothing in the acceleration calculations by
using a sliding window. We take 3 windows of 5 frames, and determine for each win-
dow the average velocity of the object under examination. We use this to calculate
the acceleration with respect to the previous window, and then average this resulting
acceleration across both adjacent window pairs. Testing has showed that this leads to
relatively reliable prediction estimations up to a second into the future.

The generally simple approach to these kinematic calculations is preferred as it yields
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a result which are accurate enough to be useful (especially when used in the simula-
tor), supports quick iteration and testing, and is performant due to being very simple
to calculate, as show in Fig 9.

Fig. 9. Showing the velocity projections where the shadow is actual next frame

5.3 Queue System

Synchronising all parts of the system while remaining responsive to incoming data
packets, avoiding concurrency bugs and keeping the code clean and easy to under-
stand is a challenging aspect of the system design. We opted to tackle this by struc-
turing the system with receivers for the vision and referee data packets running in
separate threads. These receivers pass all incoming packets and convert them to an
internal message format. These messages are added to a thread-safe queue data struc-
ture, which is processed by the main loop. This processing consists of waiting until
a message is available on the queue, processing it by updating the game object, and
then asking the decision making system for updated robot motion commands which
are then sent to the robots. This is repeated in an event loop.

5.4 Game Object

The Game Object serves as a centralized data repository, ensuring consistency and
accuracy across all decision-making and strategy processes. By acting as the definitive
ground truth for received data, it streamlines access for skills and decision-making
algorithms while eliminating inconsistencies in data retrieval.

Beyond storing raw vision data, the Game Object incorporates post-processed
information, such as velocity estimations and next-frame predictions. Techniques like
Kalman filtering refine vision data by reducing noise and improving tracking accuracy,
while extrapolation methods predict robot and ball positions when direct vision data
is unavailable. This enhances motion planning and enables more reliable real-time
decisions.

A key design goal is to separate decision-making logic from packet processing, en-
suring modularity and reducing dependencies on low-level data handling. This struc-
tured approach improves code clarity and facilitates continuous enhancements in post-
processing. New tracking and filtering techniques can be integrated seamlessly without
disrupting existing strategies, supporting ongoing system improvements.

5.5 Team Controller

The team controller translates the algorithmic decisions to packets for the robots
to receive. It also receives and consolidates the responses from the various robots,
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allowing us to utilise the hardware sensors onboard. We utilise pyserial for two-way
UART communication with an external microcontroller, which then communicates
with the robots using an NRF24 receiver. The key consideration for this program is
speed, where we aim to move over to a low-level package like Boost.Asio to achieve
low latency communication with the robots [7].

5.6 Robot Control

5.6.1 Velocity Control We are currently using a standard PID framework to
control the velocity of our robot by providing it with a target location to go to, us-
ing three instances of PID: one for orientation, one for x translation, and one for y
translation. All three instances are normalised to be between [0,1] to standardise the
magnitude between PID instances.

In order to maximise the capabilities of the omnidirectional data, our team imple-
mented a method to offset the translational velocities set by two PIDs with the ori-
entation velocity. This adjustment compensates for the rotational speed during the
length of the command, ensuring smoother motion. For instance, when the robot ro-
tates while moving, the translational velocities are dynamically adjusted to maintain
the intended trajectory. This enables the robot to be able to continuously track the
ball while in motion shown in Fig: 11.

Fig. 10. Showing the ball tracking whilst moving along the line

We plan to add more systems in place with the real robots, such as monitoring
the spin-up time of the motors to avoid unnecessary build-up in error in the PID
system, detecting and mitigating robot tipping, and addressing skidding issues. These
additions aim to enhance stability, and ensure consistent performance during dynamic
manoeuvres. This is particularly pertinent in high-speed gameplay scenarios where
such challenges are most prevalent.

5.6.2 Path Planning Effective path planning in a dynamic environment is chal-
lenging. Our path planning relies on two core ideas. Firstly, the field is relatively
sparse, and most obstacles are robots and therefore somewhat transient. Secondly, we
require the path planner be performant, where we want to be able to react to obstacles
within 1-2 frames. Currently, our implementation is written in Python, which limits
the complexity of our path planner. However, if this proves to be problematic, we will
re-write it in a lower level language.

