
TurtleRabbit 2024 SSL Team Description Paper

Linh Trinh?, Alif Anzuman, Eric Batkhuu, Dychen Chan, Lisa Graf??, Darpan
Gurung, Tharunimm Jamal, Jigme Namgyal, Jason Ng, Wing Lam Tsang,

X. Rosalind Wang[0000�0001�5454�6197], Eren Yilmaz, and Oliver
Obst[0000�0002�8284�2062]

Western Sydney University, Locked Bag 1797. Penrith NSW 2751, Australia
Website https://wsu-turtlerabbit.github.io/

Corresponding author: o.obst@westernsydney.edu.au

Abstract. TurtleRabbit is a new RoboCup SSL team from Western
Sydney University. This team description paper presents our approach
in navigating some of the challenges in developing a new SSL team from
scratch. SSL is dominated by teams with extensive experience and cus-
tomised equipment that has been developed over many years. Here, we
outline our approach in overcoming some of the complexities associated
with replicating advanced open-sourced designs and managing the high
costs of custom components. Opting for simplicity and cost-e↵ectiveness,
our strategy primarily employs o↵-the-shelf electronics components and
“hobby” brushless direct current (BLDC) motors, complemented by 3D
printing and CNC milling. This approach helped us to streamline the
development process and, with our open-sourced hardware design, hope-
fully will also lower the bar for other teams to enter RoboCup SSL in
the future. The paper details the specific hardware choices, their approx-
imate costs, the integration of electronics and mechanics, and the initial
steps taken in software development, for our entry into SSL that aims to
be simple yet competitive.

Keywords: RoboCup · BLDC Motor Control · open-source hardware ·
cost-e↵ective design

1 RoboCup Small Size League without the custom PCBs

Our team, TurtleRabbit, aims to qualify as a new participant for the RoboCup
2024 Small Size League (SSL). SSL is one of the oldest leagues in RoboCup, and
despite strong participation in its earliest days [16,5,7], it has been 20 years [3]
since an Australian team qualified for participation in this league. Many of the
currently participating institutions have a long history and tremendous experi-
ence, which is evident from their extended team descriptions and some of the
open-source designs. This experience is reflected in the level of detail with which

? Authorship: team lead first, contributors in alphabetical order, academic lead last.
?? Lisa Graf is with the Neurorobotics Lab, Universität Freiburg, Germany, and was a

visiting researcher at Western Sydney University, Jan/Feb 2024.

https://wsu-turtlerabbit.github.io/


2 L. Trinh et al.

parts of the designs are created, whether to save space, ease maintenance and
repairs, or to ensure longevity and protect the components. While this sophisti-
cation in the design of the robots appears to be a factor in their success, it poses
significant technical and financial barriers for new teams such as ours in repli-
cating these successful approaches. Creating a team comparable to most of the
existing ones requires expertise in fabricating custom circuit boards, mechan-
ics, and software, ranging from low-level controllers to methods that determine
high-level team actions.

Contrary to this trend, our strategy is deliberately simple and relies on
(mostly) o↵-the-shelf components. As a result, our robot locomotion hardware is
limited to a single Raspberry Pi 4 (RPI), paired with a MJbots PiHat and mo-
teus controllers for relatively inexpensive BLDC drone motors. This approach
accelerates our development and reduces cost and complexity. For controlling
our kicker and dribbler, we employ an Arduino Every board connected to the
RPI.

2 Electronics and motors

Most teams in RoboCup SSL use high-quality BLDC motors for their robots,
from electronic manufacturers such as Nanotec, Maxon, Moons, both for driving
and dribbling. The relatively high cost of these motors and their controllers can
be an obstacle for a new team. We have opted for an approach with cheaper
BLDC drone motors, an approach also taken by the GreenTea SSL team [14].
For the drive motors, we use a Tarot Martin 4008 brushless drone motor. We use
MJbots moteus r4 controllers [12] to turn our drone motors into servo actuators.
The moteus boards integrate the necessary drive electronics for 3-phase brushless
field-oriented control of BLDC motors, with an STM32G4 microcontroller, an
absolute magnetic encoder, and a 5Mbps CAN-FD interface. Moteus boards are
commercial, o↵-the-shelf controllers with an open source firmware, originally de-
veloped for quadruped robots. Their on-board absolute encoder has been placed
close to a diametrically magnetised magnet that we mount to the secondary out-
put (rear motor axis) with a small 3D-printed holder. Moteus boards support
position, torque, and velocity control modes. For our robots, we use the boards
in velocity control mode.

