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Abstract. This paper presents the robot and software system of SSL
team KIKS, which is planned to participate in the RoboCup 2023 Bor-
deaux. In this ETDP, we mainly present our study on the improvement
of the dribbling bar, dribbling mechanism and kicker circuit, and pre-
diction of the opponent robot’s behavior using machine learning. We
describe the weaknesses of the previous generation robot and the im-
provements to overcome them, including software upgrades. In addition,
we overview the study of improving robot position control with on-board
cameras and encoders to correspond to Vision-Blackout.

Keywords: RoboCup, small size league, autonomous robot, global vi-
sion, engineering education

1 Introduction

Team KIKS has continued to work toward developing higher performance hard-
ware and smarter AI systems. This year, we studied the improvement and ex-
tension of ball control performance on hardware, especially on the improvement
of the dribbling system. We also experimented with motion control based on the
robot’s own judgment, using a local vision system and encoders corresponding to
Vision Blackout, based on the Jetson Nano introduced last year. In the software,
we tried to predict the opponent robot’s behavior using machine learning. The
results of the experiments are described below.

2 Mechanical system

In RoboCup Small Size League, the dribbling system is very important to realize
the strategy of AI, recently. This is because enhanced ball possession and the
realization of curved shots lead to an expansion of the strategy. In 2022, we
improved the traditional dribbling bar to increase ball keeping ability by simply
splitting in the center of the bar[1]. The improvement was very simple and could
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be done in a very short time. As a result, the ball keeping ability of the robot was
improved, but its performance is still not sufficient and several problems remain
to be solved. In this section, we describe the trial experiments we performed to
solve those problems and the results of the verification.

2.1 Dribbling bar

The dribble bar [1] proposed in the ETDP 2022 is made by cutting a rubber
pipe of uniform thickness. Due to the relatively hard material, when the ball
was caught at the end of the bar, it bounced and could not hold the ball. In
addition, the ball could not be moved to the center of the bar, and sufficient
rotational and holding force could not be given to the ball. If the ball could
be moved to the center of the dribbling bar in a short time by improving the
shape and material of the dribbling mechanism and bar, it would be effective
in enhancing the ball holding force and expanding the variety of strategies. A
typical dribbler that moves the ball to the center is a spiral structure [2], [3]. We
introduced it in 2020, but its effectiveness was not sufficient due to the individual
robot differences and spiral accuracy of the robots, and it was not applied to all
robots because of its high fabrication difficulty. Therefore, we aim to develop a
dribble bar that is easier to fabricate than the spiral structure and more effective
in moving the dribble to the center. In this section, we focus on the material and
shape of the dribble bar, and make prototypes of different types of dribble bars.
The purpose of this section is to experimentally evaluate the lateral movement
performance and ball possession of the ball in contact with the dribble bar, and
to provide guidelines for the development of more effective dribble bars.

(a) Bar1 (b) Bar2

(c) Bar3 (d) Bar4

(e) Bar5 (f) Bar6

(g) Bar7 (h) Bar8 (Super soft gel)

Fig. 1. Dribbling bar used in the experiment

Figure.1(a)-(h) show the newly designed and fabricated dribble bars. (a)-(f)
show a metal bar as a core around which a string of rubber or plastic is wrapped,
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(g) shows a PLA cone formed by a 3D printer and covered with a balloon rubber
to enhance friction, and (h) shows a conical mold created by a 3D printer and
then molded with a flexible material called ”human skin gel”. (h) is a conical
mold made by a 3D printer and molded with a flexible material called HITO-
HADA gel. HITOHADA gel is the super soft urethane resins for molding man-
ufactured by EXSEAL co. ltd[5]. Its hardness is ASKER C/15 just like human
skin. As a result of the actual experiment using a ball, only three types of hori-
zontal movement on the dribble bar could be confirmed. Therefore, to evaluate
the effectiveness of the three types of dribble bars (f)-(h), we measured the veloc-
ity of the ball moving horizontally along the dribble bar. Three types of carpets
were used in the experiment. These pictures are shown in Fig. 2. The material
of all carpets is 100% polypropylene. Carpet1 shown in Fig.2(a) is used in our
playing-field. The surface structures of (a) Carpet1 and (b) Carpet2 shown in
Fig.2 are similar and relatively soft. (c) Carpet3, on the other hand, has rougher
and harder. There is no significant difference in terms of friction. The results are
summarized in Table 1. The results show that there is no significant difference
in the speed of ball movement by the dribble bars. However, the durability of
the balloon rubber of Bar7 is poor, indicating that it is not suitable for practical
use. In addition, the direction of horizontal movement of the ball was opposite
for both Bar7 and Bar8, even though they have the same cone shape. That is, in
Fig.3, where the dribbling bar and the ball are viewed from above the robot, (A)
Case of Bar7, the ball moved with a slight bounce toward the top of the cone,
and (B) Case of Bar8, the ball moved smoothly in the opposite direction. The
reason for this can be attributed to the difference in the contact area between the
ball and the dribble bar due to the difference in the surface hardness (viscosity)
of the materials. That is, the surface of Bar 7 is relatively hard, and because the
ball makes contact at a point, it bounces and moves gradually to the left. On
the other hand, Bar 8 is made of a softer material, which is thought to increase
the size of the contact area as the ball dips into the dribble bar, pulling the
ball toward the right with a larger cone radius (higher rotation speed). It was
reconfirmed that the material (hardness) of the dribble bar is one of the most
important factors in choosing an appropriate dribble bar.

