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1 Introduction

This ETDP presents our recent efforts in understanding the kicking mechanism of
our robots. The basic concept of the kick mechanism is easy to explain: a plunger,
which has a lower magnetic permeability on the front than on the back, is placed
inside a solenoid. While a capacitor is discharged over the solenoid, paramagentic
materials are attracted by the magnetic field to the center of the coil. Since the
back half experiences a larger force than the front, a net accelerating force moves
the plunger forwards.

The motivation behind modelling this process is twofold: on the one hand, as
previously discussed in [1], we were struggling to design chip kickers that are able
to chip the ball up to the theoretical maximum of 4.31 m. On the other hand, as
we presented last year in [2], the efficiency of the conversion from electric energy
in the capacitors to kinetic energy in the plunger is estimated to be only 4.6 %.
This necessitates the use of fairly large capacitors, which take up valuable space
inside the robot and increase the recharge time between kicks. These two issues
left us with the question: which design parameters, e.g. winding density and area
of the solenoids, material of the plunger, capacity and voltage of the capacitors
etc., should we change in order to make the kick stronger and more efficient?

Unfortunately, we found that there is no easy answer to the question above.
To exemplify the issue, consider the winding density of the coil. Increasing
the winding density increases the inductance and the magnetic field inside the
solenoid, which results in a greater force acting on the plunger. However, due to
Lenz’s law, the moving plunger induces a back electromotive force (EMF) in the
solenoid, the magnitude of which depends both on the velocity of the plunger
and the inductance of the coil. An increased back EMF reduces the current which
flows through the solenoid and by extension also the magnetic field and the
force acting on the plunger. These two effects, while always counteracting, are in
general not of the same magnitude. Therefore, a more detailed analysis of the
physics behind our kicking mechanism is needed.

The model which we use to describe the kicking mechanism is derived from
Lagrangian mechanics. There are two advantages of using the Lagrangian for-
malism over Newtonian mechanics for this specific problem. The first one being
that Lagrangian mechanics can be easily adapted to describe electric circuits.
This avoids having to use two different frameworks to describe the circuit and
mechanical dynamics seperately. The second advantage is that dissipative effects
are generally easier to model in Lagrangian mechanics.

In the following, we first review some related work by other SSL teams
on the kicking mechanism in section 2. Section 3 provides a crash course on
Lagrangian mechanics for all those, which are not yet familiar with the formalism.
A detailed derivation of the physical model of our kicker is contained in section 4.
Furthermore in section 5, we show the experiments that were performed. On
one hand, we obtain the magnetic permeability of our plunger, which is a key
parameter for the model. On the other hand, the model is validated against
data collected from the real kicker. Finally, section 6 presents the results of our
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analysis and section 7 gives a brief summary and an outlook into a possible
extension of this work.

2 Related work

Solenoid kickers have been the de facto standard in the SSL for at least 15 years,
being used by virtually every major SSL team [2–30]. There have only been two
substantial deviations from this design. In 2008, we employed a pneumatic kicker,
which was ultimately replaced by a solenoid because it was too unreliable and
not strong enough [31]. The Stanford Robotics Club presented a permament
magnet linear motor kicking device in 2014 [32]. It improves on the common
shortcomings of solenoid kickers like low efficiency, high voltages, capacitances
and peak currents. However, it has not established itself, presumably due to its
higher cost and complexity.

Even though the operating principle is the same amongst almost all teams, the
specific choice of design parameters varies quite alot between teams. Moreover, it
is often iterated upon even within the team. For example, the capacitors range
from 0.47 mF to 6.6 mF and charging voltages from 100 V to 300 V [10, 21, 30].
By far the most common materials used in the plunger are aluminium for the
non-magnetic part and some form of steel (e.g. mild steel, St37, 1018 carbon steel
and C45 low carbon steel) for the magnetic part [9, 10, 25, 27, 29, 33, 34]. Some
other choices of non-magnetic materials include titanium [20], stainless steel [35]
and plastic [23]. So one can say that the design is still far from being converged.