The controller boards support communication with a CAN interface with
flexible data-rate (CAN-FD), and are connected to a Raspberry Pi 4b with an
MJbots pi3hat. The pi3hat attaches to the Raspberry Pi GPIO and provides 5
independent CAN-FD interfaces. The pi3hat also powers the Raspberry Pi and
contains a 1 khz Attitude Reference System / Inertial Measurement Unit (IMU);
in its current stage our software does not make use of the IMU yet though we
plan to integrate the data into our world model for the 2024 competition. Similar
to the moteus boards, the MJbots pi3hat firmware is also open source.

To distribute power from a 6S1P Lithium Polymer battery (Lipo) to motors
and controllers we use an MJbots power distribution board that also pre-charges



TurtleRabbit 2024 SSL Team Description Paper 3

high capacitance loads like BLDC motors to protect the controllers, and allows
software-controlled shut down.

For the qualification stage, we integrated a single (straight) kicker device us-
ing an o↵-the-shelf push-pull solenoid powered using a DC-DC boost converter to
increase its strength, and controlled using an Arduino Nano Every. The Arduino
is connected to the Raspberry Pi over USB. The solenoid provides a reasonably
strong “kick”, though custom designed kickers (see, e.g., [2,4]) appear to be ad-
vantageous. Our design also leaves su�cient space for a secondary chip-kicker
but is currently not integrated into our robots.

Our dribble device is currently still under development and being tested. In
order to save costs, we opted for a BLDC micro drone motor, controlled from the
Arduino Every using a 20A XRotor ESC. The dribbler is powered by a separate
2S1P Lipo.

An overview of the electronic components along with their approximate prices
converted to US$ can be found in Table 1. Additionally required are connectors
and cables for power, USB and CAN bus, and potentially additional onboard
sensors, such as a camera or other sensors for ball detection, if not included with
the Raspberry Pi.

The components we chose are mostly o↵-the-shelf and allowed us to develop
the robot without having to create custom PCBs and without designing custom
control boards. One potential disadvantage of cheaper drone motors compared
to the more “professional” BLDC motors used by many other teams is their
higher cogging torque, resulting in less smooth motion at low RPM. Apart from
simply using faster speeds, a solution to this problem is to adjust moteus con-
troller board parameters in order to compensate for cogging torque (resulting in
an overall lower torque bandwidth). So far we have not found this adjustment
necessary.

3 Mechanical design

For the initial mechanical design, we investigated both a 3-wheeled and a 4-
wheeled setup. While a 3-wheeled setup appeared attractive because of overall
lower costs, the more conventional 4-wheel configuration makes it easier to evenly
distribute weight and also leaves more space along the longitudinal axis, e.g., for
kicker or battery. We kept the two front wheels at a 120� angle (as they would
be in a 3-wheel configuration) to make space for a kicker and dribbler, and the
two rear wheels at a 90� angle from each other (see Fig. 1 left). Since our motor
controllers need to be close to the (relatively flat) drone motors, they have to be
mounted vertically resulting in a mechanical design di↵erent to most teams with
exception of GreenTea [14], though the subsequent sections will also highlight
some di↵erences to their approach. Our custom mechanical parts are machined
on a Makera Carvera Desktop CNC, or printed on Ender 5+ and Bambu Lab
X1-Carbon 3D printers. We used (mostly) Fusion 360 for design; all designs and
STEP files are available on our GitHub1.
1 https://github.com/WSU-TurtleRabbit

https://github.com/WSU-TurtleRabbit


4 L. Trinh et al.

Table 1: Electronic components used per robot. Prices are approximate and per
item. Total electronics costs for a single robot adds up to approx. US$1,045 (or
AU$1,600).
Component Specs Price (US$)

(4⇥) Tarot 4008 Martin BLDC Motor 85 g weight, 44.5mm diameter, 55.00
(18N/24 Pole 330KV) 22mm height, 497W power