(a) Carpet1 (b) Carpet2 (c) Carpet3

Fig. 2. Carpets used in the experiment for a ball-holding performance
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(a) in case of Bar7
(b) in case of Bar8

Fig. 3. Direction of ball movement for different bar materials

Table 1. Ball speed moving horizontally along dribble bar[m/s]

Dribble bar\Materials Carpet1 Carpet2 Carpet3

Bar6 0.1 0.09 0.11
Bar7 0.09 0.11 0.12
Bar8 0.1 0.1 0.11

2.2 Tentative dribbling device

　 One of the problems with our dribblers is their low maintenance. Current
dribblers consist of a ball sensor, dribbling mechanism, and tip kick bar in a
single component, and improving any of them would require redesigning all parts.
In this section, we evaluate the performance of a tentative dribbling device with
improved maintainability by dividing the dribbling peripheral mechanism into a
dribbling mechanism and a ball sensor & tip kick mechanism.

(a)Present (b)Tentative without damper

Fig. 4. Dribbling device

Figure 4(a) shows the current dribbling device, and Figure4(b) shows the drib-
bling device fabricated tentatively, respectively. The dribbling motor is a maxon
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#283860 with a gear ratio of 1.4. The height from the carpet to the metal shaft
with 4mm diameter of the dribbler is about 36 mm. While the current dribbler
has all elements fixed on the base plate, in trial dribbler, it is divided into the
components as units. Yellow part in Fig. 4(b) shows the dribbling unit, red part
shows the ball sensor & tip kick unit, respectively. On the other hand, instead
of improving maintainability, this dribbler has removed the damper unit from
the current dribbler. If the dribbling bar made of super soft gel shown in Fig.
1h can sufficiently play the role of a damper unit, the dribbling mechanism can
be simplified. We verified the shock absorption and ball retention performance
of the dribbler with and without the bumper in the experiments.

Verification of Shock Absorption Performance of Tentative dribbler
Conventionally, it is quite common to mount a damper on a dribbler. It is inter-
esting to note that the ETDP2022 from Tigers Mannheim introduces a dribbler
equipped with a 2 degree of freedom damper[6]. On the other hand, our recent
damper unit has a problem that the dribbling bar bounces the ball during drib-
bling, so we removed the damper unit for trial and compared its behavior with
two types of dribbling bars. One is made of conventional polyurethane rubber
and the other is made of newly fabricated super soft gel. By comparing these
two types, the possibility of simplifying the dribbling unit is investigated.
The following experiment was carried out to compare the shock-absorbing per-
formance of two dribblers. A ball moving at a constant speed (about 2.3 ms−1)
was impacted head-on with a dribbler that was not rotating. The distance r be-
tween the robot and the bouncing ball was measured 50 times, the average was
calculated, and compared for each dribbler. The ball was ejected using the slope
shown in Fig.5(a), and the robot was fixed on the field. The measured distances
are shown in Table 2.
Table 2 shows that the bounce distance of SUPER SOFT GEL is longer than that
of the current dribble bar, with or without damper. This result indicates that
the shock-absorbing ability of the super soft gel only is insufficient. As a result,
it was shown that the tentative dribbling device has a lower shock absorption
ability than the present device due to its structure without a damper. Namely,
it was again confirmed that dampers are important to improve the performance
of shock absorption.

