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Abstract. RoboDragons is a team of the RoboCup Soccer Small Size
League (SSL) from Aichi Prefectural University, Japan. In RoboCup
2022, they will use the seventh-generation robots—developed in 2016—
for the SSL competition. This paper shares the technical information of
system updates implemented between 2020 and 2022. In particular, fo-
cusing on the upper-layer control system, a trajectory tracking controller
in consideration of obstacle avoidance is presented.

1 Introduction

RoboDragons is a team of Aichi Prefectural University (APU) participating in
the Small Size League (SSL) of RoboCup Soccer. This team originated from
Owaribito—a joint team between APU and Chubu University—which was founded
in 1997. In 2002, since two universities have been ready to manage each indi-
vidual team, APU built a new team, RoboDragons. After that, RoboDragons
has been participating in the SSL for more than 18 years, including activities
as CMRoboDragons—a joint team with Carnegie Mellon University in 2004 and
2005. Our best record was the second place in 2009. We also finished twice in
the third place (2007 and 2014) and four times in the fourth place (2004, 2005,
2013, and 2016). In RoboCup 2021, we placed seven out of 16 teams in Virtual
Tournament and also nine out of 12 teams in Hardware Challenge.

Similarly to last five years, the seventh-generation (7G) robots (Fig. 1) will
be used in RoboCup 2022. This generation has developed in 2016 and the first
competition was RoboCup 2017. See our ETDP 2017 [1] for the specification

Fig. 1: The seventh-generation RoboDragons robots developed in 2016



Fig. 2: Overview of the software system with global vision [3]

of the hardware and software of the 7G robot. RoboCup 2017 was the first
time for the 7G robots to compete the official SSL games with the other teams.
After that, based on the issues found in some official/friendly matches and daily
development, we have tried to improve the hardware and software. From 2017
to 2018, to widen the ball-touchable area of the dribbling roller, some spaces on
the side brackets of the dribbler were whittled down; to improve motion control
of the robots, a trajectory tracking controller based on linear model predictive
control was developed [2]. From 2018 to 2019, the small wheels of the omni-
wheels were replaced for their more smooth mobility and less maintenance; to
increase the successful rate of ball placement starting near the wall even if the
dribbler does not work for keeping the ball, a skill to kick a ball to the wall
diagonally was added [3]. From 2019 to 2020, to improve the dribbler so as to
keep the ball more, different kinds of rollers were evaluated; a local vision system
and control algorithm for SSL-Vision Blackout Challenge were developed [4].

This paper provides the technical information of system updates that Robo-
Dragons have implemented between 2020 and 2022. In particular, focusing on
the upper-layer control system, an upper-layer controller is improved so as to
realize not only trajectory tracking but also obstacle avoidance. Obstacle avoid-
ance indicates that the robot moves between the initial and target positions so
as not to collide an obstacle on the way .

2 Trajectory Tracking Controller in Consideration of
Obstacle Avoidance

2.1 Two-layered Control System

Robotic soccer in the SSL is characterized as fast-paced games with real robots.
This feature is mainly provided by a combination of a global vision system—
called as SSL-Vision, wireless network, omni-directional mobile robots, and a
centralized system as depicted in Fig. 2. What effectively combines those stuff
and maximize the performance is a motion controller in each team software.

As shown in Fig. 3, RoboDragons adopts a two-layered control system that
consists of the upper and lower layers 1. The upper-layer control system (Fig. 3 (a))

1 We suppose that most of teams in the SSL have the similar control structure.
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Fig. 3: Block diagrams of RoboDragons control system

is for trajectory tracking control of the robot; the lower-layer one (Fig. 3 (b)) is
for angular velocity control of wheel motors. What we want to control as we de-
sire are robot players while what drives each robot are wheel motors. Normally,
the sampling and control rates of the lower-layer control system are faster than
the upper-layer one. In this meaning, the upper- and lower-layer control systems
are also called as outer- and inner-loops, respectively.

The upper-layer control system (Fig. 3 (a)) is always sampling the raw data of
the robots’ and ball’s positions 2 provided from SSL-Vision. Although omitted
in Fig. 3 for simplicity, the following process of three steps conducts between
SSL-Vision and Trajectory Generator:

Step 1 By filtering the SSL-Vision raw data with an extended Kalman filter,
the team Artificial Intelligence (AI) properly recognize a situation on
the field and then chooses an appropriate strategy;

Step 2 To try to achieve the chosen strategy, the corresponding roles are as-
signed to the robots; and

Step 3 A target position is given for each robot. The target position is modified
by using Rapidly-exploring Random Tree (RRT) if there is any obstacle
on a path between the current and target positions.

In the Trajectory Generator block, a velocity trajectory for reaching the target
position at a desired time is generated as a first-order polynomial. By integrating
it, the corresponding position trajectory is obtained. In the Trajectory Tracking
Controller block, a control law so as to compensates the error between planned
and actual trajectories runs. At the end, the controller outputs the velocity
command and then sends it via wireless communication to the robots.

