
2024 Team Description Paper: UBC Thunderbots

Ahmad Abousalehc, Arun Balamuralia, Ben Blaire, Rocky Caod,
Musa Chararab, Lauren Cheef , James Coffinc, Jeanette Guof , William Hab,

Florian Haasf , Tara Kongb, Raiaan Khane, Clinton Leef , Omri Levye,
Ryan Nedjabatb, Mark Phungc, Amtoj Sidhue, Dannon Sturnc,

Matthew Tongb, Boris Vasilchikova, Kenny Wakabad, Nima Zareiana,
Saurav Bannaa, Paul Zhouf , Yichen Benjamin Zhoue

Departments of:
(a) Computer Science, (b) Electrical and Computer Engineering,

(c) Engineering Physics, (d) Integrated Engineering,
(e) Mechanical Engineering, (f) Applied Science

The University of British Columbia
Vancouver, BC, Canada
www.ubcthunderbots.ca

robocup@ece.ubc.ca

Abstract. This TDP details design improvements and innovations UBC
Thunderbots has made in preparation for RoboCup 2024 in Eindhoven,
Netherlands. The team’s primary goal was to investigate and resolve is-
sues surrounding trajectory control and ball placement in the newest
generation of robots used at RoboCup 2023. The secondary goal was
to innovate on previous systems in these robots for design efficiency
and usability. We additionally describe the wide-ranging software ar-
chitecture improvements to robot software, motion planning, strategy
and planning, simulation, and visualization that were implemented since
RoboCup 2021.
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1 Introduction

UBC Thunderbots is an interdisciplinary team of undergraduate students at the
University of British Columbia. Established in 2006, it pursued its first compet-
itive initiative within the Small Size League at RoboCup 2009. The team has
consecutively competed in RoboCup from 2009 to 2023 and is currently seek-
ing qualification for RoboCup 2024. Over the past year, the team has trialed a
variety of new solutions and upgrades in pursuit of the Division B title. This pa-
per details UBC Thunderbots’ new developments in mechanical, electrical, and
software systems to compete in RoboCup 2024.
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2 Mechanical

For 2023-2024, our mechanical team has focused on making improvements to our
previous robot design, including upgrades to the chipper, dribbler, and chassis
system. We have also been improving our robots’ robustness and manufactura-
bility by optimizing several component designs detailed in the sections below.
Our most recent CAD model is shown below in Figure 1.

Fig. 1. Mechanical Top Level Assembly

2.1 Dribbler Assembly

Our previous dribbler system introduced a section for directly hosting the break-
beam control boards[1]. However, issues were found with the wires meshing
against our drivetrain wheels. This year, several design changes were made to
improve our dribbler.

Fig. 2. June 2023 (left) and January 2024 (right) Dribbler Designs.
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Internal Gear In our previous robot design [1], the motor and dribbler gears
were placed on the exterior of the left dribbler plate. Thus, the wires connecting
the break-beam side PCBs to the break-beam control board had to be routed
through the back of the crossbar using cable holders extruded out from the
rear face of the crossbar. However, during gameplay, loose wires would slip
out of the holder through the opening of the cable holder, and get caught in
between the gears, effectively interrupting the dribbler and disconnecting the
breakbeams.

To eliminate this issue, we modified the crossbar into three different compo-
nents while maintaining the original length of the dribbler, as shown in Figure
2. We 3D printed the two crossbars and water-jetted the motor mount plate us-
ing aluminium to mitigate unnecessary vibrations and potential warping during
gameplay. The extruded cable holders on the rear-face of the crossbar have been
rotated 90 degrees, and shifted to the top ledge of the crossbar. In addition, the
bottom edges at the entrance of the cable holders have been chamfered by 3mm
at 45 degrees to prevent sharp edges from cutting into the cables. With these
modifications, it allowed us to shift the motor and dribbler gears into the inte-
rior of the left dribbler plate. As a result, we are now able to connect the PCB
wires directly to the control board without the possibility of them impeding the
dribbler gears. The new design can be seen in Figure 2 above.