(a) Environment

(b) Measured r

Fig. 5. Experimental condition



6 Daichi Miyajima et al.

Table 2. Evaluation of shock absorption performance for dribbler

Dribbling bar Distance between robot and stopped ball [mm]

Current rubber with Damper 379
Current rubber without Damper 600
Super soft gel with Damper 463
Super soft gel without Damper 819

Verification of ball keeping performance In real games, performance in pos-
session of the ball (e.g., ball placement, preliminary movements before shooting,
etc.) is critical. If fast and stable movement could be achieved while keeping
possession of the ball, AI’s tactics would be greatly expanded. The following
experiment was carried out to compare the ball keeping performance of the
dribbler described in the previous section. While the robot was keeping the ball,
the robot was allowed to rotate until it released the ball at a constant angular
velocity. The ball keeping time against the angular velocity of rotation was mea-
sured and compared between the present dribbler and the proposed bar used
with super soft gel shown in Fig.6. The speed of the dribbling motor was about
100−1(6300rpm).

Fig. 6. Dribbling bar
made from super soft gel

Fig. 7. Ball keeping performance

The results are shown in Fig.7. The horizontal axis represents the angular
velocity of the robot’s rotation, and the vertical axis represents the average
keeping time. The results of Fig.7 show that the current dribbler cannot keep
the ball stably when the robot’s angular velocity is 200 deg/s or higher. On
the other hand, the dribbler with super soft gel could keep the ball stably for
more than 10 seconds if the angular velocity was less than 300 deg/s. However,
contrary to our prediction, the super soft gel dribblers kept the ball at the end
of the bar. This indicates that the keeping force of the super soft gel is due to
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the softness of the material. That is, the contact area with the ball is larger,
which may be the result of sufficient frictional force transferring the dribbler’s
rotational force to the ball. In this section, we describe the shock absorption
and ball keeping performance of a prototype dribbler. The results showed the
importance of the damper and the usefulness of the new material (super soft
gel). In the future, the durability of the super soft gel should be investigated in
detail.

3 Electrical system

The main circuit was modified significantly last year. This year, we are continuing
to use that circuit. In this section, especially, we describe a new circuit board
for kicker device.

3.1 Introducing a New Kicker Circuit Using the Two-Step Booster
Method

KIKS has conventionally used a one-stage voltage booster circuit as shown in
Fig.8 as a kicker circuit to operate the solenoid. In this circuit, a reverse voltage
equal to the voltage of the capacitor for the solenoid operation is instantially
applied to the rectifier diode during the operation.
Recently, in SSL, the power of the kick and continuous operation have been re-
quired, and it has been necessary to increase the capacitor voltage when charging
the device. Since our previous charging method applied a large load to the de-
vice, there were concerns about malfunctions during a game and a decrease in
the circuit life. Therefore, we designed and introduced a new kicker circuit using
a two-step boost method. It can be applied to the new main board introduced
in ETDP[1] in 2022. The effectiveness of the circuit is described below.

Fig. 8. previous kicker circuit for voltage
booster

Fig. 9. LTSpice circuit for previous voltage
booster

Figure 9 and 10 show the simulator schematics of the previous kicker circuit and
the voltage booster part of the new kicker circuit by LTspice XVII, respectively.
The results of the transient analysis are shown in Fig. 11 and 12, respectively. In
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the previous kicker circuit in Fig. 11, a maximum reverse voltage of about 70 V
is applied to rectifier diode D1 300 ms after the start of charging. On the other
hand, in the new kicker circuit in Fig. 12, the reverse voltage applied to rectifier
diode D4 is suppressed to about 52 V (Max 70 V - Min 18 V). This means
that the voltage applied to the device is reduced by 3/4 of that in the previous
kicker circuit. Therefore, the improvement to the 2-stage voltage booster circuit
is considered to contribute to the improvement of the durability of the circuit.

