
ER-Force 2024
Extended Team Description Paper

Theodor Böhm, Elisabeth Gareis, Undine Hahn, Tobias Heineken, Valentin Hopf,
Michel Schmid, Christoph Schmidtmeier, Marco Wiedmann,

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Faculty of Engineering,
Department of Computer Science, Distributed Systems and Operating Systems

Robotics Erlangen e.V., Martensstr. 1, 91058 Erlangen, Germany
Homepage: https://www.robotics-erlangen.de/

Contact Email: info@robotics-erlangen.de

Abstract. This paper presents the proceedings of ER-Force, the
RoboCup Small Size League team from Erlangen located at Friedrich-
Alexander-University Erlangen-Nürnberg, Germany.
It describes the manufacturing process of our robot covers, as well as
electronic simulations and measurements of our kicking assembly. Fur-
thermore, it explains the statistical methods we use in our strategy to
make it robust against noise in the vision data.

Fig. 1: ER-Force robot design from 2023

https://www.robotics-erlangen.de/

1 Introduction

This ETDP presents our recent improvements to the mechanics, electronics and
AI. Section 2 explains and compares our robot cover production process to other
alternatives. Subsequently, section 3 develops a simple electrical model for the
electronic part of our kicker. Finally, section 4 explores various methods to deal
with noisy data in the AI with detailed examples.

2 Mechanics - Robot Cover

The outermost part of a robot is its cover. It protects the inside during crashes,
thus it is objected to wearout. With this in mind and eventual changes in size
of new robot generations we need new covers from time to time. We use a low
cost and easy to manufacture design, which is adaptable to different robots. In
the following section we will explain the production of our cover first and give a
conclusive overview to its specific advantages and disadvantages.

2.1 Production Process

Our cover is mainly built from 1 mm thick polystyrene. Hot glue is used to
assemble the pieces. Additionally, some tools are needed: a laser cutter, an iron
pipe with approx. diameter and height of the robot, a pot with a fitting lid, a
(portable) stove top, some magnets and some heat protective gloves. The pot
needs to be big enough to fit the iron pipe - standing up - into it.

Fig. 2: The top, front and side part of our cover in order from left to right as
they are cut out by the laser

Our robot cover consist of three different parts as seen in fig. 2, which are cut
out of a polystyrene sheet using a laser cutter. The flattened view is cut out for
the bent side part. An additional fourth part is used for the vision pattern and
thus consists of a black material. This resembles the top part, but with cut-outs
for the pattern circles.

After all parts are cut, the flat side part must be brought into its circular
shape. As polystyrene is a thermosoft plastic, it can be easily deformed at a
sufficiently high temperature and keeps the shape after cooling back down. A
pot in combination with a piece of an iron pipe is used to deform the material.

2

The pot is filled with a small amount of water. As the hot steam is sufficient to
heat the polystyrene, the water should not directly touch the polystyrene once
the core is inserted into the pot.

Polystyrene may emit toxic fumes during the heating process. For this reason
we suggest using a portable stove top in the open air and masks.

Before putting the pipe in the pot, the side part is placed inside it and fixed
using magnets. Once the water starts to boil the core can be inserted into the
pot and lid put on top. The time needed to cook the polystyrene is influenced by
the temperature, the amount of water and the material used. After getting the
timing by trial and error, the process is reproducible. The polystyrene is finished
just before the pattern edges start to form waves. Once the cover side is deemed
fully cooked, the core is removed from the pot with the help of heat protective
gloves and the magnets can be removed. The cover should now retain its shape,
which corresponds to the diameter of the robot. If not, the sheet can be put back
inside the core and it can be cooked a bit longer.

Fig. 3: Exploded view of the cover

As a last step the cover parts are connected to each other. Experience has
shown that the cover should be assembled with the help of masking tape first,
as it is quite difficult to connect the bent side panel. This helps improve the
alignment seen in fig. 3 and fit of the different cover pieces and simplifies assembly.
The small cogs visible in fig. 3 additionally support the precise assembly. Next
hot glue is spread on the inside seam of the cover to fuse the pieces together.

The pink and green paper cut-outs for the robot number are glued to the
bottom side of the pattern plate and thus do not need to be cut out exactly.