Testing Rig Due to issues with wear on rollers, and inconsistency with centering
the ball while dribbling, we wanted to build a test rig to find the optimal roller
height. The plan was to create a rig (Figure 3) that would allow us to mount
the full dribbler subsystem, and translate it up and down relative to a base.
This allows us to run the dribbler at different heights relative to the "ground",
independent of the entire robot. To simulate movement, we place a rectangle of
carpet beneath the ball in the test rig while it is dribbling, and manually slide
the carpet left, right, forward, and backward. This allows us to qualitatively
analyze the effects of different rollers at different heights on the ball while the
robot is in motion.

Fig. 3. Dribbler Testing Rig.
Next Steps By our calculations, the height of the roller center should be
43.94mm from the ground for maximum efficiency. According to the SSL rules,
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the ball can go in a maximum of 20%.

Fig. 4. Top View of Ball in front of Roller
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We then used the θ above to derive the optimum height:
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Fig. 5. Side view of Roller and Ball
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We took R = 42.82
2 mm (Ball radius) and r = 7.36 mm (Roller radius). With

these values, the maximum height for 80% of the ball being outside of the robot
should be: h = 43.94 mm. However, after rigorous testing, we observed that the
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optimum height is slightly lower at 37.50 mm. At heights higher than that, the
dribbler has a tendency to "eat" the ball, which then results in a 5th wheel and
moves the robot even if we’re running a stationary test.

2.2 Chipper

The goal for chipper this year was to eliminate inconsistencies between robots,
ensure that they don’t get stuck after chipping, and produce a simpler, more
efficient chipper design. The new design idea is to revert to direct impact or
forward moving chipping systems to resolve these issues and potentially create
a more powerful chip.

The chipper design is shown in Figure 6. The front surface and arms of the
chipper were waterjetted with steel and the base of the chipper was 3D printed
using PETG. The metal parts of the chipper were connected with screws to
captive nuts in the printed base. The goal of this design was to make the chipper
easy to manufacture without sacrificing durability and keeping it lightweight.
From initial testing, the chipping distance improved to 230cm on average.

The challenge with this design was shifting the chipper solenoid low enough so
that the plunger could directly hit the back of the chipper. To accomplish this,
the solenoid was designed to be slimmer with a flat rectangular shape. A cutout
in the base plate was made so that the solenoid could sit within the base plate
just above the ground itself. A PLA 3D printed solenoid housing secures the
solenoid to the base plate from the top. The solenoid plunger was also modified
to have a smaller profile and reduce the size of the cutout in the base plate by
integrating the return mechanism inside the plunger. The return spring is fitted
in a slot in the plunger and hooked to the plunger at the front. The end of the
spring is connected through a screw at the back of the solenoid. A TPU damper
is installed at the back of the plunger to reduce the impact.
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Fig. 6. Chipper Assembly.

2.3 Chassis

At RoboCup 2023, our team noticed that our robots occasionally changed di-
rection suddenly and unexpectedly. After reviewing gameplay and test footage,
it was determined that the front wheels on the robots sometimes lose contact
with the ground, especially while accelerating. A simple fix to this problem was
to lower the center of gravity of the robots to reduce wheel slippage, and thus
reduce the likelihood of sudden trajectory changes while accelerating. 3D printed
risers as seen in Figure 7 have been added to the 2024 fleet of robots to lower
the overall center of gravity. The PETG risers are installed under the motor
mounts behind each wheel, lowering the robot by 4 mm. The risers were also
designed with an extended base behind the motor mounts to better support the
wheel assemblies during gameplay. Changes were not made to the motor mounts
directly as their manufacturing cost was very high - adding risers seemed to be
more efficient.

Fig. 7. Wheel Riser

Further Action While the risers were an apt solution to the robots not driving
straight, we are still investigating this issue. The wheel modules our team is
currently using have been a part of our robot since 2020 [2] - many have worn
out due to wear and tear. As a result, some parts made of weaker materials have
undergone misalignment and bending. These minor shifts add up and may have
been the primary cause of the robots’ misaligned movement. Aside from the fixed
height for the wheel risers, we added washers of different heights underneath the
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motormounts as necessary to align them - running the square path test using
the GUI diagnostics tool showed that the washers improved the motion greatly
and thus confirmed our issue.