One of the reasons for this is simply that it is difficult to predict which
values produce a suitable device. As TIGERs Mannheim put it [29]: “Finding
the optimal composition of coil parameters and plunger size as well as position is
very difficult and either requires complex simulations or empirical data.”

Some teams address this issue by using finite element methods (FEMs) to
simulate a given kicker design [22, 35]. The advantage of FEMs are their high
degree of accuracy, however they come at the cost of being difficult to use, often
requiring the use specialized licenced software and higher computational cost
compared to our method.

Other teams turn to experiments to determine the influence of various pa-
rameters on the kick power. For example, the MIT RoboTeam optimized the
windings of their coil by rapid prototyping and testing [23]. RI-One on the other
hand empirically determined the optimal starting position of their plunger in the
solenoid, balancing magnetic field strength at the material transition and stride
length [7].

As far as we are aware, NAMeC is the only team that proposed an analytic
model that predicts the kick power of any given solenoid [8]. They argue that
the energy of the ball is directly proportional to the integral of the square of
the current over time. A typical RLC transient response is used as the current
profile. This model is used to predict the dependence of the ball velocity on the
wire diameter, however their results are not validated by experiments.
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3 A crash course on Lagrangian mechanics

The goal of this section is to provide the minimal basis of background knowledge
on Lagrangian mechanics needed for section 4. Therefore, proofs and derivations
are mostly omitted. This section can be safely skipped by anyone already familiar
with Lagrangian mechanics. For a detailed introduction into the topic, we refer to
standard introductory physics textbooks, like e.g. [36] which is the main source
for this crash course.

Lagrangian mechanics is an alternative formulation of classical mechanics, the
theory describing the motion of macroscopic objects. Mathematically speaking,
it is completely equivalent to Newtonian mechanics, the theory obtained from
Newtons three axioms. However, in some cases Lagrangian mechanics is easier to
deal with. This is especially true if the forces acting in the system are difficult to
describe, e.g. due to constraints.

While it would be more pedagogical to derive Lagrangian mechanics starting
from Newtons axioms (which is done for example in [36]), for the sake of brevity
we consider a different derivation. The starting point is Hamiltons principle,
which is for all relevant purposes also equivalent to Newtons axioms. It states
that a system described by the n-dimensional coordinates q moves along a path
q(t) such that the action functional

S[q(t)] =
∫ t2

t1

L(q(t), q̇(t), t)dt (1)

is stationary. The function inside the action integral is called the Lagrangian and
is defined as the difference of kinetic energy T and potential energy V of the
system

L(q(t), q̇(t), t) = T (q̇(t)) − V (q(t), t). (2)
Stationary in the context of functionals means that the action functional of a
infinitesimally perturbed path

q′(t) = q(t) + ϵc(t), where c(t1) = c(t2) = 0 (3)

yields the same value up to second order corrections in ϵ

S[q′(t)] = S[q(t)] + O(ϵ2) ⇔ dS

dϵ
[q′(t)]

∣∣∣∣
ϵ=0

= 0. (4)

This can be understood as a generalization of a vanishing first derivative to
functionals. Hamiltons principle then simply says that physical systems always
follow paths from q(t1) to q(t2), which are local extrema of the action functional
in the space of all possible paths. For this reason, Hamiltons principle is also
sometimes called the principle of least action.