Plastic screws and nuts connect the pattern plate to the top part of the cover.
As a final step the team color is slid in from the front between top and pattern

3

plate. A 3D model of our cover and the part files can be found in our 2023 open
source publication.1

2.2 Comparison

After introducing the manufacturing process, we want to highlight some aspects
of our cover and why we think it may be suitable for some other teams as well.

• Tools: The majority of tools used to produce our covers is standard household
equipment, which can be bought from a hardware store for relatively cheap
everywhere. The only special equipment needed is a laser cutter, but many
places offer cutting as a service. We do not own a laser cutter by ourselves as
well.

• Production time: Compared to a 3D printed cover as in [1] and [2] which
may take several hours to print per piece, our manufacturing process is quite
fast. All covers for 16 Robots were produced in approximately 6 hours.

• Price: Apart from that, the long 3D printer occupancy for covers leads to a
high cost. The manufacturing of our cover costs approximately 6e per piece.
It is therefore a good solution for teams with less financial capabilities.

• Mounting: Two pins punching through the covers top plate and relative
tight fit of cover to the inner structure of robot is all holding our cover in
place. It can be simply slid over the robot. In comparison to brackets [3] or
screws [2] this allows for a faster removal of our cover.

• Adaptability: As our cover has very few interfaces to the robot, there is a
high chance it will fit a robot not prepared for this type of cover.

• Flat outer surface: As a last aspect we want to highlight the flat outer
surface of our cover. This is ideal for applying stickers, for example with a
special robot design or sponsorship logos.

In summary cooking the robot covers is an easy, low budget and low time
investment approach which can be used by almost anybody. While the cover
provides stability and protection it is also easy to apply or adapt.

3 A simple electrical model for the kicker

We are on an ongoing path to optimize the kick of our robot compared to the
previous generation. After improving the safety and reliability of the kick in the
last paper [4], we now want to improve the efficiency of the solenoid driven by
the kicker. The objective is to optimize the velocity of the solenoid plunger while
minimizing the thermal losses in the solenoid coil.

The goal of this section is to determine the efficiency of the current kicker.
The mechanical and electrical design is open-source2.
1 Robotics Erlangen e.V., Open-Source Hardware, GitHub Repository, https://github.

com/robotics-erlangen/hardware
2 Robotics Erlangen e.V., Open-Source Hardware, GitHub Repository, https://github.

com/robotics-erlangen/hardware

4

https://github.com/robotics-erlangen/hardware
https://github.com/robotics-erlangen/hardware
https://github.com/robotics-erlangen/hardware
https://github.com/robotics-erlangen/hardware

Since we use no internal current sensing like for example hall sensors [5], a
LTspice simulation is used to estimate the currents and voltages occurring during
the discharge process. This is necessary to determine the required measurement
configuration in order to avoid damaging the equipment.

We validate the simulation with measurement data and use it to determine
the outgoing velocity of the ball and thermal losses.

3.1 Simulation in LTSpice

For the simulation in LTspice we use a simplified model of the circuit (confer
fig. 4). Using a more complicated model would require a simulation of the fields
inside the coil [6]. We assume an ideal capacitor with no parasitic inductance
or resistance. The Resistance and inductance of the solenoid coil are orders of
magnitude bigger and outweigh the parasitic effects. The inductance of the coil
was measured at 1.18 mH. The capacitance of the kick circuit is 1.5 mF. The
ESR (equivalent series resistance) of the capacitors is in the range of tens of
mΩ while the resistance of the coil is 3 Ω, therefore we can ignore the ESR of
the capacitor. The same logic applies to the parasitic series inductance of the
capacitor. Although the manufacturer does not specify this value, the inductance
of the solenoid coil is much bigger than the parasitic inductance of the capacitor.