3 Electrical

3.1 Electrical System Overview

This year’s general electrical stackup did not change from last year. We fixed
bugs that plagued us in Robocup 2021 and 2022, and implemented new quality
of life improvements to automate robot testing. We also recognized some short-
comings in our current electrical design and began a multi-year effort to overhaul
the motordriver board, find a Jetson Nano replacement, develop a robust radio
solution, and more.

3.2 Power Board

In 2022 and 2023, when the power board would kick or chip, the Jetson Nano
and/or Motordriver board would reset, causing our robot to lose control of the
motors. After taking some measurements on PGND (noisy ground housing HV
regulation, IGBTs, etc.) and 5V with GND (quiet GND housing ESP32, commu-
nication circuitry, etc.) during a kick, we produced Figure 8. These lines show
significant ringing during a kick (as much as +/-4.8V on PGND). Note here
that due to the long length of the probe’s ground wire during the measurement,
this likely resulted in amplification of the measured ringing, and in reality the
ringing was likely not as large (or else we would have noticed the Jetson Nano
and other circuits being damaged).

Fig. 8. Power Board v3.5 Quiet and Noisy GND Separation (Left) and PGND Ringing
(± 12V) With GND as Reference During a Kick (Right).

To solve this issue, last year we primarily looked into galvanic isolation between
the HV side and the LV side, but due to the cost, complexity, and board space
required to implement full isolation, the team went in a different direction.
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Fig. 9. PGND Ringing with GND as Reference During a Kick With 2Ω 1.5nF Snubber
Added

Instead of trying to contain the ringing in a localized area, as we would have done
with isolation, the team decided to damp the ringing at the source by adding
an RC snubber across the IGBT collector-emitter, as shown in Figure 11. The
addition of the untuned snubber allowed us to kick weakly without resetting, but
would reset at higher kick strengths. We then slowly increased the capacitance
of the snubber so that more of the ringing energy is dissipated, resulting in lower
ringing amplitude. At a snubber value of 1Ω and 1nF, the robot was able to kick
at max strength without resetting, so we added a 1.5x safety factor to account
for robot-to-robot assembly differences. With the snubber added, the PGND and
5V lines were measured again, as shown in Figure 10, and the ringing amplitude
was reduced to 80mV in the case of the 5V line, a 60x reduction.

Fig. 10. 5V Ringing with GND as Reference During a Kick With 2Ω 1.5nF Snubber
Added
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3.3 Motor Driver Board

The motor driver board is undergoing a two-year redesign towards a solution that
is simpler to implement and easier to maintain in a student design team setting.
Our current motor driver PCB uses Trinamic controllers and drivers, which
come in 76-pin QFN packages that are difficult to solder manually and debug.
Furthermore, we seek a motor driver IC that integrates the controller and driver
into one package to mitigate the PCB complexity and streamline the design
process. We will also reroute the SPI buses to increase the communication speed
from 2MHz to 10MHz. This redesign will be a helpful case study for other teams
in the league aiming for a combined controller-driver architecture to simplify
their motor driver PCB design.

We identified STM’s STSPIN32F025x (STSPIN) IC family as the most promis-
ing integrated motor driver solution for our needs. The STSPIN chip embeds an
STM32 MCU and a gate driver within one package, reducing board size. The
available QFP package with exposed leads eases the soldering and debugging
process for new design team members. STSPIN also implements FOC for ex-
cellent motor control. After working with the chip’s evaluation board (STM’s
EVSPIN32) to validate the motor driver and fine-tune the control parameters,
the team is designing a custom PCB solution for our robots using the STSPIN
chips. On the firmware side, we are utilizing the STSPIN motor control library
with SPI to communicate between the Jetson Nano and the motor driver board.
Furthermore, we are considering implementing a custom command interface to
tailor commands to our needs.