Inserting the form of the action functional (1) into eq. (4) and using the chain
rule of derivatives yields

dS

dϵ
[q′(t)]

∣∣∣∣
ϵ=0

=
∫ t2

t1

n∑
j=1

(
∂L
∂q′

j

∂q′
j

∂ϵ
+ ∂L

∂q̇′
j

∂q̇′
j

∂ϵ

)
dt

∣∣∣∣∣∣
ϵ=0

. (5)
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For now, consider only the second term under the integral. Using integration by
parts, we can write

∫ t2

t1

∂L
∂q̇′

j

∂q̇′
j

∂ϵ
dt = ∂L

∂q̇′
j

∂q′
j

∂ϵ

∣∣∣∣∣
t=t2

t=t1

−
∫ t2

t1

(
d
dt

∂L
∂q̇′

j

)
∂q′

j

∂ϵ
dt. (6)

Since by construction ∂q′
j

∂ϵ = cj(t) vanishes at t1 and t2, the boundary term is
zero. Inserting this back into eq. (5), we arrive at

dS

dϵ
[q′(t)]

∣∣∣∣
ϵ=0

=
∫ t2

t1

n∑
j=1

(
∂L
∂q′

j

− d
dt

∂L
∂q̇′

j

)
cj(t)dt

∣∣∣∣∣∣
ϵ=0

!= 0. (7)

Since the stationarity condition has to hold for any form c(t) of the perturbation,
the term inside the parentheses has to vanish for each coordinate individually.
This leads to the so-called Euler-Lagrange equations

d
dt

∂L
∂q̇j

− ∂L
∂qj

= 0. (8)

These equations are the equivalent of Newtons equations of motion in Lagrangian
mechanics. They describe how the system evolves in time purely in terms of the
Lagrangian, which only depends on the kinetic and potential energies. This is
the key reason why the Euler-Lagrange equations are sometimes easier to derive
than Newtons equations.

There is one caveat to the considerations done up until this point. We implicitly
assumed that there exists a well-defined potential function V (q(t), t), which only
depends on the coordinates (and may explicitly depend on time) but not on
the velocities. This is not true e.g. for dissipative systems like RLC circuits. In
order to describe dissipative systems, the Euler Lagrange equations need to be
modified by the term

d
dt

∂L
∂q̇j

− ∂L
∂qj

= − ∂D
∂q̇j

, (9)

where 2D is the rate of energy dissipation.

4 Derivation of the kicker model

This section details the derivation of equations of motion describing both the
electric as well as the mechanical degrees of freedom of the kicking mechanism
from the previously introduced Lagrangian formalism.

The electronic setup of our kicker boards has already been described in our
previous ETDPs [1, 37]. The board design is openly available under [38]. We
approximate the real electric circuits by the following abstraction shown in
fig. 2a).
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a) b)

Fig. 2: Abstractions of the electronic and mechanical parts of the kicking mecha-
nism. a) The electric circuit is well approximated by an RLC circuit. We assume
that the capacitor C starts fully charged at some voltage U(0). As long as the
switch is in position 1, the capacitor discharges over the solenoid L, consequently
accelerating the plunger. The resistor R models all (thermal) losses in the wind-
ings. When the switch is in position 2, the capacitor is disconnected from the
coil. In the real robot, we use a low-side switching topology. It discharges its
current over the resistor, converting the remaining energy to heat. b) The plunger
consists of two different materials of relative magnetic permeabilities µ1 and µ2.
The length of the material µ1 inside the solenoid of length l is denoted by x. A
spring of strength k is used to pull back the plunger after the kick.

We use an insulated-gate bipolar transistor (IGBT) to switch the kicker.
Assume that the capacitor is initially charged to some voltage U(0). In its on-
state the IBGT discharges the capacitor over the solenoid. A resistor is added to
model losses inside the solenoid cable. When thge IGBT turns off, the capacitor
voltage is no longer applied to the solenoid. The current through the solenoid
dies down due to resistive losses. To summarize: depending on whether the IGBT
is on or off, we model the electronic part of the kicker as an RL or RLC circuit
respectively. The finite switching time of the IGBT is neglected.