C1

L1

R1

VC1

.IC 1(L1)=0A

.IC V(VC1)=230V

.TRAN 1u 40m 0
R1, C1, L1 parameters:
R1 = 3 Ohm
C1 = 1.5 mF
L1 = 1.18 mH

Fig. 4: LTspice circuit for simplified RLC model of the kick system wiht simuation
parameters and command

The simulation is a transient analysis of the circuit with initial conditions
that represent the instant the discharge begins. The voltage of the capacitor is
set to the charge target voltage of 230 V. To simulate the activation of the kick
the circuit is already connected to L1 and R1, but the current through these
components is set to 0 A. At the start of the simulation the current starts flowing
through the closed circuit. The voltage curve (fig. 6, "yellow dash-dotted line") is
similar to the theoretical curve of capacitor discharging through a resistor. The

5

current curve (fig. 6, “purple dashed line”) peaks around 65 A which poses a
challenge to measure in the lab.

3.2 Measuring the current and voltage

An oscilloscope with a 1:10 probe on Channel 1 was used to measure the voltage
of the coil (fig. 5) by probing at the pins of the capacitors. Directly measuring the
current with an inline amperemeter was not an option, because of the predicted
current peak around 65 A and most amperemeters have a maximum range of
10 amps. The other option we considered was using a current shunt resistor but
because the resistance of the coil is so small adding a resistor could change the
system itself and taint the measurement. The solution we settled on is using a
current clamp with a sufficient range on Channel 2 (fig. 5).

Oscilloscope
Channel 1 Channel 2

Solenoid

Current Clamp

C112/C113

Fig. 5: Measurement Setup

The data was captured in single-shot mode. The trigger was set on Channel 1
(the capacitor voltage) and slightly below 230 V, because 230 V is the voltage of
the capacitors before the discharge begins.

3.3 Comparing the results

The results of the measurement can be seen in fig. 6 as the black and blue lines.
The LTspice simulation was able to make a good estimate of the currents

and voltages. An obvious issue with LTspice is that the simulation conserves the
energy of the system and therefore all energy in the capacitors will be turned into
heat losses at the resistor. There is no component in the simulation to account for
the energy transferred to the ball. Another source of inaccuracy is the inductance
of the coil. The value used for the simulation assumes a constant value but in
reality the inductance is dependent on the position of the plunger within the coil.
The total theoretical energy Et available in the capacitors is dependent on the
voltage and size of the capacitor:

Et = 1
2V 2C = 39.675 J (1)

6

0 5 10 15 20
Time [ms]

0

50

100

150

200

250

V
ol

ta
ge

 [V
]

Voltage measured
Current measured
Voltage simulated
Current simulated

0

50

100

150

200

250

C
ur

re
nt

 [
A

]

Fig. 6: Simulation and Measurement Results

The total real energy Em converted form the capacitors can be calculated by
integration of the power P = UI. This is done using numerical integration with
Riemann sums and the samples of measurement.

Em =
∫ 20 ms

t=0 ms
Um(t)Im(t)dt = 38.4 J (2)

This shows an inaccuracy of the simulation to the real world of 3.4% regarding
the total energy of the discharge. The energy lost at the resistance of the coil
Edm in the measurements can also be calculated with eq. (3).

Edm =
∫ 20 ms

t=0 ms
Im(t)2Rcoildt = 36.5 J (3)

The remaining Energy is transferred into the plunger and therefore into the ball
Eb:

Eb = Em − Edm = 1.78 J (4)
The efficiency η of the kick is:

η = Eb

Em
= 4.6% (5)

7

While the measured efficiency of our kicker at less than 5% is not great, transfer-
ring 1.78 J to the ball is theoretically enough to accelerate the ball to 9.1 m

s limit of
6.5 m

s . Therefore, this two-step approach of simulation followed by measurements
shows our current kicker to transfer enough energy.

4 Using statistics in the AI: best practices and examples

4.1 Motivation

Any SSL team has to deal with the fact that all information they have about the
situation on the field is fundamentally inexact. In particular, the data supplied
by the vision system is inherently noisy. While a custom tracking system can
somewhat compensate for this [7,8,9,4,10,11], it will never be perfect. For example,
seemingly simple questions like “is the ball currently moving” already require
some heuristics on the estimated ball position and speed, since the latter will for
all practical purposes never be exactly zero.

Statistics provides us with some useful tools to deal with noisy data. While
even the most advanced statistical methods will not be able to eliminate all
uncertainties, they can at least help to further improve the reliability of the
resulting metrics. Since the problem of noisy data is so generic that we are
confident that every team should apply statistics to the field state, we want
to share some best practices and provide concrete examples on what can be
achieved.