30A max continuous current
(4⇥) MJbots moteus controller 3 phase brushless FOC based 75.00

control, 10-44V, 500W peak
power, 100A peak phase current

MJbots pi3hat r4 4⇥ 5Mbps CAN-FD bus, 1⇥ 150.00
125 kbps CAN, 1 kHz IMU, I2C

MJbots power dist board r4 CAN-FD bus, energy monitoring 150.00
Raspberry Pi 4 Model B 4GB, 32GB uSD card 80.00
Arduino Nano Every 16.50
RCinpower GTS V3 1003 micro motor 10 000KV, 3.45 g weight 15.00
XRotor ESC 20A, 2S-4S 15.00
(2⇥) DC-DC Boost Converter 45-390V output 5.00

(we currently use only one)
(2⇥) Push-pull solenoid (Adafruit) 144 g weight 25.00

(we currently use only one)
6S1P Lipo Battery CNHL Ministar 1000mAh 45.00
2S1P Lipo Battery CNHL Ministar 450mAh 24.00

Fig. 1: Left: Render of the base plate with wheel arrangement and kicker (front
right wheel and controller removed, exposing motor). Centre: Intermediate stage,
plywood base plate. Right: completed, with PETG shell.



TurtleRabbit 2024 SSL Team Description Paper 5

817

6
7

6
2 5x M2

4x M3

50

A

A

A-A (1:1)

Ø8.03

3

3

4x M2.5x6

Fig. 2: The TurtleRabbit omniwheel drive with motor, controller, and motor
mount.

3.1 TurtleRabbit Omniwheel

The Tarot 4008 Martin motor is an e�cient BLDC motor designed for quad-
copters. It is a small, “outrunner” type motor with a diameter of 44.5mm, and
a height of 22mm. In order to save space, we designed the wheels so the motor
sits inside the main wheel chassis. As a result, the main wheel chassis is large,
comparing to other teams, with a diameter of 64.5mm (67mm wheel diameter
incl. subwheels, see Fig. 2).

We based the principal wheel design on GreenTea [14], who use a fully (PLA)
printed wheel chassis with a similar sized BLDC motor to ours, but we were also
concerned about mechanical and thermal issues (cf. [13]). As a compromise,
we decided to print the main wheel chassis in PETG, while machining both
the front and rear wheel covers from 3mm 6061-T6 aluminium. The aluminium
front wheel cover, directly attached to the flat front of the BLDC motor, o↵ers
thermal conductivity and heat dissipation properties critical in managing the
elevated temperatures generated by the motor during operation. We used M2
brass heat-set inserts to provide robust threading for the connection between
wheel covers and the wheel chassis.

Subwheel design Our subwheel design (Fig. 3) is inspired by Tigers Mannheim
wheel [13], with some di↵erences mostly due to availability or cost of components
in Australia. Each main wheel holds 2 rows of 15 subwheels. Each of the 30
subwheels consists of a � 2mm ⇥ 10mm steel dowel pin, two 2⇥5⇥2.5 flanged
bearings, 2 M2⇥ 0.5mm washers, and two NBR X-rings (ID 4.47mm⇥1.78mm
thickness) as “tyres”.



6 L. Trinh et al.

Fig. 3: Left: Subwheels mounted on PETG wheel chassis. Right: Subwheel ex-
ploded view, with washers, MF52 2Z bearings, NBR 4.47mm⇥ 1.78mm X-ring,
2mm⇥ 10mm dowel pin.

Fig. 4: Left: Motor mount Right: Completed drive with motor mount, wheel, and
controller.

3.2 Motor mounts, base plates, shell and other parts

Our motor mounts hold the BLDC motor on one side, and the controller on the
opposite side. In our design, they also act as the connection between base plate
and mid level plate in our design. Initially, we 3D printed the motor mounts, and
cut the base plates from 3mm plywood, but for thermal and mechanical reasons
we decided to machine the motor mounts from 8mm 6061-T651 aluminium. The
base plate is machined from 3mm 6061-T6 aluminium, and the mid-level plate
from 2mm 6061-T6. The aluminium also acts as a heat sink for controllers and
motors. Even though size and arrangement of our wheels is unique, it was very
helpful to use the open source designs from Tigers Mannheim [13] as a reference
for our base plate design.