Our path planner consists of two separate planners, each capable of planning in their



First Order Robotics Team Description Paper 13

own right. We combine a Dynamic Window Approach [2] for local planning, with a
more computationally expensive bisector algorithm which is used to stop the robot
getting stuck in local minima. The original Dynamic Window approach was intended
for environments with static obstacles, where viable trajectories are calculated by
discounting routes that would lead to collision with obstacles. However, this assumes
that obstacles are static and testing showed that approximating our robots and op-
position robots as static on a per frame basis did not achieve sufficiently good results
as high-velocity robots require a longer time window of awareness in order to adjust
trajectories to avoid collisions. Some modifications were needed for this to work in an
environment with dynamic obstacles.

Our modified Dynamic Window Approach calculates feasible trajectories according
to the robot’s kinematic specifications over time steps of 100ms, given the maximum
acceleration of the robot, which we assume is uniform in all directions. We sample
discrete directions and assume a constant velocity for the robot to project the path
of the robot in the next time step as a segment. The segment with the largest score is
chosen as the path taken. To score a segment, we consider the distance travelled to-
wards the target and an obstacle factor, which is a function of the obstacle’s distance
and estimated collision time calculated from the relative velocities. This approach
allows us to be reactive to other robots, as collision times greater than the simulated
time step are considered as part of the score. This means that we are able to take early
evasive action in cases where a collision is expected, whilst maintaining an efficient
path when robots are fast-moving but not estimated to collide with us. It also means
that the robot slows down when navigating tight spaces, which is desirable to avoid
high-speed collisions.

After tuning the weighting functions of the local planner, it is uncommon for it to
get stuck in local minima given the sparsity of the field. However, in order to make
it more robust to enemy formations such as 2-3 wide walls, we incorporate another
planner which produces an intermediate waypoint for the robot to travel to.

We attempted to use an RRT* approach [6], but we found two main issues with
it for our use case. The paths generated were not close enough to the optimal paths
and had too many turns which slow down the robot. It was not performant enough to
generate effective paths in the time-frame that we wanted, and it struggled when the
target or start position were very close to obstacles as most segments it attempted to
grow would collide immediately.
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Fig. 11. Paths considered by the bisector planner, green is valid, red is invalid

Instead, we took a simpler approach - the bisector planner, it takes a perpendicu-
lar bisector of the line from the current position to the target, and samples uniformly
from the centre on each side until it finds an obstacle free path. This allows the robot
to maintain a straight path to the target in the case where there are no obstacles.

To combine the two planners, every x frames the bisector planner is used to gen-
erate a waypoint, after which, the local planner is used. We found that this is better
than waiting for the robot to get stuck in a local minima as it can perform evasive
action earlier, leading to a shorter path. It also allows the reactiveness of the local
planner to be fully utilised.

5.7 Strategy

The strategy we are using is very similar to the STP framework that many other teams
currently use [8]. However, we have reshaped some of the definitions to emphasise
modularity and consistency.

5.7.1 Skills are fundamental actions performed by a robot, typically involving one
or two robots with minimal coordination. Each skill operates with a primary robot at
its core, driving the execution of a specific task. For example, in a passing maneuver,
the passing skill is centered on the robot delivering the ball, while the receiving skill
runs on the supporting robot to ensure successful reception. Despite involving two
robots, this maneuver consists of two distinct skills working in parallel, each focused
on its respective role in the action.

5.7.2 Set Plays are a series of coordinated actions involving multiple robots, where
the centre of attention shifts dynamically between them. For example, in a sequence
where the ball is passed from the wing and then shot at the goal, at least two robots
are involved. Initially, the passing robot is the focal point, executing the pass to a
supporting robot. Once received, the supporting robot becomes the centre of attention
as it attempts to score. This transition represents multiple actions executed in a
structured sequence.
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5.7.3 Roles act as containers for a predefined set of actions, grouping tasks based
on their relevance and usability in different game states. They range from simple
actions like "going to the ball" to complex multi-robot coordination. Assigning roles
ensures that each robot has an appropriate set of possible actions. For instance, a
goalkeeper would not have "scoring a goal" as an available action, as it contradicts its
primary function. Dynamic role assignment allows for strategic adaptability, ensuring
robots execute tasks suited to their current responsibilities.