Fig. 10. LTSpice circuit for new voltage booster

Fig. 11. Waveforms of C1 terminal voltage
(green) and D1 anode voltage (blue) in pre-
vious kicker circuit

Fig. 12. Waveforms of C1 terminal voltage
(green) and D4 anode voltage (blue) in new
kicker circuit

4 Software system

4.1 Prediction of actions using machine learning

Predicting the actions of the opposing robot is one of the major factors that
dominate soccer tactics, as it is useful in getting the ball and determining ef-
fective positioning. Our team, in particular, has the problem of low ball control
during the game. To solve this problem, we tried to predict which robot the
opponent robot will pass to next based on information from the field. In this
section, we consider this problem as a classification problem of the opponent’s
behavior and analyze it using machine learning. We defined a total of 12 classes:
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10 candidate classes for passing, and 2 classes for not passing (dribbling) and
shooting.

Models and Data Structures In order to effectively learn information on a
field, image classification methods are considered suitable. Therefore, we used
one of them, ResNet (Residual Neural Networks)[7].
The input to ResNet requires a matrix representation of the field information.
Since in the field of image classification, convolution is performed by super-
imposing two-dimensional images of each RGB and convolving them as three-
dimensional, we divided the field information into multiple dimensions and per-
formed convolution. Here, the ball and each team’s robot are represented as
another 120×120 matrix, each corresponding to a position on the field. For the
team being trained, the value of the robot’s angle and speed were similarly placed
in the corresponding elements of the matrix, resulting in five matrices of field
information.
ResNet is one of the CNNs (Convolutional Neural Networks), but it is generally
considered unable to learn the positional relationships in an image. Therefore,
to solve this problem, we added matrices representing x-axis and y-axis as field
information in addition to the five matrices mentioned above, as proposed by
Rosanne Liu et al.[8]. That is, a 7×120×120 matrix was used as input informa-
tion to the model. The IDs used as output were assigned in x-axis in ascending
order to ensure uniqueness of IDs across data. The above dataset was used as
the input to the model when the robot of the team being trained kept the ball.
Then, the ID of the robot with the ball at the end of one play was used as the
output of the model to create the teacher data. We played our AIs against each
other on the GRSim simulator and generated data for 149 pass plays. Using
those data as training data, training and inference were performed on the train-
ing and evaluation data, respectively.
The results are shown in Table 3. The results show that inference was not suffi-
cient for the evaluation data. On the other hand, for the training data, it shows
an accuracy of 80%, suggesting that the task is classifiable. Table 4 also shows

Fig. 13. Method for making dataset

the results of inference on the same training data under different conditions.
From the table, it can be seen that the amplitude of velocity has a significant
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Table 3. Probability predicted by ResNet(149 samples)

Data \ Accuracy Avg.Precision Avg.Recall Avg.F-measure

Learned data 0.8055 0.7404 0.6251 0.6527
Untrained data 0.2564 0.0751 0.1138 0.0895

effect on the accuracy of inference, while the angle parameter contributes very
little to inference. This means that it is almost meaningless in the data due to the
fact that most robots are facing the ball direction. On the other hand, it can be
seen that it works effectively with regard to the location matrix. However, when
we experimented with increasing the number of data, we observed a decrease
in accuracy. As a proposal for improvement to increase accuracy, we will con-
sider using images or time-series data as input data. Md Amirul Islam et al.[9]
demonstrate that the parameters of the Convolution layer can also be used to
store location information, and we would like to try this out. In addition, in this
section, we used inputs that represent coordinates with reference to CoordConv,
but xy-axis should originally be incorporated into the Convolution layer, and
we will consider its implementation. After the completion of this model, we will
apply it to actual matches and consider applications such as countermeasures
for each opponent, or diversion of the opponent’s passing algorithm to our team
like imitation learning.

Table 4. Probability predicted by ResNet under the other condition

Data \ default no speed, no angle no speed, no position matrix
norm norm, angle

Accuracy 0.8055 0.2592 0.8148 0.3611 0.6944

4.2 Verification of the effectiveness of position control performed
by the robot itself

In this section, we try to improve the motion performance of the robot by con-
trolling the position of the robot itself.

Problems with Global Vision Only Control At present, we are using global
vision for position control based only on information from the server side. How-
ever, this method has the following problems.

– If the communication delay from the server to the robot is large, the robot
oscillates back and forth due to the difference in the control cycles between
the server and the robot.
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– The robot cannot be controlled if there is a vision problem (e.g., the ball is
in the robot’s shadow and precise position information is not obtained) or if
the communication is interrupted.