The mechanical construction of our kicker modules also has been outlined in
our previous (E)TDPs [39, 40]. A plunger consisting of two different materials
with relative magnetic permeabilities µ1 and µ2 is placed inside the solenoid
like shown in fig. 2b). In our design, the coil is wound around a thin layer of
plastic. We denote the cross-sectional area of the plunger with A1, the total
cross-sectional area of the solenoid with A and the cross-sectional area of the
plastic layer with A2 = A−A1. When current passes through the coil, the plunger
accelerates forwards, increasing the length x of the material with permeability
µ1 inside the solenoid of length l. Therefore, the inductance L(x) of the solenoid
is not constant, but rather depends on the position x of the plunger. A spring
with spring constant k is used to pull the plunger back into its original position
after the kick.
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For now, only consider the case of an conducting IGBT, i.e. the capacitor
discharging through the solenoid. We decompose the total Lagrangian of the
kicker into two parts

L = Lel + Lmech, (10)

one describes only the electric subsystem whith the charge Q on the capacitor as
the only degree of freedom, the other describes the mechanical subsystem, which
also has only one degree of freedom with x.

A general method to derive Lagrangians for electric circuits is presented e.g.
in [41]. The case of the RLC circuit is fairly simple: the energy stored in the
capacitor Q2

2C is treated as a potential energy, while the energy stored in the
magnetic field of the inductor 1

2 LQ̇2 is regarded as a kinetic energy. The electric
Lagrangian therefore becomes

Lel = 1
2L(x)Q̇2 − Q2

2C
. (11)

We explicitly highlight the x-dependence of the inductance here, since it will be
relevant later on. The resistor is only relevant for the dissipation function. Since
the dissipated power over the resistor is UI = RI2, the dissipation function is
given by

D = 1
2RQ̇2. (12)

The mechanical part of the Lagrangian is also very simple. The plunger has a
mass m and therefore a kinetic energy 1

2 mẋ2. We assume for simplicity that at
x = 0 the spring is at equilibrium. Hence, it stores a potential energy of 1

2 kx2.
We observe that at least for our setup, the spring is weak enough to be safely
neglected. We only keep it here for the sake of completeness. The mechanical
Lagrangian becomes

Lmech = 1
2mẋ2 − 1

2kx2. (13)

Now it only remains to find an explicit formula for L(x). The inductance
is defined as the ratio if magnetic flux through the solenoid and the current
causing this flux. Unfortunately, neither the plastic layer between plunger and
coil, nor finite size effects of the coil are negliglable in our setup. The steady-state
magnetic field on the symmetry axis of a finite coil of length l with N windings
and radius r is given by [42]

H(s) = N

2l
Q̇

(
l − s√

r2 + (l − s)2
+ s√

r2 + s2

)
ex. (14)

For non-circular coils, we replace the radius with an effective radius r =
√

A
π .

This approximation to the true equivalent radius, i.e. the radius of a circular coil
with the same inductance, is within 0.1% for coils with a length of at least half
their diameter [43].
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Since the characteristic timescale of the kicker is on the order of milliseconds
and its spatial extension is a few centimeters, the quasi-static approximation to
Maxwell’s equations is well justified. This means we can safely neglect effects of
electromagnetic radiation and a finite propagation speed of the fields. For more
information on quasi-static electromagnetism see e.g. [44].

To simplify the calculations, we assume that this expression is valid everywhere
inside the solenoid. This simplification is justified post-hoc by the fact that the
resulting inductance matches experimental values quite well. Further, since the
tangential component of H across the plunger to plastic interface has to be
continuous [45], we use eq. (14) for the core-filled part of the solenoid as well.
However, this leads to a problem: it implies that the normal component of B
cannot be continuous at the interface between the plunger materials, violating
Maxwells equations. This shows that the magnetic field behaves in a more complex
manner at the material boundary. However, as this is only a problem directly at
the boundary, we neglect this effect for simplicities sake.