On the other hand, the lower-layer control system (Fig. 3 (b)) is running on-
board based on the velocity command provided from the upper-layer controller.

2 The position stands for the Cartesian coordinates and orientation of each object.



The velocity command with respect to the robot itself is transformed into the
one with respect to the wheels through the inverse kinematics derived from the
mechanical structure. At each wheel, the actual angular velocity is followed to the
command via a PID controller. Finally, the robot realizes a behavior following
the command.

As presented in [2], RoboDragons have introduced a trajectory tracking con-
troller based on Model Predictive Control (MPC) [5]. Since 2018, the mathe-
matical model used for state prediction in the controller has been extended as in
[8] and also obstacle avoidance has been considered as one of constraint condi-
tions in [9]. This ETDP will share a basic manner to design a linear MPC-based
trajectory tracking controller in consideration of obstacle avoidance.

2.2 MPC-based Trajectory Tracking Controller in Consideration of
Obstacle Avoidance

MPC is a control scheme to online solve a control optimization problem under
system constraints. In particular, the main feature of MPC is that control opti-
mization exploits future system behavior (state) predicted by its mathematical
model. The demerit of MPC is to cost high for its computation. In meantime,
it is important for real-time property of control-loop to control real robots. For
saving computational cost, similarly to in [2], let a controller design be limited
into the linear MPC framework. Then, a control objective as a cost function
must be formulated in the quadratic form with linear inequality constraints. In
this framework, CVXGEN [6,7] is useful because it generates a C code to fast
solve a linear MPC problem. This subsection presents how to handle obstacle
avoidance as a linear inequality constraint in a linear MPC problem.

A basic recipe to develop a linear MPC controller using CVXGEN is as
follows:

Step 1 Derive a linear state-space model (a pair of state and output equations)
of the controlled object as a mathematical model;

Step 2 Formulate a control objective and system constraints as a constrained
optimization problem;

Step 3 Code the constrained optimization problem using the CVXGEN format
in the website [7];

Step 4 Generate the corresponding C code at the website and download it;
Step 5 Merge the generated code with the other code of the team AI.

As for the first three steps, the detail of each step is described in the following
paragraphs.

Step 1. A continuous-time state-space model of the SSL robot can be represented
as

d

dt
x(t) =

αx 0 0
0 αy 0
0 0 αω

u(t− tw), (1a)

y(t) = x(t), (1b)



where x is a state vector consisted of the robot’s position and orientation, u is
a control input vector consisted of the velocity commands to the robot, y is an
output—measurable state—vector, αx, αy, and αω are scaling factors between
the actual and command velocities, and tw is dead-time, respectively. What a
linear MPC controller exploits for state prediction is a discrete-time state-space
model. By discretizing Eqn. (1) by a sampling time Ts, the following discrete-
time representation is obtained:

x(k + 1) = x(k) + Ts

αx 0 0
0 αy 0
0 0 αω

u(k −Hw), (2a)

y(k) = x(k), (2b)

where t = kTs and Hw := ⌊tw/Ts⌋, respectively.

Step 2 (the former part). One of typical control objectives is to drive the robot
into the target position/trajectory. This can be written as the following cost
function:

V (k) =

Hp∑
i=Hw

∥ŷ(k + i|k)− y⋆(k + i|k)∥2Q(i)

+

Hu−1∑
i=0

∥û(k + i|k)− u⋆(k + i|k)∥2R(i) , (3)

where û and ŷ are predicted input and output in the MPC controller, y⋆ and u⋆

are set-point trajectories (can be set to set-points or reference trajectories) for û
and ŷ, Q and R are weighting matrices, and Hp and Hu (≤ Hp) are prediction
horizon for û and ŷ, respectively. Note that y⋆(k + i|k) and u⋆(k + i|k) are
replaced with y⋆ = const. and u⋆ = 0, respectively, when considering a set-
point regulation problem instead of a trajectory tracking problem.

Step 2 (the latter part). Subsequently, consider system constraints. Due to ac-
tuator saturation, control inputs and their rates are normally constrained such
as

|uj(k)| < v̄j , (4)

|uj(k)− uj(k − 1)| ≤ ājTs, (5)

where v̄j and āj are soft limiters of the corresponding velocity and acceleration
(j = 1, 2, 3, k = 0, 1, · · · ,Hu − 1), respectively. In addition to this, this paper
handles obstacle avoidance as one of state constraints. Suppose that any obstacle
is static and also is shaped as a circle. Considering a obstacle itself as a prohibited
area, which is formulated by the following inequality in the quadratic constraint
format:

∥wp(k)− wpo∥2 ≥ ro, (6)
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Fig. 4: An obstacle avoidance problem.

where wp, wpo, and ro represents the robot position, the position and radius
of the obstacle, respectively. A quadratic constraint as in Eqn. (6) cannot be
handled in a linear MPC manner, it can be approximated to the linear one. By
linearly approximating Eqn. (6) based on Taylor series expansion at a tangent
point wp(k) = wpc, the following inequality

(wpc − wpo)
T wp(k) > wpc

T (wpc − wpo), (7)

where wpc is a vector indicating a point that is intersection of the circumference
of the obstacle circle and the segment between the robot and obstacle. See Fig. 4
for a prohibited area given by Eqn. (7).