3.4 Radio Board

When using Wi-Fi during competition, complications such as network congestion
and bandwidth interruption could possibly occur. In the past, we used NRF
radio chips but their limited payload byte size and power supply stability issues
caused significant packet loss, making them extremely unreliable in competition.
To address this issue, the team is investigating using the E28-2G4M12S which
is designed based on the SX1280 module. The E28-2G4M12S will allow the
team to utilize the LoRa protocol and communicate with the robots during
competition. The team aims to reduce packet loss significantly (to avoid the need
for ACKs) and add support of multicasting messages to all robots simultaneously.
The latency which includes queuing and transmission for the AI computer and
the latency for receiving the message for six robots will be parallelized in this
new architecture which will significantly reduce latency. We are aiming for this
radio solution to provide a reliable backup in case of Wi-Fi complications at
Robocup.

3.5 Breakbeam Board

Version 1 of the Breakbeam (BKBM V1) board was introduced in our 2023
TDP to enhance the reliability of our ball detection capabilities, however, the
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RoboCup 2023 competition revealed that the IR LED connections were shearing
off during a head-on collision. Consequently, the robots incorrectly perceived
the IR beam as broken, leading them to believe they had control of the ball.
Unfortunately, our software could not address this issue, causing our robots to
remain stationary in the middle of the field.

Fig. 11. BKBM V1.1 Design

In response to the challenges faced during RoboCup 2023, BKBM V1.1 was de-
veloped with several modifications to minimize the risk of recurring failures:

1. Introduced a GPIO from the control board to detect cable shearing.

2. Replaced cable headers with through-hole connectors for a lower profile.

3. Incorporated Zener diodes to safeguard logic circuits from static electricity
generated by vibrations in the dribbler assembly.

3.6 Linux Computer Research

Over the past few years, we have used Nvidia’s Jetson Nano Dev Kit, being
an excellent computer for most processes, including robot control algorithms
and serial communication across the hardware. However, as Nvidia has stopped
its production, prices haven been rapidly increasing for the Nano’s, and there
is a risk of not being able to obtain any new ones in the future, if the stock
continues to decrease. The Jetson Nano also had some disadvantages like a timer
which limited the communication between software on the computer, and the
hardware of the robots, leading to a high input delay. Additionally, the Nano
is now outdated and several alternatives have a higher computing power, which
could ultimately lead to more successful competition. For those reasons, we have
decided to upgrade all Jetson Nano’s to the newest Raspberry Pi 5 which runs
on the same CPU architecture as the Nano but has a three times higher expected
performance. This does not only help us to reduce the flaws from the Nano, but
will also equip us with the newest high-tech in the industry for robotics.
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4 Software

All our software and firmware is open-source, and is available from our git repos-
itory: https://github.com/UBC-Thunderbots/Software.

4.1 Robot Software

Due to our transition to Linux-based Jetson Nanos in 2022 [3], our firmware
architecture required a full redesign. Our previous architecture, as outlined in
our 2014 TDP [4], involved using an ARM-based STM32F4 running FreeRTOS
with a GCC compiler. However, the Jetson Nano offered us the chance to share
a common software stack with our C++ gameplay software, simplifying the
complexity of software written for the robots and encouraging more contributors
on a student design team with limited experience. Furthermore, we could use
built-in Linux abstractions to simplify hardware interactions, using libraries such
as spidev for communication over SPI to the motor driver [5]. Finally, we can
leverage a large number of open-source tooling to simplify robot configuration
and robot fleet management. Below, a subset of tools are described:

systemd: firmware persistence at any cost Systemd [6] is a system and
service manager built-in to most Linux distributions. By setting up our main
loop as a system service, we ensure that any errors or crashes during gameplay
will be restarted by systemd and in the event of a full power loss, the operating
system will automatically start after reboot. Systemd can handle the initializa-
tion of certain services that our code depends on, such as the initialization of
a WiFi internet connection through Linux’s NetworkManager, and simplifying
our written control logic.

Redis: robot-specific configuration REDIS [7] is a powerful, open-source
in-memory key-value store. Robot-specific configurations such as robot IDs and
calibration constants for the kicker and chipper are stored within REDIS.