The inductance is defined as the proportionality constant between the current
and the total flux through the coil. From the expression of the magnetic field,
we can calculate the total flux Φtot through the solenoid by computing the flux
ΦA(s) = (A2 + µr(s)A1)H(s) through every loop and summing the results. Since
the exact geometry of the loops is difficult to model, we assume a constant
winding density N

l and replace the sum by an integral

Φtot = N

l

∫ l

0
ΦA(s)ds = N

l
µ0

∫ l

0
(A2 + µr(s)A1)H(s)ds

= µ0
N2

l2 Q̇

(√
r2 + l2

(
A2 + µ1 + µ2

2 A1

)
(15)

+ 1
2A1(µ1 − µ2)

(√
r2 + x2 −

√
r2 + (l − x)2

))
.

and can be directly read off from the equation above to be

L(x) = Φtot

Q̇
= µ0

N2

l2

(√
r2 + l2

(
A2 + µ1 + µ2

2 A1

)
(16)

+ 1
2A1(µ1 − µ2)

(√
r2 + x2 −

√
r2 + (l − x)2

))
.

We now have all the necessary ingredients to write down the equations of
motion. For convenience of notation, we collect the frequently occuring corrections
due to the finite size of the solenoid in the function

f1(x) = 1
2

(
l − x√

r2 + (l − x)2
+ x√

r2 + x2

)
. (17)

The Euler-Lagrange equation (9) for the plunger position yields

mẍ + kx − 1
2

∂L

∂x
(x)Q̇2 = 0 (18)
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where the derivative of the inductance can be computed to be

∂L

∂x
(x) = µ0

N2

l2 A1(µ1 − µ2)f1(x). (19)

Inserting this expressions back into eq. (18) reads

mẍ + kx − 1
2µ0

N2

l2 A1(µ1 − µ2)f1(x)Q̇2 = 0. (20)

Similarly, for the capacitor charge, the Euler-Lagrange equation (9) becomes

L(x)Q̈ + ∂L

∂x
ẋQ̇ + RQ̇ + Q

C
= 0 (21)

⇔ L(x)Q̈ + µ0
N2

l2 A1(µ1 − µ2)f1(x)ẋQ̇ + RQ̇ + Q

C
= 0.

Unfortunately, due to the ẋQ̇ and finite-size terms, the Euler-Lagrange equa-
tions are highly nonlinear. We did not find any closed form analytic solutions
for these types of equations. Instead, we needed to fall back to solving them
numerically with the Runge-Kutta method of fourth order (see e.g. [46]). To
do this, we must first convert the second order Euler-Lagrange equations to an
equivalent system of first order equations. This is achieved by introducing the
velocity v of the plunger and the current I coming from the capacitor. The first
order equations of motion then become

ẋ = v (22)

v̇ = 1
m

(
−kx + 1

2µ0
N2

l2 A1(µ1 − µ2)f1(x)Q̇2
)

(23)

Q̇ = −I (24)

İ = −1
L(x)

(
RI − Q

C
+ µ0

N2

l2 A1(µ1 − µ2)f1(x)vI

)
. (25)

This procedure can be repeated to obtain the equations of motion after the
IGBT cuts the connection to the capacitor

ẋ = v (26)

v̇ = 1
m

(
−kx + 1

2µ0
N2

l2 A1(µ1 − µ2)f1(x)I2
)

(27)

İ = −1
L(x)

(
RI + µ0

N2

l2 A1(µ1 − µ2)f1(x)vI

)
. (28)

5 Experiments

Now that a model of the kicker has been set up, we need to determine the relevant
parameters and validate that it correctly describes the real device. Most of the
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C U(0) R N A A1 l µ2 m k

1.5 mF 227 V 3.0 Ω 360 163.4 mm2 74.6 mm2 35 mm 1.000022 62 g 21.2 N
m

Table 1: Values of the model parameters for our linear kicker. The capacitance
is given by the vendor, the initial voltage is controlled by our kicker board.
The resistance of the solenoid wire can be measured by a multimeter. The coil
windings were counted when the solenoid was manufactured. The cross-sectional
areas and length were read from the CAD files for the solenoid plastic layer. The
front part of the plunger is built from aluminium, the magnetic permeability of
which is well-known. The mass of the plunger was measured with a standard
kitchen scale. The spring constant was determined by linear regression of the
dilation from known weights.