4.2 Using ring buffers to store data

For many statistical methods, multiple measurements of the quantity in question
need to be gathered and stored. Commonly one wants to look at the last n
samples of this quantity to evaluate some metric. Examples include calculating
the mean of the past ball positions or correlations in the ball’s movement direction.
Ring buffers provide an elegant way of managing a constant number of past
observations (see fig. 7). Each time a data point is stored in the buffer, the oldest
entry is automatically overwritten with the new one. This ensures that one always
works with the most recent data.

The correct length of the buffer depends on the specific problem at hand.
Including more samples leads to robuster results but comes at the cost of a more
inert metric. As SSL games are in their very nature dynamic situations, the state
of the field will change, sometimes very rapidly so. Whatever metric or criterion
one is trying to build needs to be able to pick up on these changes quickly so the
AI has enough time to react. Since there is no general best solution, we try out
different buffer sizes and see if the results are stable enough and still react to
changes in time.

Some care needs to be taken with freshly initialized buffers. Since they are
not yet completely filled with actual measurement data, metrics calculated on
the buffer might be wildly inaccurate on the first few iterations. In these cases

8

0
1

2

3

4
56

[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

[2]

[0]
[1]

[3]

a)

56
7

8

9

10
11 12

13

14

15

16
[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

[2]

[0]
[1]

[3]

5 6 7 8 9 10 1112 13 14 15 16
[4] [5] [6] [7] [8] [9][2][0] [1] [3] [10] [11]

b)

c)

Fig. 7: Structure of a ringbuffer. Data is written to the ringbuffer in a round-robin
fashion. A pointer (green arrow) keeps track of the cell that will be written to
next. a) The ringbuffer is not yet completely filled. The pointer just points at
the first empty cell. b) Once the buffer is full, the pointer will always point at
the oldest element in the buffer. c) In reality the ringbuffer is stored as an array.
Once the pointer reaches the end of the array, it is reset to the start, causing old
elements to be overwritten. Depicted is the memory layout for the buffer schown
in b).

the developer can either choose to only include the available data, risking that
the resulting metric might fluctuate a lot in the beginning. Or one can fall back
to some default assumption on the field state, which is at least stable but might
be flat out wrong.

Another situation which needs to be handled more carefully arises when data
becomes obsolete, but new data might not already be available. For instance one
might only consider the ball detections from the past second. Since sometimes
the ball is not visible at all, it is not possible to ensure that obsolete detections
are overwritten in the ringbuffer immediately.

4.3 Applying hysteresis on discrete decisions

Hysteresis is a technique to avoid rapid switching between discrete outcomes
whenever a noisy, continuous variable is used for the decision process. While it is
wide-spread among SSL teams [11,12,13,14] and has briefly been covered in [15],
it is an important enough concept to deserve a more detailed explanation.

As an instructive example, consider the following situation. A very simplistic
SSL AI might decide whether its robots should be attacking or defending by
checking in which half the ball is currently positioned. At the start of the game
the ball will be positioned more or less exactly on the halfway line. Therefore,

9

just by the inherent tracking uncertainty the ball will sometimes be detected in
one half and sometimes in the other half. Consequently, the decision of the AI
will rapidly oscillate between attacking and defending, leaving the robots not
enough time to do either.

A hysteresis addresses this problem by defining a region around the decision
boundary where the previous decision is always being repeated. In other words:
the decision border must be surpassed by some minimal amount in order to
trigger a change of behavior. In the example above this means defining an area
around the halfway line in which the AI holds onto the decision of the previous
iteration (see fig. 8).

Defend own goal

Keep last
decision

Attack opponent goal

Fig. 8: Visualization of the hysteresis decision boundary for the example described
in the main text. While the ball is inside the orange stripe around the halfway
line the previous decision is being kept. This avoids flickering decisions when the
ball is close to the halfway line.

This concept can straightforwardly be generalized to multiple possible out-
comes, since these can always be framed as a series of binary decisions.

4.4 Example 1: Detecting stationary balls and robots

As a first example of how statistics can be leveraged to counteract noisy data,
consider the following scenario. One of your robots wants to gain possession of
the ball. If the ball is moving, you want to cancel its momentum by catching it.
Therefore, the robot should position itself in such a way that the ball moves into
its dribbler. However, if the ball is standing still, you can approach it from any
direction.

