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Abstract. This paper describes the mechanical, electronic and software
designs developed by Kharagpur RoboSoccer Students’ Group (KRSSG)
team to compete in RoboCup 2020. All designs are in agreement with the
rules and regulations of Small Size League 2020. Software Architecture
implemented over Robot Operating System(ROS), trajectory planning
and velocity profiling, dribbler/kicker design and embedded circuits over
the last year have been listed. Our website: krssg.in

1 Introduction

KgpKubs is a RoboSoccer team from the Indian Institute of Technology Kharag-
pur, India. The research group aims to make autonomous soccer-playing robots
and participate and conduct various related events. Undergraduate students from
varied departments and years are a part of this group. We have previously par-
ticipated in FIRA RoboWorld Cup in the years 2013-2015 in the Mirosot League
and secured the Bronze Medal in the same in 2015. We have also participated
in RoboCup SSL & 3D-Simulation League in Nagoya, Japan 2017. In June 2018
we participated in RoboCup 3D-Simulation League in Canada.

This paper is a continuation of last year’s Team Description paper and de-
scribes the developments made since the last year. Mechanical design of the
robots is presented in section 2. The firmware and embedded circuits are de-
scribed in section 3, followed by the software system in section 4. Finally, dis-
cussions and future work are described in section 5.

2 Mechanical Design

Mechanical parts and assemblies were designed in SolidWorks R©. Most of the
static simulations were run extensively using Ansys R© (Workbench) to aid the



process of material selection. The behaviour of different mechanical parts under
dynamic loading and simulations related to optimisation of kicking velocity and
height were realised using MATLAB R© Simscape Multibody.

The previous robot chassis was manufactured completely using Aluminium
6061, which added to its cost and weight. This year most of the parts have
been built using 3D printing with PLA/ABS. All the electrical components have
been housed in an insulated compartment, which ensures safety and accessibility
inside the robot. Table 1 summarizes the hardware configuration of the bot.

Table 1: Robot Hardware
Dimensions Dia: 179mm , Height: 149mm
Driving motors Maxon EC-45 Flat (50W)
Gear Type Internal Spur
Gear Ratio 1:3.3
Wheel diameter 50mm
Dribbling motor Maxon EC-16 (30W)
Dribbling gear Ratio 9:11
Dribbling bar diameter Dia: 10mm
Max. ball coverage 19%
Sub-wheel Diameter 10mm

2.1 Dribbler

The old design of dribbler grip, as mentioned in the KgpKubs TDP 2019[1] was
feasible for low angular acceleration of the bot. However, high acceleration and
jerky motion experienced during the initial locomotion tests of the bot make the
older design impractical in actual implementation. Moreover, the hard silicone
grip used earlier did not provide much damping, which resulted in a jerky motion
of the ball, especially during dribbling at high speeds.

This year, KgpKubs shall be playing with a new dribbler grip capable of self-
centring the ball at considerably high angular accelerations and with a better ball
catching and holding skill owing to its damping material. To accomplish this, the
diameter of the dribbler rod was reduced considerably by 4mm to accommodate
a grip with a relatively larger thickness.
The design of the dribbler grip consists of two main features:-

1. Self-centering: Left and right helices were designed on the outer periphery
of each side of the grip to self-centre the ball dynamically during the match.
Inspiration was taken from the rack and pinion mechanism in which pinion
rotates, and rack translates backwards or forward depending upon the di-
rection of rotation of the pinion. The helices have a pitch, which is reducing
continuously to help in centring the ball quickly and effectively.This feature
has been added by referring to Evolution of dribbling mechanisms in Robo



Cup article [12], Section-Active dribblers small size league

2. Concavity: A concavity with the radius of curvature nearly equal to the
radius of the ball was introduced in the middle of the grip and in between
the helices to hold and stabilise the ball near the centre of the grip.

All the calculations related to design and optimisation were done in MATLAB R©.
Dribbler grip was made by the liquid silicone moulding process using Smooth On

Inc. Ecoflex
TM

00-50 soft silicone of the dribbler rod was reduced considerably
by 4mm to accommodate a grip with a relatively larger thickness. As shown
in fig 1(a), two mould boxes having the corresponding internal cavities in the
shape of helices are designed and 3D printed using PLA material. Liquid Silicone
Rubber(LSR) at a suitable temperature was poured from the top and allowed to
cool down to give the final shape to the dribbler grip. This method offers greater
control over the hardness of the grip by varying the pouring temperature, cool-
ing rate and dramatically reduces the cost of manufacturing as well. The latest
model of the dribbler grip, as shown in fig 1(b) was tested multiple times and
yielded satisfactory results during the locomotion of the bot.