We tried to mount local vision on a robot in 2022 and reported on the utility of
tracking the ball with local vision(Fig. 14) only and the control to support global
vision[1]. In this section, we investigate the effectiveness of using an encoder
attached to the motor in addition to local vision. In the following experiments,
we try to control the robot’s position using only an encoder.

Fig. 14. Local camera mounted on the robot

System overview Present system and trial system built on tentatively are
shown in Fig.15. The current system uses only information from the server side
to generate velocity to the target position, but in this experiment, control is per-
formed only with the robot’s encoder. If the precision of the position information
from the local vision and encoder improves, it is expected that the robot’s posi-
tion control can be improved by adding it to the information from SSL vision.

(a) Present system (b) Trial system

Fig. 15. Motion contol system

Experimental As shown in Fig.16, the robot moved 1000 mm in a straight line
and rotated 90°at the same time, as commanded by the server, and measured the
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time from the start to the stop of the action. The time was compared between the
case with an Ethernet connection (corresponding to an environment with good
communication conditions) and the case with a Wii connection (corresponding
to an environment with poor communication conditions). Table 5 summarizes

Fig. 16. Experimental method for motion control performance

the experimental results. In the case of the Ethernet connection to the server,
there was almost no difference in the process time between the current sytem
and the trial system. On the other hand, when connected to the server via
Wifi, the current system did not finish its operation for more than 10 seconds,
whereas the trial system completed its operation in about 2 seconds, as in the
case of the Ethernet connection. This result suggests that there is a problem
with the stability of wireless communication in the current system and confirms
the effectiveness of the trial system.

Table 5. Verification results (10 times average)

Process time for \ Connection Ethernet [ms] Wifi [ms]

Ping between server and robot 6.7 11.5
Ping between server and vision 2.2 6.1
Present system 2159 >10000
Trial system 2060 1987

4.3 Trial experimetal in path planning based on Informed RRT*

At present, KIKS uses the Human-Like algorithm as the robot’s path planning
method. While the Human-Like algorithm is simple and fast, it sometimes fails
to generate an optimal path when the path is blocked by obstacles or under
some conditions.。Therefore, in this section, we aim to introduce path planning
based on Informed RRT*[10] and verify its effectiveness.

Experimental method In this experiment, the random place to place a point
to generate the first path is somewhere in the range 14000 mm×11000 mm with
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a margin of 1000 mm around a field of 12000 mm×9000 mm, as shown in Fig.
17a.

(a) Area of points placed randomly
at the beginning

(b) Limited area of points placed randomly

Fig. 17. Area where random points are placed

After the first path is generated, as shown in Fig. 17b, a square is created
centered at the midpoint between the distances of the robot and the ball, and
random points are placed within this range. After the first path is generated,
as shown in Fig. b, a square is created centered at the midpoint between the
distances of the robot and the ball, and random points are placed within this
range. Note that the length of one side of this square in the first stage should be
double the length of the x- and y-components of the distance between the robot
and the ball added together. If the path can be generated again by placing a
number of random points, the coefficient applied to the length of the square is
slightly reduced to narrow the range, and then a random point is placed in the
same way. The coefficient in this case is written as the expand coefficient, and
the change in this value is given by eq. (1).

expand coefficient = e−0.05x + 1 (1)

Note that x is the number of times the path is generated. The length of one
side of the square in the range where the final random point is placed converges
to the sum of the lengths of the x and y components of the distance between
the robot and the ball, as in the notation in Fig. 17b. In this case, after 100
random points are placed, the path with the shortest distance, generated by
the range reduction described above, is taken as the optimal path. The reason
why we did not specify the range with an ellipse, which is typically used in
Informed RRT*, is that we are concerned about a decrease in process speed
when operating path planning in real-time at high speed. In this experiment,
the minimum length of one side of the square for range limitation is 2000 mm.
Thus, the distribution range of random points is reduced to a minimum of about
2.60%(=(2000)2/(11000×14000)) of the starting point for the search.



14 Daichi Miyajima et al.

Results and discusson Place the ally robot (yellow), the enemy robot (blue),
and the ball (orange) as shown in Fig. 18 on the simulator. One of the three
enemy robots is placed in the corner of the penalty area, which is a prohibited
area, and the other enemy robots are placed at a distance of 100 mm from
the other robots. This is to verify that the robot does not try to force its way
through a space smaller than the size of the robot and collide with an enemy
robot. The ball and the allly robot should be placed 900 mm from the row of
enemy robots, and the ball and the allly robot should be placed so that the
straight line connecting them perpendicularly crosses the row of enemy robots.