As a naive approach one could obtain the momentary speed of the ball by
finite differences of the tracked positions and define a threshold value below
which the ball is considered to be stationary. There are two problems with this
approach. On one hand, real motion of the ball with speeds below the threshold
is not detected. This can be problematic as in realistic setups the noise in ball
position can lead to apparent motion with velocities up to 5 cm

s . On the other

10

hand, one may encounter large spikes in the apparent ball speed, which leads to
either fluctuating decisions or prohibitively large hysteresis windows (see fig. 9
a)).

Time [s] Time [s]

3

1

5

7

9

B
al

l s
pe

ed
 [c

m
/s

]

B
al

l s
pe

ed
 [c

m
/s

]

1

5

10

Ball is
stopped

Ball is
moving

a) b)

00-0.5-1-1.5 -1-2-3-4-5-6-7-8-9

Fig. 9: Noisy measurements of the ball speed. a) Ball speed output from our
tracking system for a stationary ball. The data was recorded with a real SSL
vision setup in April 2023. The background noise level is up to 5 cm

s with peaks
reaching even up to 10 cm

s . b) Ball speed output from our tracking system for a
slowly moving ball which is suddenly stopped. The data was recorded from our
simulator with a similar noise statistic as in a) (confer [16] for more details on
how the noise is simulated). For this measurement the ball was manually dragged
over the field and then suddenly stopped. The method from the main text is
correctly able to detect the moment at which the ball comes to a stop, while a
simple speed threshold would be unable to do so.

In order to discern real motion from tracking noise we can make use of the
fact that a stationary ball will be detected fluctuating around a static center
while real motion is correlated in a particular direction. This fact can be captured
by the length of the vector sum of the last n velocities v∥∥∥∥∥∥

n∑
j=1

vj

∥∥∥∥∥∥ .

In the case of pure noisy fluctuations in the ball position, the apparent velocity
vectors will point in random directions and therefore cancel each other when
summed up. If the ball is actually moving the velocity vectors will all point
in the same general direction, allowing them to constructively interfere in the
summation.

To demonstrate the usefulness of this criterion, consider the situation in fig. 9
b). With a buffer size of n = 6, update rate of 100 Hz and threshold value of

11

2 cm
s it is able to correctly identify the moment the ball stops moving, whereas a

simple velocity threshold criterion would fail.
We want to remark that the same criterion can straightforwardly also be

applied to robots instead of the ball to detect robots which might be broken.
This can be used to automatically send a robot substitution request to the game
controller.

4.5 Example 2: Detecting rotating robots

Our next example aims to help in solving a fundamental problem which presents
itself to the goalkeeper, namely which part of the goal it should be defending. Our
AI tries to predict from where and in which direction the next shot is going to
be. In many simple situations it defaults to the assumption that the robot, which
is currently in possession of the ball, will shoot in the direction it is currently
looking at. This leads to an obvious attack strategy: rotate with the ball in the
direction opposite to where the keeper is moving. Then use the time the keeper
needs to break and change directions to shoot into the free corner and hopefully
score a goal (see fig. 10).

One way to counteract this strategy would be to restrict the keeper to an
area around the center of the goal while the opponent is still rotating with the
ball. As an added benefit, this prevents the keeper from building up too much
speed from which it would need to break down again to change the direction.
The general rationale behind this behavior is that it is fundamentally impossible
to know where the opponent will try to shoot while it is still rotating. Therefore,
the keeper needs to be able to defend both sides of the goal in this situation.

At this point, one encounters a similar problem to that explained in section 4.4.
How does one properly detect rotations? Naively calculating the angular velocity
by finite differences yields the same problems as before. Luckily, a similar trick
can be found to circumvent this. One can make use of the fact that the cross
product of consecutive vectors will point in opposing directions depending on
whether the second vector is rotated from the first clockwise or counter-clockwise
(see fig. 10). Due to the small angle approximation sin(x) ≈ x for small x, the
length of the cross product will be approximately linear in the angle with which
the vector has rotated. By averaging the previous n cross products between
consecutive shot predictions w

1
n

∥∥∥∥∥∥
n−1∑
j=0

wj × wj+1

∥∥∥∥∥∥ ,

large results are obtained when the prediction is continuously rotating in one
direction while fluctuations caused by noise will be uncorrelated and therefore
cancel each other.