Fig. 3: Experimental setup that was used to determine the relative permittivity.
The plungers position inside the coil can be fixed by the threaded rods. The
position can be read off from the measuring tape.

parameters are either specified by the manufacturer or can be determined by
standard methods. Table 1 contains the relevant values for our linear kicking
device.

The only parameter missing from this listing is the magnetic permeability µ1
of back half of the plunger. The magnetic permeability of steel can vary multiple
orders of magnitude, depending on the exact mixture and production process
of the material. Therefore, we have to come up with some way to measure the
permeability of each particular plunger. This was done by fixing the plunger in
different positions inside the coil and observing the change of inductance.

We designed a experiments setup to achieve accurate measurement of the
plunger. The windings and the plastic part of the coil are fixed to a wooden
base board. The plunger can be moved and adjusted through the coils using two
threaded rods – one on each side. A measuring tape glued to the surface gives
indicates the current position of plunger.
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The impedance of the kicker solenoid was measured by a Bode100 device. It
generates a Bode plot of the frequency dependent impedance. An ideal inductor
has an impedance of Z = i2πfL.

However, any real device suffers from parasitic effects. At low frequencies,
the resistance of the wires dominates the impedance, at frequencies higher than
the resonance, which we observe at roughly 0.5 MHz (cf. fig. 4), the parasitic
capacitance between the coil windings becomes prevalent. A good indicator of
the inductively dominated region is that the measured phase ϕ of the complex
impedance remains flat at a value close to π

2 . Based on this, we evaluate

L ≈ |Z(f)| sin(ϕ(f))
2πf

(29)

at the frequency f = 15 kHz.
The magnetic permeability µ1 is then obtained by fitting eq. (16) to the

inductance data using the scipy implementation of the trust-region optimization
algorithm [47]. The best fit value is obtained as µ1 = 8.298 ± 0.004. The data is
shown in fig. 4.

Next, we validate the theoretical kicker model by simulating a full kick and
comparing the capacitor voltage, solenoid current and ball velocity to measure-
ments. For details on the measurement of current and voltage, refer to [2]. The
outgoing ball velocity was measured with two light barriers. The simulation starts
with the plunger at rest at a position of x0 = 7 mm. Meaning a small part of the
plunger is already inside the coil. The capacitor is discharged over the solenoid
for 6.5 ms, which corresponds to the maximal kick power that we use during the
game. The equations of motion are solved numerically with the Runge-Kutta
method of fourth order [46] and a timestep of ∆t = 1 µs. The simulation stops
once the plunger reaches x = l, at which point we assume it collides with the
ball. From energy- and momentum conservation one can derive the outgoing ball
velocity after a fully elastic collision with the plunger to be

vBall = 2mplungervplunger

mplunger + mBall
. (30)

The final ball speed from the simulation is 6.8 m
s , which is accurate to 1.4%

compared to the measured value of 6.9 m
s . The current and voltage profiles also

match the measurement well, as can be seen from fig. 5.
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a) b)

Fig. 4: Left: Plot of the absolute value (blue) and phase (orange) of the impedance.
This plot was obtained with the plunger 2.4 cm inside the coil. The resonance
is at 0.5 MHz. But the phase is already falling quickly once the frequency is
above 0.3 MHz. We no longer observe a behavior close to an ideal inductor. Right:
Inductances obtained from eq. (29) (blue dots) over the plunger position. The
position is the length of plunger inside the coil body with the higher relative
permeability (see fig. 2). In the center, the inductance behaves linearly, as the
finite size effects become negligible. Around the ends of the coil, the inductance
saturates. The dashed orange line represents the best fit µ1 = 8.298 ± 0.004 of
eq. (16) to the data.
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Fig. 5: Voltage (orange) and current (blue) profiles of the kicker. The dashed lines
represent the simulation, the solid lines the measurement. The data was manually
cut off after 6.5 ms, since the measurement was taken without the IGBT cutting
off the current.
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6 Results and discussion

Since the model matches our observations well, we can use it to make predictions
on the kick power of different kicker designs. We investigate the influence of
the spring constant, its equilibrium position, the plunger and ball mass, the
coil geometry, the start position of the plunger and the coil length, the relative
permeabilities of the two plunger materials, the resistance, capacitance and
charging voltage of the electrical circuit and the total duration at which the
IGBT allows the capacitor to discharge over the solenoid on the speed of the ball
after a linear kick.