This grouping of actions for each role simplifies decision-making by reducing the
complexity of choices the system must process. It also prevents the execution of re-
dundant commands, ensuring that each robot operates efficiently within the specific
state of play.

5.8 Decision Maker

Lastly, and most importantly, our decision maker will choose which actions are ex-
ecuted for each robot. This will contain deterministic algorithms like danger maps,
evaluating the concentration of enemy robots on the field similar to what Team SRC
used in their algorithm for assigning danger ratings of attacking robots to evaluate
which robot to block and mark [1].

6 Conclusion

In this paper, we have presented our key hardware improvements aimed at design-
ing a high-performance, cost-effective, and future-proof robotic system. Additionally,
we have explored the design of our control and coordination algorithms, emphasizing
rapid development and modularity in our codebase to facilitate future enhancements.
As a new team, there is still significant room for improvement. Moving forward, the
team aims to refine its multi-agent coordination strategy and enhance its motion
control systems to maximize stability. We also aim to develop critical hardware inte-
gration to leverage the onboard devices such as the camera and accelerometer.



16 M. Liang et al.

References

1. Chen, Z., Pan, S., Wang, Y., Jiang, L., Bao, Y., Peng, J., Tan, Y., Zhu, X.: Src extended
team description paper for robocup 2024. RoboCup Soccer Small Size League (2024),
https://api.semanticscholar.org/CorpusID:272652231

2. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to colli-
sion avoidance. IEEE Robotics & Automation Magazine 4(1), 23–33 (1997).
https://doi.org/10.1109/100.580977

3. Gao, T., Wu, Y., Yang, T., Huang, Z., Xiong, R.: Zjunlict extended team description
paper for robocup 2017 (2017)

4. Geiger, M., Ommer, N., Ryll, A.: Robocup 2022 ssl champion tigers mannheim - ball-
centric dynamic pass-and-score patterns (2022)

5. Jin, L., Chen, L., Chen, X., Li, Y., Hu, W., Xiong, R.: Zjunlict extended team description
paper for robocup 2016 (2016)

6. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning.
CoRR abs/1105.1186 (2011), http://arxiv.org/abs/1105.1186

7. Kohlhoff, C.M.: Boost.Asio C++ Library (2003–), available at
https://www.boost.org/doc/libs/release/doc/html/boost_asio.html

8. Lobmeier, C., Burk, D., Wendler, A., Eskofier, B.M.: Er-force 2018 extended team de-
scription paper. RoboCup Soccer Small Size League (2018)

9. Mariappan, M., Sing, J.C., Wee, C.C., Khoo, B., Wong, W.: Simultaneous rotation and
translation movement for four omnidirectional wheels holonomic mobile robot. In: 2014
IEEE International Symposium on Robotics and Manufacturing Automation (ROMA).
pp. 69–73 (2014). https://doi.org/10.1109/ROMA.2014.7295864

10. Martins, F.B., Machado, M.G., Bassani, H.F., Braga, P.H.M., Barros, E.S.: rsoccer: A
framework for studying reinforcement learning in small and very small size robot soccer.
In: Alami, R., Biswas, J., Cakmak, M., Obst, O. (eds.) RoboCup 2021: Robot World
Cup XXIV. pp. 165–176. Springer International Publishing, Cham (2022)

11. Ommer, N., Ryll, A., Ratzel, M., Geiger, M.: Tigers mannheim extended team descrip-
tion for robocup 2024 (2024)

12. Robotics, F.O.: First order robotics team ssl25 qualification video (2025),
https://youtu.be/RwXMowvYbks

13. Ryll, A., Jut, S.: Tigers mannheim extended team description for robocup 2020 (2020)
14. Schimpf, P.: A detailed explanation of solenoid force. Int. J. on Recent Trends in Engi-

neering and Technology 8, 25 (2013)