For the use case in our AI the shot predictions are given by vectors of unit
length. With a threshold of 0.01 and a buffer size of n = 8 we are able to reliably
detect the rotation and block the shots that are described above as long as they
are not happening too close to our defense area.

12

14

0

a)

14

0

b) c)

Fig. 10: Using the cross product to detect rotating robots. a) The keeper uses the
current orientation of the attacking robot (robot 0, blue line) to guess what part
of the goal it should defend. Since the attacker is looking to the bottom part of
the field, the keeper decides to defend the bottom half of the goal and accelerates
towards the bottom (orange arrow). Meanwhile, the attacker is rotating upwards
with the ball in the dribbler (blue arrow). b) Once the shot prediction (blue
line) moves past the keeper, it starts to break and eventually accelerate upwards.
However, since it has accumulated some speed in the downwards direction, this
leaves enough time for the attacker to get a clear shot at the goal. c) The cross
product of two consecutive shot predictions a and b has opposing signs depending
on whether the prediction rotated clockwise or counter-clockwise in time.

4.6 Example 3: Detecting accelerations or decelerations

For our last example let us consider this situation. We are in possession of the
ball and want to take a shot at the goal. Let’s further assume that we have more
than enough time to confuse the opponent keeper before actually shooting. We
could for example try to lure the keeper into a specific corner of the goal and
then shoot into the other one. One could now ask what the best time would be
to start aiming for the other corner.

We argue now that the best time is the moment at which the opponent keeper
starts to decelerate on its way to the position we want to lure it to. The reasoning
behind this is that you don’t gain any more time for the shot by further luring
the keeper into the corner, since it will be decelerating either way.

This argument necessitates a tool to reliably predict whether a robot is
decelerating or not. The naive approach of using finite differences to estimate the
acceleration is even more problematic here, as taking the numerical derivative
twice exacerbates the noise problem. The approach we present here is based on
trend analysis. Since we only want to know whether the keeper is decelerating
or not and don’t care by how much, we can use the Kendall tau [17] to decide
whether the trend in velocities is rising or falling.

Trend analysis by the Kendall tau is based on counting so-called concordant
and discordant pairs of data. A pair of data points (xi, yi) and (xj , yj) is said
to be concordant if the sorting order of both the x and y components agree, i.e.
if both xi < xj and yi < yj or both xi > xj and yi > yj . Otherwise, the pair is
said to be discordant. Ties are ignored for now, as they are practically irrelevant

13

for floating point data. The Kendall tau for nc concordant and nd discordant
pairs out of n data points is now defined as

τ = nc − nd(
n
2
) ∈ [−1, 1].

It quantifies the certainty with which a rising trend (for positive values) or a
falling trend (for negative values) can be attributed to the data. For example,
strictly monotonically increasing data will have τ = 1 and strictly monotonically
decreasing data will have τ = −1. Data where the y values fluctuate randomly
around some constant will have τ ≈ 0.

In our experience a buffer size of n = 10 and a threshold of −0.7 with a
hysteresis region of half-width 0.2 works reasonably well for detecting when the
keeper starts to decelerate.

5 Conclusion

This paper describes the design of our robot covers, as well as simple and cost-
effective manufacturing process. It compares our design to several other cover
designs and lists advantages and disadvantages of it.

Furthermore, it presents a simple electrical simulation of the kicker and
compares it to measurements of the kicker we use in our robots. However, there
is still some future work needed to create a more detailed simulation that can be
used to optimize the electrical and mechanical parameters of the kicker.

In addition, the strategy section contains statistical methods for dealing with
noisy data from the vision system and motivates them with multiple examples.