Each parameter was varied in a region, which we deemed possibly realistic,
while keeping all the other parameters constant. Note that this does neglect
codependence in the parameters, e.g. it is typically not possible to change the
magnetic permeability of the plunger without changing its material, which will
in turn also affect its mass. Since the parameters describing the geometry of the
solenoid, namely l, A and N only enter the equations of motion in the form of
the factor A N2

l2 , we only consider the dependence of the kick power on this total
factor instead of each of these parameters independently. However, the length of
the coil does need an independent consideration nontheless, since it also affects
the length the plunger needs to travel in the simulation before it hits the ball.

We want to particularly motivate our choices of ranges for µ1 and µ2, since
they might be surprising at first glance. We consider values of µ1 in the range of
1 to 200000, the former representing a completely non-magnetic material and the
latter being a typical value for iron. For µ2 we decided to also consider diamagnetic
materials, which would be repelled by the magnetic field and therefore contribute
an additional accelerating force to the plunger.

The results are shown in fig. 6, fig. 7 and fig. 8. Whenever the possible range
of values comprises more than two orders of magnitude, we opted to scale the
x-axis of the plots logarithmically.

There are a few points we want to highlight. First, the nonlinear nature of
the equations of motion clearly becomes visible in the results. The kick power
either plateaus or exhibits a local optimum for parameters like the plunger mass,
coil and plunger geometry, relative permeabilities, and capacitance.
We awant to highlight that the kick power in our current setup would be maxi-
mized by a plunger with µ1 ≈ 100 and decreases for higher values. The explanation
for this is that for high values of µ1 the plunger induces a considerable counter-
voltage already at slow velocities, inhibiting the capacitor from running current
through the solenoid. Other parameters, like the spring constant and equilibrium
position, the mass of the ball and the charging voltage show a mostly linear
impact on the ball speed in the considered range. The kick power is most sensi-
tive to the plunger cross-section, to µ1, to the resistance of the coil wire, to the
capacitance and to the charging voltage.
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Fig. 6: Influence of the spring constant, spring equlibrium position, plunger mass,
ball mass, plunger and plastic coil body on the outgoing ball speed. The geometry
factors are defined as AN2l−2 and therefore unitless. The dashed line represents
the current value in our robot.
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Fig. 7: Influence of the plunger start position, coil length, relative permeabilities,
coil wire resistance and the duration at which the capacitor is discharged on the
outgoing ball speed. The dashed line represents the current value in our robot.
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Fig. 8: Influence of the voltage at which the capacitor is charged and its capacitance
on the outgoing ball velocity. The dashed line represents the current value in our
robot.

7 Summary and outlook

In this paper, we presented a physical model of the inductive kicking mechanism
in our robots. The model is based on Lagrangian mechanics, which allows us to
derive the equations of motion for both the electrical and mechanical degrees
of freedom simultaneously. Further, we describe a method of experimentally
determining the magnetic permeability of the magnetic part of the plunger by
observing the change of inductance as the plunger is moved through the solenoid.
Moreover it was validated that our model matches observations made from the
real kicking device. We observe that the behaviour of the kicker is nonlinear, with
many parameters showing either saturation or local optima in the kick power.

In the future we want to use the model to aid in our design of the kicker module
for the next robot generation. Since the runtime of an individual simulation is on
the order of a second, one could for example wrap the simulation in a black-box
optimization algorithm to automatically find a set of parameters within given
constraints that optimize efficiency or overall power of the kick.
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