Shells for our robots are printed using either white PolyLite ASA, or a matte
black PETG. Both are more suitable as material for the shell than PLA for
mechanical and thermal properties. For the top cover, we use black PLA-CF for
its matte visual appearance. Shells are attached to the mid plate using M4 ⇥
70mm brass stando↵s and two black thumbscrews. Kicker front and battery
holder suspended from the mid-level plate are printed in PLA-CF, and some of
the kicker mechanics is machined from aluminium.

Other parts required include stand-o↵s and various screws in M2, M2.5, M3
and M4 sizes. Our dribbler is currently still under development, and we are
planning to experiment with di↵erent kinds of tubing to investigate suitable ma-



TurtleRabbit 2024 SSL Team Description Paper 7

Table 2: Mechanical components used for one robot. Prices are approximate,
per robot. Required aluminium sheet and bar sizes are approximate and depen-
dent on supplier and CNC machine sizes. Total mechanical costs do not include
printed parts, machine time, tools, screws, or shipping; for a single robot the
listed mechanical components add up to approx. US$179 (or approx. AU$275).
Component Specs Price (US$)

120 dowel pins 2mm⇥10mm, stainless steel 3.40
240 MF52 2Z 2⇥ 5⇥ 2.5 flanged bearing 66.00
240 NBR X-rings ID 4.47mm⇥ 1.78mm 47.00
40 heat set inserts M2⇥ 4mm⇥ 3.2mm 1.00
8 wheel covers 100⇥ 100⇥ 3.18mm 6061-T6 aluminium 18.00
4 motor mounts 62⇥ 50⇥ 7.94mm 6061-T651 aluminium 26.60
4 wheel chassis, 3D printed PETG

Base plate 200⇥ 200⇥ 3.18mm 6061-T6 aluminium 9.00
Mid plate 200⇥ 200⇥ 2.03mm 6061-T6 aluminium 8.00
shell, 3D printed ASA or PETG
shell top and kicker, 3D printed PLA-CF

terials, similar to the KIKS team study in [11]. It is clear from a few approaches
(e.g., [1,8,15]) that both geometry and material selection provide a lot of space
for experimentation and design, something we have planned for the time before
the competition.

4 Field setup and communication

The o�cial playing area size for SSL Division B is 9 m by 6 m. For practical and
cost saving reasons, we set up a smaller field size of approximately 5 m by 2.75 m.
Our room has a relatively low usable ceiling, of approximately 2.65 m, and the
chosen field size allowed us to work with a single camera. As the surface, we use
a DIY polypropylene golf putting carpet from a local hardware store (US$230 or
A$350). We tried multiple cameras: (1) an ELP wide-angle global shutter camera
from AliExpress (114 degrees field of view), for approx US$90 (A$138), and (2) a
StereoLabs Zed 2i camera (120 degrees field-of-view) for approximately US$500
(A$800). Both cameras work with v4l drivers on Ubuntu; we tested both at
60Hz, though both also advertise higher supported frame rates (90Hz and 100Hz,
respectively). We decided to use one of the outputs of the stereo camera for our
current setup, as the barrel distortion for the cheaper AliExpress camera is quite
significant, while the outputs from the Zed camera appear almost undistorted
in comparison.

We are planning to experiment with larger field sizes, multiple cameras, and
virtual camera splitters for the stereo output, in order to re-create a more faithful
standard “Division B” setup, as well as to increase quality of the vision system
output.



8 L. Trinh et al.

At present, we use the Raspberry WLAN for communication between robots
and team controller. Earlier version of the MJbots pi3hat featured a spread
spectrum nRF24L01 interface, but unfortunately recent versions of the pi3hat
no longer have this component. To provide more options for communication
in radio-congested environments like RoboCup competitions, we aim to add a
similar transceiver module to the Arduino instead, as one of the next steps.

5 Software

At present, the various software modules are the components undergoing most
development in our team. We started development of the team mid May 2023.
A significant fraction of the time that we spent in the 9 months since then
went into team organisation, hardware design, and manufacturing of our robots.
Nevertheless, the software is at a stage where our robots can autonomously follow
or intercept a ball, and avoid obstacles detected by the global vision system.
We are currently working on software modules that will allow our robots to
follow the rules of the game, and there is no component that implements a
strategy or coordination between individual robots yet. We do have software
modules running locally on the Raspberry Pis that implement our motor control,
and a first level of team control running on a central machine using radio /
WiFi communication (see also Sec. 4) with the robots. We also implemented
preliminary tools to aid further development of our software. The architecture
we used to record the qualification video is based on an agent-based approach
where behaviours can be replaced on demand. For all our code we used python
as programming language.