Ansible: fleet deployment Ansible [8] is an IT automation tool specializing
in deployment to remote devices through SSH. By creating "playbooks", Thun-
derbots has simplified the process of deploying robot software to one or more
robots and standardizing robot setup and flashing across its entire fleet through
a single command.

We have written playbooks for:

– Compiling robot software and flashing it onto the Jetson Nano as a systemd
service

– Create custom robot diagnostics tests for various electrical and motor com-
ponents

– Updating firmware on the robot itself

https://github.com/UBC-Thunderbots/Software
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4.2 New Trajectory Planner

Motivation In our 2023 TDP [1] we proposed a new motion planning ar-
chitecture which used the ENLSVG path planner [9] coupled with the HRVO
algorithm [10] for local obstacle avoidance, to replace our old path planner,
Theta*. This was achieved by incorporating the ENLSVG path planner into our
AI and the HRVO obstacle avoidance algorithm onto each robot’s Jetson Nano.
Our main goals with this new architecture consisted of improving the runtime
performance of our AI while allowing the robots to be more responsive to their
environment by locally simulating the evolving state of the world.

The old motion planning architecture (ENLSVG with HRVO), although func-
tional, had several drawbacks which were initially overlooked and impeded the
robot’s performance. Firstly, the ENLSVG path planner, similar to many other
common path planning algorithms, generated paths which did not take into ac-
count the robot’s kinematic constraints. This often resulted in robots deviating
off of computed paths, and in the worst cases, colliding with other robots. Sec-
ondly, the HRVO velocity planner was slow to navigate around obstacles close to
the robot it was running on. This was due to the objective being to minimize the
distance to the destination point, which led to incredibly slow lateral movement
around obstacles.

Fig. 12. HRVO navigating around a close by obstacle at a very slow velocity (left) and
ENLSVG generating paths with sharp edges that the robots did not track accurately
(right).

Another limitation was that obstacle avoidance was performed only based on
the current state of the world, and did not take into account the future state of
the world including where the robot might end up. This led to cases where the
robot could not navigate around a wall of enemy robots to a destination on the
other side, as it would attempt to navigate through the wall and either collide, or
come to a halt. Various solutions were attempted to overcome this limitation of
the algorithm, however, most of which resulted in a reduced obstacle avoidance
accuracy.
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One other reason we considered moving away from ENLSVG was due to the
code’s complexity which made it difficult to maintain and extend. There were
simple bugs that could only be fixed through a major refactor of the library
code, which was often written in a non-maintainable fashion. When switching
to the HRVO planner, we faced the same problem, yet this time we attempted
to refactor most of the code in order for it to be more readable and extendable.
Unfortunately, there were some areas that still needed major work, and it was
decided to switch to a simpler and more maintainable system for future software
members.

These fundamental limitations of our architecture led us to rethink our approach
and establish clear requirements for a new design. These included:

– Elimination of grid representation of the field and obstacles in favour of
planning over a continuous space for more precise collision detection and
reduced overhead of computing the blocked grid cells.

– Integration of other robots’ velocities and trajectories into trajectory evalu-
ation.

– Improved modelling of robot’s motion by considering its kinematic con-
straints.

– Optimizing for minimum time to destination as opposed to minimum dis-
tance travelled.

After investigating various different solutions, we believe that adopting a trajec-
tory planner, akin to the Bang Bang Trajectory Planner proposed in TIGERs
Mannheim’s 2019 TDP [11], will address these requirements and enhance our
robots’ performance in the dynamic and competitive environment of Robocup
SSL. Furthermore, trajectory planners have been utilized by multiple teams in
the SSL league with great results which solidified our decision to move in this
direction.

New Architecture Our trajectory planner implementation is written in C++.
In our new architecture, our AI computer runs an instance of the trajectory
planner per robot which returns the best sampled trajectory every tick, which
is then sent to the robots. Given that we have Jetson Nanos on our robots that
also run C++ binaries, the trajectory type information is shared between the
AI and the robot software. This allows us to send a list of trajectory parameters
to the robots, so the robots can reconstruct the best trajectory locally, and step
through it to generate the velocity commands at a higher frequency than our
AI. The parameters used to generate the trajectory are serialized using Protocol
Buffers and communicated over WiFi to each robot.