Step 3. On the CVXGEN website [7], translate the constrained optimization
problem into a CVXGEN code. A sample code is shown in Source Code 1.1.

Source Code 1.1: description.cvxgen

1 dimensions
2 n = 3 # of state
3 m = 3 # of input
4 l = 3 # of output
5 Hp = 10 # prediction horizon
6 Hu = 5 # control horizon
7 Hw = 1 # dead -time (time delay)
8 end
9

10 parameters
11 A(n,n) # system matrix
12 B(n,m) # input matrix
13 C(l,n) # output matrix
14 Q(l,l) psd # for state cost
15 R(m,m) psd # for input cost
16 x[Hw -1] (n) # initial state
17 v1bar[k] nonnegative , k=0..Hu -1
18 v2bar[k] nonnegative , k=0..Hu -1
19 a1bar[k] nonnegative , k=0..Hu -1
20 a2bar[k] nonnegative , k=0..Hu -1
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Fig. 5: Trajectories on the field

21 u_p(m)
22 Poscoef[k] (1,n), k=Hw..Hp
23 r_limit[k], k=Hw..Hp
24 y_cmd(l)
25 end
26

27 variables
28 x[k](n), k=Hw..Hp
29 u[k](m), k=0..Hu -1
30 y[k](l), k=Hw..Hp
31 end
32

33 minimize
34 sum[k=Hw..Hp](quad(y[k]-y_cmd ,Q)) + sum[k=0..Hu -1]( quad(u[k],R))
35 subject to
36 x[k] == A*x[k-1] + B*u[k-1], k=Hw..Hu
37 x[k] == A*x[k-1] + B*u[Hu -1], k=Hu+1..Hp
38 y[k] == C*x[k], k=Hw..Hp
39

40 abs(u[k][1]) <= v1bar[k], k=0..Hu -1
41 abs(u[k][2]) <= v2bar[k], k=0..Hu -1
42 abs(u[0][1] - u_p [1]) <= a1bar [0]
43 abs(u[k][1] - u[k -1][1]) <= a1bar[k], k=1..Hu -1
44 abs(u[0][2] - u_p [2]) <= a2bar [0]
45 abs(u[k][2] - u[k -1][2]) <= a2bar[k], k=1..Hu -1
46

47 Poscoef[k]*x[k] <= r_limit1[k], k=Hw..Hp
48 end

2.3 Experimental verification

The effectiveness of the designed controller is evaluated via some experiments
with a real robot. The experiments were performed as the following setting:

– The initial position of the robot, p0, were chosen out of the three kinds of
ones: (−3.5m, 0.5m), (−2.5m, 0.5m), and (−1.5m, 0.5m);

– The target position p⋆ was set to (−3.5m, 0.5m); and
– There is a virtual obstacle of between the initial and target positions of the

robot. The obstacle describes a circle with the radius of 1m (i.e., ro = 1m),
whose center is placed at (0m, 1m).
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Fig. 6: Time responses of a distance between the robot and obstacle.

Figures 5 and 6 visualize the experimental results performed with the following
parameters: α = diag{0.9822, 0.9786, 0.9528}, Ts = 1/60 s, Hp = 10, Hu = 5,
Hw = 1, Q = diag{500, 100, 100}, and R = diag{15, 15, 15}, respectively. Fig. 5
presents the trajectories that the robot actually moved on the field; Fig. 6 shows
the time responses of a distance between the robot and obstacle. If the plotted
data in this figure lies on and below the red broken line, the meaning is that the
robot invades the obstacle.

From Figures 5 and 6, it can be observed that the robot was primarily avoid-
ing the obstacle but slightly invading the obstacle area 3. This result, however,
is not bad because the SSL rules restricts the radius of an SSL robot to be less
than 0.09m. It implies that the radius of a virtual circular wall just has to be
appropriately longer than the one of the real obstacle. Also, it can be seen that
how much the robot invades the obstacle depends on the initial position. The
reason is that the control problem considered here is set-point regulation and
also the initial position, i.e., distance between the initial and target positions,
affects the acceleration of the robot near the obstacle.

3 In this experiments, the obstacle was the virtual one instead of the real one. Any
collision, therefore, did not happen.



3 Concluding Remarks

This paper has shared the technical information of RoboDragons 2022. The main
description is to design and validate an MPC-based trajectory tracking controller
in consideration of avoiding obstacles.
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