Fig. 18. Experimental to evaluate performance of path planning

(a) Typical motion for RRT* (Forced passes through between robots)

(b) Typical motion for RRT* (Bypass success)

(c) Typical motion for Informed RRT* (Bypass success)

Fig. 19. Typical motion of RRT* and Informed RRT* on path planning
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The behavior of each of the three methods, Human-Like, RRT* (unrestricted
range), and Informed RRT*, was confirmed. Considering the possibility that
slight errors in the actual ball and robot placement could affect the results, more
than 10 experiments were performed. In particular, since the path generation of
the RRT* and Informed RRT* methods is characterized by randomness, 50
experiments were carried out. An example of the results is shown in Fig. 19.
Table 6 also tabulates the success rates. In all experiments in Human-Like, the
allly robot interrupted its action by touching the enemy robot. The success rate
of bypassing RRT* was about 40%, but it sometimes tried to forcefully pass
between enemy robots, and the rate of stopping when it touched an enemy
robot was as high as 50%. On the other hand, Informed RRT* did not pass
between enemy robots, and its success rate exceeded 90%. These results indicate
the usefulness of Informed RRT*, although only under the conditions of this
experiment. The average process time under the present experimental conditions,
however, was the fastest for Human-like at about 18.0 ms and the slowest for
Informed RRT* at about 36.0 ms (RRT* was about 29.5 ms). Therefore, it is
necessary to consider faster process time for future introduction.　

Table 6. Experimental results

Path generation method \ Success rate Rate of forced passes Rate of
for bypass(%) through between robots(%) Stoppage(%)

Human-like (10times) 0 0 100
RRT* (50times) 38 12 50
Informed RRT* (50times) 92 0 8

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant Number 20K03263,
Grant-in-Aid from the Chuden Foundation for Education and The Nitto Foun-
dation in Japan, respectively.

References

1. Ryoma Mitsuoka, Yusei Naito, Yasutaka Tsuruta, Daichi Miyajima, Kosei Naito,
Hironobu Suzuki, Ryuto Tanaka, Hayato Mitsuda, Yota Dori, and Toko Sugiura,
KIKS Extended Team Description for RoboCup 2022; https://ssl.robocup.org/
wp-content/uploads/2022/04/2022 ETDP KIKS.pdf

2. Zheyuan Huang, Lingyun Chen, Jiacheng Li, Yunkai Wang, Zexi Chen, Licheng
Wen, Jianyang Gu, Peng Hu, and Rong Xiong: ZJUNlict Extended Team De-
scription Paper for RoboCup 2019, https://ssl.robocup.org/wp-content/uploads/
2019/03/2019ETDPZJUNlict.pdf(2019).



16 Daichi Miyajima et al.

3. Nicolai Ommer Andre Ryll and Mark Geiger: TIGERs Mannheim Extended
Team Description for RoboCup 2019, https://ssl.robocup.org/wp-content/uploads/
2019/03/2019ETDPTIGERsMannheim.pdf

4. Yusei Naito, Shin Ohno, Yuta Imaeda, Akihito Odanaka, Yasutaka Tsuruta, Ryoma
Mitsuoka, Taisuke Tane, Masato Watanabe, and Toko Sugiura , KIKS Extended
Team Description for RoboCup 2020; https://ssl.robocup.org/wp-content/uploads/
2020/03/2020 ETDP KIKS.pdf

5. HITOHADA Gel, https://www.exseal.co.jp/en/products/
6. Nicolai Ommer, Andre Ryll, Mark Geiger, TIGERs Mannheim Extended Team

Description for RoboCup 2022, https://ssl.robocup.org/wp-content/uploads/2022/
04/2022 ETDP TIGERs-Mannheim.pdf

7. Zifeng Wu, Chunhua Shen, and Anton van den Hengel, Wider or Deeper: Revisiting
the ResNet Model for Visual Recognition, https://arxiv.org/pdf/1611.10080.pdf

8. Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski Such, Eric Frank, Alex
Sergeev, Jason Yosinski, An intriguing failing of convolutional neural networks
and the CoordConv solution, 32nd Conference on Neural Information Processing
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