Next Steps With the robots not simulating the current state of the world using
the HRVO algorithm anymore, we have been able to significantly reduce the
communication bandwidth required between our AI and robots from ∼1500 bytes
per AI step per robot to <100 bytes. Given the reduced required bandwidth,
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our team is planning to perform additional tests comparing communication over
radio with WiFi.

4.3 Automated Field Testing

In our 2023 TDP [1], we mentioned our efforts to develop a continuous in-
tegration automated test suite for AI behavior to prevent regression. We also
mentioned being able to replay a previous simulation to analyze AI decisions
with a PyQtGraph based framework, which has served us well to determine the
root cause of unwanted AI behaviors. However, there were still two gaps which
needed to be addressed:

– Flaky AI tests, which led to unreliable regression testing

– Difficulty in replicating a simulated test with real robots

To address the first issue, we developed an aggregate testing framework for tests
involving high-level AI behavior for which exact, discrete validation could not
be made. Through this, tests are run multiple times and their results are ag-
gregated. They are then compared to a pre-determined threshold which ensures
AI quality while leaving room for non-determinism, making our regression tests
more reliable and more accurate.

To address the second issue, we developed a field testing framework, which lets
us execute a pre-determined situation using real robots on the field instead of
simulated ones. This extends our existing PyTest testing framework, making it
easy to generate new reproducible testing scenarios or port over existing simu-
lated tests to the real world. Being able to test and compare our motion planning
frameworks outside of simulation has significantly helped with the tuning and
the verification time needed.

Driving Straight During the testing stages for HRVO algorithm and Bang
Bang Trajectories, we found that having both an easy-to-use diagnostic tool
and a general physical testing framework has allowed for improved analysis of
the robots and better triaging of issues among the entire team. In particular,
Thunderscope includes a GUI diagnostics tool that allows for testing linear and
rotational movement of the robot. The tool transforms velocity vector inputs
into individual motor controls, which allows testers to isolate physical issues
with the robot from software issues and tuning issues derived from high-level
motion planning. Additionally, using the field test framework, a common test
that we have frequently performed is to have the robot drive along a square path
while facing the same direction relative to the field, in order to test each axis
of movement (forward, backward, and side-to-side). This allowed us to further
diagnose and tune the motion planning frameworks, as well as compare the
individual physical robot movement for further diagnosis.
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4.4 Lane-Based Defense

We implemented a new defense strategy capable of breaking up passing plays
involving multiple opponent robots. The strategy first identifies threats that de-
scribe the positions of enemy robots; then, it determines open lanes between
threats and the goal that represent possible shooting or passing options the en-
emy team can take. The lane geometry is used to generate defensive assignments
describing locations on the field a defender could target to block a potential en-
emy pass or shot on goal.

An advantage of a lane-based positioning algorithm for defenders is that near-
collinear and neighbouring lanes can be grouped together and be treated as a
single lane. The concept is based on the defense system described in TIGERs
Mannheim’s 2017 TDP [12], which groups together clusters of robots with a
similar angle to the goal. Blocking a lane group representing the sightline of
multiple enemy robots requires only a single defender; this frees up the number
of available defenders to cover other lanes and creates a more balanced defensive
coverage against the attacking team. Defenders can also be positioned at the
intersection of multiple lanes, enabling a single defender to block both a shooting
lane and passing lane simultaneously.

Lane groups are determined by comparing each lane with each other for ap-
proximate collinearity. Two lanes modelled by line segments AB and CD are
considered near-collinear if the convex angle between them is less than a thresh-
old α and if the shortest distance from each lane to the midpoint of the two lanes
averaged together is less than a threshold β. The resultant line segment repre-
senting a lane group is produced by averaging together the group’s constituent
lanes.

Fig. 13. Determination of approximate collinearity of two lanes. For AB and CD to
be considered near-collinear, angle θ must not exceed threshold α and the distances
dAB and dCD must not exceed threshold β.
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5 Conclusion

We believe that the design changes detailed above will lead to significant im-
provements in performance. We look forward to implementing these designs at
RoboCup 2024.
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