14

References

1. Abiyev, R.H., Akkaya, N., Arici, M., Cagman, A., Huseyin, S., Musaogullari, C.,
Turk, A., Say, G., Yirtici, T., Yilmaz, B., Aytac, E.: NEUIslanders Team Description
Paper RoboCup 2018. (2018)

2. Silva, C., Alves, C., Martins, F., Machado, J.G., Damurie, J., Cavalcanti, L.,
Vinicius, M., Sousa, R., Rodrigues, R., Fernandes, R., Morais, R., Araujo, V., Silva,
W., Barros, E., Bassani, H.F., de Mattos Neto, P.S.G., Ren, T.I.: RoboCIn 2020
Team Description Paper. (2020)

3. Cosenza, C.S., Couto, G.C.K., Germano, L., Correa, L.G., de S. Barreira, L.,
de Farias, L.D.P., Rodrigues, L.R.L., de Melo, J.G.O.C., Bozza, M., de Souza, M.P.,
de Oliveira, N.S.M.M., Silveira, O.C.B., dos Reis, R.P., de Souza, R.P., Dias, S.G.S.,
Nihari, Y., Rosa, P.F.F.: RoboIME: From the top of Latin America to RoboCup
2018. (2018)

4. Bergmann, P., Engelhardt, T., Gareis, E., Hahn, U., Heineken, T., Hopf, V., Möser,
R., Mutter, F., Schmid, M., Schmidt, M., Stadler, M., Wendler, A., Wiedmann, M.:
ER-Force 2023 Extended Team Description Paper. (2023)

5. Nikolaus Mitchell, Hunter Scott, Stoian Borissov, Eric Huang, Ryo Osawa, and
Matt Barulic: Robojackets 2013 team description paper. (2013)

6. Omid Najafi Koopai, Mohammad Ali Ghasemieh, Mehran Khanloghi: Immortals
2018 team description paper. (2018)

7. Zickler, S., Laue, T., Birbach, O., Wongphati, M., Veloso, M.: SSL-vision: The
shared vision system for the RoboCup Small Size League. In: Robot Soccer World
Cup, Springer (2010) 425–436

8. Huang, Z., Chen, L., Li, J., Wang, Y., Chen, Z., Wen, L., Gu, J., Hu, P., Xiong, R.:
ZJUNlict Extended Team Description Paper for RoboCup 2019. (2019)

9. Browning, B., Bruce, J., Bowling, M., Veloso, M.: STP: Skills tactics and plays
for multi-robot control in adversarial environments. Proceedings of the Institution
of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 219
(2005) 33–52

10. Rodríguez, S., Rojas, E., Pérez, K., López, J., Quintero, C., Calderón, J.M., Peña,
O.: STOx’s 2015 Extended Team Description Paper. (2015)

11. Bai, C.Y., Gong, W., Hers, B., Hsieh, B., Iaco, R.D., Ju, Y.Z., Jury, B., Long, B.,
Lu, K.L., Petrie, J., Tonks-Turcotte, K., Xie, C., Yang, D., Zaari, R., Zhang, K.,
Zhang, Z.: 2017 Team Description Paper: UBS Thunderbots. (2017)

12. Cunningham, A., Posey, S., Johnson, B., Borissov, S., Gendreau, A., Mitchell, N.:
RoboJackets 2011 Team Description Paper. (2011)

13. Hoffmann, M., Lieret, M., Kerschbaum, S., Eischer, M., Nordhus, P., Hauck, A.:
ER-Force Team Description Paper for RoboCup 2013. (2013)

14. Mehrabi, V., Koochakzadeh, A., Poorjandaghi, S.S., Pour, S.M., Sheikhi, E., Saeidi,
A., Kaviani, P., Saharkhiz, S., Pahlavani, A.: Parsian Extended Team Description
for Robocup 2012. (2012)

15. Poudeh, A.G., Nejad, V.K., Dalvand, A., Doost, A.R., Keivanani, M.A., Shirazi,
H., Esmaeelpourfard, S., Rashnozadeh, F., Mosayebi, S., Naeini, M.K., Adhami-
Mirhosseini, A.: MRL Extended Team Description 2019. (2019)

16. Bergmann, P., Engelhardt, T., Heineken, T., Hopf, V., Schmid, M., Schmidt, M.,
Schofer, F., Schuh, K., Stadler, M.: ER-Force 2022 Extended Team Description
Paper. (2022)

17. Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1-2) (1938)
81–93

15

	ER-Force 2024 Extended Team Description Paper