5.1 Structure

To test and experiment with our hardware, we implemented multiple versions
of motor control on the Raspberry Pis. The purpose of our “motor control” is
to translate requests for a robot velocity into individual motor velocities. As
mentioned earlier, the moteus boards implement di↵erent control loops out of
the box, including a velocity control mode. Our motor control needs to set the
desired motor velocities for each of the four motors. Our program receives the
requested robot velocities, calculates the appropriate motor velocities using the
geometry of the robot, and passes these resulting values to the moteus controllers
via CAN bus. Any lower level control is handled by the moteus controllers and
firmware. Our python module also handles communication with the centralised
team controller.

As one of the first tests, we were also able to implement a “remote-control”
mode, where robots instantly follow keyboard commands on a computer con-
nected via WiFi.



TurtleRabbit 2024 SSL Team Description Paper 9

5.2 Path Planner

The path planner used in this study implements a Probabilistic Roadmap (PRM)
approach [9], adapted from the open source repository (https://github.com/
KaleabTessera/PRM-Path-Planning). The algorithm consists of several steps
aimed at achieving safe and e�cient robot navigation in dynamic environments.
First, a set of n random samples, called milestones, is generated within the con-
figuration space. These milestones serve as reference points for constructing a
roadmap of feasible paths. A collision check is then performed to determine the
feasibility of these milestones, ensuring that they do not intersect with obstacles
or other robots present in the environment.

We chose this specific method of path planning because it is a simple yet
e↵ective method that can serve as a reference for more modern approaches. PRM
does not explicitly deal with moving objects, for example, but using replanning
we found its performance su�cient for now, allowing us to focus on other aspects
of our system.

In more detail, the positions of obstacles are extracted from the SSL vision
system and fed into the algorithm. This integration allows the path planner to
dynamically adapt to changes in the environment, ensuring accurate represen-
tation of obstacle positions and facilitating collision-free path planning. Once
collision-free milestones have been identified, the algorithm proceeds to find the
k valid neighbours for each milestone. By connecting each milestone to its k
nearest neighbours, links are generated. These links are only retained as local
paths if they are collision free.

In addition, the algorithm incorporates a critical parameter – the number of
samples used to generate milestones. This parameter plays a key role in balancing
path e�ciency and computational overhead. While a higher number of samples
generally leads to more e�cient paths by providing a finer representation of
the configuration space, it also leads to increased computational overhead. To
address this trade-o↵, experiments were conducted to determine an optimal value
for the number of samples. In our implementation, the use of 10 samples proved
to be an e↵ective compromise, allowing the generation of diverse and collision-
free paths while e�ciently managing computational resources.

Finally, Dijkstra’s shortest path algorithm [6] is used to find the shortest
path from the start (acting robot) to the end node (target position, e.g. the
ball) within the PRM graph (see Fig. 5). Our approach is simple and easy to
implement, making it well suited as an initial path planner.

We added code to call the planner only when necessary: if there is an obstacle-
free direct path between current position and target, we remove any active plan
and just move towards the target. If the direct path is obstructed, and if there is
an active plan, we check if we can still reach the next milestone without running
into an obstacle. Only if this is not the case, we will create a new plan.

5.3 Trajectory Estimation

For the trajectory estimation of the ball we use a linear regression model. We
use linear regression to predict the trajectory of a moving ball. The system

https://github.com/KaleabTessera/PRM-Path-Planning
https://github.com/KaleabTessera/PRM-Path-Planning


10 L. Trinh et al.

Fig. 5: Path planner example for a robot moving to the ball with 20 random
milestones. The other robots are seen as obstacles. While the thin lines show
collision free paths between neighbouring milestones, the thick blue lines show
the shortest path.

uses a series of observed ball positions obtained from the SSL vision software.
By fitting a linear regression model to the last few frames of ball positions,
our system estimates the future trajectory of the ball. It then assesses whether
this trajectory intersects with the line along which the goalkeeper is moving,
indicating that the opponent will score. In addition, the framework provides
essential information such as the direction and speed of the ball’s movement, the
intersection of the ball’s trajectory with the goalkeeper’s trajectory (see Fig. 6),
so that the goalkeeper can move into position to block the ball. Furthermore,
the estimated trajectory can be used by other robots trying to receive a pass or
steal the ball.

Similar to the choice of path planner, the main reason for using linear re-
gression for trajectory estimation in our software is its simplicity and ease of
implementation. This approach follows our main design philosophy: using sim-
ple approaches to give us the time to cover many aspects of our system. In that
sense, linear regression is a “good enough” approximation (for now), in particular
with frequent re-evaluations.

5.4 Strategy

In the future, our game will feature a dynamic system where each robot is
assigned a specific role from a pre-defined list at the start of the match. So
far, we implemented a strategic positioning module that keeps track of di↵erent



TurtleRabbit 2024 SSL Team Description Paper 11

(a) Example for a the ball trajectory where the ball does go into the
goal.

(b) Example for a ball trajectory where the ball does not go into the
goal.

Fig. 6: Examples of ball trajectory estimation based on linear regression.



12 L. Trinh et al.

formations and roles the di↵erent robots will take. It defines, for each formation,
a dynamically calculated “home” position for each robot, dependent on ball
position and player role. The roles influence how much the robot position will
change with the position of the ball, and also if the robot will, in general, aim
to stay behind the ball. There is also a formation manager module that can
read the di↵erent formations from a plain text file. Similar dynamic positioning
approaches have successfully been used in other RoboCup leagues, for example
in 2D soccer simulation, in [10], using a graph-based approach.

We ran simulations with our strategic positioning module, but have not tested
on robots yet. It will add an element of strategy to the gameplay, and will also
be useful for setplays. The available roles include the goalkeeper, though this
role is possibly less influenced by the formation than other players. The goalie
will be responsible for guarding the goal area by moving along a vertical line
directly in front of the goal. With our formations and roles module we can re-
alise di↵erent types of defenders, who will be responsible for intercepting passes
and shots towards the goal from the opposing team; a main attacker, who will
focus on scoring goals and passing as needed; and the attacker’s assistants, who
will position themselves to receive passes from the main attacker and potentially
transition into the primary scoring role themselves. This role allocation mecha-
nism promises to enhance the tactical dimension of the game, providing players
with varied responsibilities and opportunities for strategic coordination.

6 Conclusion

This paper describes our first attempt in qualifying for RoboCup SSL league.
One aim of this report is to give an approximate overview of hardware costs
to establish a new SSL team, with what we believe is a solid but cost-e�cient
approach that leverages more o↵-the-shelf hardware than most other teams.
Teams in Division B have up to 6 robots on the field. With an approximate cost
of US$1,230 (A$1,900) for each of our robots, and US$730 / A$1,150 for the
field setup (excluding a PC to run the vision software), total initial cost for a
team is about US$8,110 (A$12,500). This amount does not include substitute
robots, necessary reserves for replacements of components that inevitably will
get damaged as part of the process, nor tools and other minor expenses. For
our qualification, we have completed two robots (with the dribbler still work in
progress), and an earlier robot prototype with a plywood base and 3D-printed
motor mounts.

With our open-source hardware design and an approach that bypasses some
of the complexity inherent in the designs of more established teams, we aspire
to lower the barriers to entry for the league. This is particularly aimed at those
starting in the league with a smaller emphasis on electronics engineering. Our
strategy emphasises accessibility and educational value. Our github repositories
for our hard- and software are at https://github.com/WSU-TurtleRabbit.

https://github.com/WSU-TurtleRabbit


TurtleRabbit 2024 SSL Team Description Paper 13

Acknowledgements

We extend our gratitude to Pradeshi Khadka for contributions during the early
stages of our project. Additionally, we acknowledge the support provided by the
School of Computer, Data, and Mathematical Sciences for parts of our hardware.
Our thanks also go to the Western Sydney University Robotics, Automation and
Manufacturing (RAM) Club for their administrative support.

References

1. Almagro, J., Avidano, C., Lindbeck, C., Neiger, J., Olkin, Z., Peterson, E., Stuckey,
W., White, M., Woodward, M., Burdell, G.P.: RoboJackets 2019 Team Description
Paper. Tech. rep., RoboCup TDP (2019)

2. Andringa, J., Bink, T., Bojkow, B., Bojorge-Alvarez, J.: RoboTeam Twente Ex-
tended Team Description Paper for RoboCup 2023. Tech. rep., RoboCup TDP
(2023)

3. Ball, D., Wyeth, G., Nuske, S.: A Global Vision System for a Robot Soccer Team.
In: Australasian Conference on Robotics and Automation (2004)

4. Bergmann, P., Engelhardt, T., Gareis, E., Hahn, U., Hopf, V., Möser, R., Mutter,
F., Schmid, M., Stadler, M., Wendler, A., Wiedmann, M.: ER-Force 2023 Extended
Team Description Paper. Tech. rep., RoboCup TDP (2023)

5. Chang, M.M., Browning, B., Wyeth, G.F.: ViperRoos 2000. In: Stone, P., Balch,
T., Kraetzschmar, G. (eds.) RoboCup 2000: Robot Soccer World Cup IV. pp.
527–530. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2001).
https://doi.org/10.1007/3-540-45324-5 78

6. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
mathematik 1(1), 269–271 (1959)

7. Howard, A.: MuCows. In: Stone, P., Balch, T., Kraetzschmar, G. (eds.) RoboCup
2000: Robot Soccer World Cup IV. pp. 535–538. Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg (2001). https://doi.org/10.1007/3-540-45324-
5 80

8. Huang, Z., Wang, Y., Chen, L., Li, J., Chen, Z., Xiong, R.: Mechatronic Design of
a Dribbling System for RoboCup Small Size Robot. Tech. Rep. arXiv:1905.09934,
arXiv (May 2019), http://arxiv.org/abs/1905.09934

9. Kavraki, L., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation 12(4), 566–580 (Aug 1996).
https://doi.org/10.1109/70.508439

10. Kok, J.R., Spaan, M.T.J., Vlassis, N.: Multi-robot decision making using coordi-
nation graphs. In: Proceedings of the 11th International Conference on Advanced
Robotics. pp. 1124–1129. Coimbra, Portugal (2003)

11. Miyajima, D., Naito, K., Mitsuda, H., Harada, K., Nonoyama, M., Shirai, R.,
Sato, F., Tanaka, R., Dori, Y., Sugiura, T.: KIKS Extended Team Description for
RoboCup 2023. Tech. rep., RoboCup TDP (2023)

12. Pieper, J.: Moteus controller reference manual (2024), https://github.com/mjbot
s/moteus/blob/main/docs/reference.md

13. Ryll, A., Jut, S.: TIGERs Mannheim – Extended Team Description for RoboCup
2020. Tech. rep., RoboCup TDP (2020)

https://doi.org/10.1007/3-540-45324-5_78
https://doi.org/10.1007/3-540-45324-5_80
https://doi.org/10.1007/3-540-45324-5_80
http://arxiv.org/abs/1905.09934
https://doi.org/10.1109/70.508439
https://github.com/mjbots/moteus/blob/main/docs/reference.md
https://github.com/mjbots/moteus/blob/main/docs/reference.md


14 L. Trinh et al.

14. Sato, H., Okamoto, N., Ito, A., Kayaki, S., Nakaaki, S., Nakao, T., Nishimura, Y.,
Hara, Y., Fujita, K., Yuri, R.: GreenTea 2023 Team Description Paper. Tech. rep.,
RoboCup TDP (2023)

15. Senthilkumar, A., Sidhu, A., Balamurali, A., Sturn, D., Antoniuk, D., To, D.,
Muhstaq, F., Crema, F., Bryant, H., Rovner, H., Lew, J., Wakaba, K., Zareian,
N., Levy, O., Khan, R., Cao, R., Nedjabat, R., Kong, T., Ajmal, S., Ly, S., Zhou,
Y.: 2023 Team Description Paper: UBC Thunderbots. Tech. rep., RoboCup TDP
(2023)

16. Wyeth, G., Browning, B., Tews, A.: The UQ RoboRoos Small-Size League Team
Description for RoboCup’98. In: Asada, M., Kitano, H. (eds.) RoboCup-98: Robot
Soccer World Cup II. pp. 428–433. Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg (1999). https://doi.org/10.1007/3-540-48422-1 41

https://doi.org/10.1007/3-540-48422-1_41

	TurtleRabbit 2024 SSL Team Description Paper