Fig. 1: (a) Mould box designed for liquid silicone molding (b) The latest
dribbler grip for RoboCup 2020

2.2 Kicking Mechanism

The straight kicker is powered by two 250V 2200uF capacitors, which can be
charged by a step-up converter to 200V each. A prototype of the dual kicking
system, as described in the KGPKubs TDP 2019[1] has been installed in the
bot. The support system to solenoids is 3D printed of ABS plastic, as shown in
fig 2. Plastic is preferred over 6061-Aluminium alloy to avoid additional weight
to the bots and for the ease of manufacturing at low cost. The new anodised
plunger and a 3D printed solenoid would prevent any short-circuiting problems,
which was the issue of primary concern. However, this increases the chances
for shorter durability due to the repetitive impact of plungers. Hence, damping
pads are introduced at the major areas of impact along with ribs in the support
to withstand high compressive stress. In order to accurately time the kick, IR



sensors have been mounted beside the dribbler for ball detection.

After optimising the space for two rectangular solenoids for straight and
chip kicker respectively in place of a single cylindrical solenoid as mentioned
in KGPKubs TDP 2018[4], initial tests on the prototype had shown that the
kicking speed has still reduced significantly compared to before. This issue with
the kicking speed is more prominent in the case of chip kicking, restraining the
bot from hitting the ball to the expected range. The primary cause of slow
kicking is a relatively lesser number of windings available per solenoid due to
dimensional constraints. The winding is currently done using 23AWG copper
wire. Solenoid Specimens with minor dimensional changes are being tested with
24AWG, 25AWG, and 26AWG copper wires to get the best possible kicking
speed, which will be used in RoboCup 2020.

Fig. 2: Side view of the new kicker and dribbler assembly

3 Embedded Systems

3.1 Main controller board

Xilinx Spartan 6 is used as the central processing unit which controls four
base motors, dribbler and other peripherals. The communication between the
mainboard and the central server is established using Nordic Semiconductors’
nRF52840 modules. For accurate kicking, IR obstacle sensor module has been
used to sense the appropriate location of the ball before kicking. Lithium Poly-
mer (Li-Po) over-discharge protection circuit is incorporated in the main circuit.

3.2 Motor Controllers

Earlier the motor drivers had been designed using IR4427, IRF7389 and PID con-
trol logic through FPGA. These driver circuits were based on 3 phase DC-AC



inverter topology where the FPGA provides the necessary gate pulses through
Trapezoidal commutation scheme. IR4427 is used as the gate driver in these
motor driver circuits. It is a low voltage, high-speed power MOSFET and IGBT
driver. The output drivers feature a high pulse current buffer stage designed for
minimum driver cross-conduction. IRF7389 is an Ultra Low-On resistance MOS-
FET IC. The MOSFET gate resistors were chosen so as to match propagation
delays between the N- channel and P- channel for optimal switching losses. The
filtering capacitors were also chosen accordingly so as to reduce high-frequency
components considerably. Even though the passive components were optimised
to their maximum extent with considerable changes in the PCB layout, the fi-
nal driver circuit wasn’t robust enough for a power-efficient dynamic gameplay.
This leads us to search for sophisticated monolithic BLDC Controllers for better
efficiency.

This year, the team shifted to MC33035 and its companion IC MC33039.
The MC33035 is a high-performance second generation monolithic brushless DC
motor controller containing all of the active functions required to implement a
full-featured open loop, three or four-phase motor control system. This device
consists of a rotor position decoder for proper commutation sequencing; temper-
ature compensated reference capable of supplying sensor power, frequency pro-
grammable sawtooth oscillator, three open collector top drivers, and three high
current totem pole bottom drivers ideally suited for driving power MOSFETs.
Also included are protective features consisting of under-voltage lockout, cycle-
bycycle current limiting with a choice for time-delayed latched shutdown mode,
internal thermal shutdown, and a unique fault output that can be interfaced into
microprocessor-controlled systems. The MC33039 is a high-performance closed-
loop speed control adapter specially designed for use in brushless DC motor
control systems. Implementation will allow precise speed regulation without the
need for a magnetic or optical tachometer.

The MC33035 and MC33039 have been successfully implemented and tested
with the current motors. Improvements include lower current usage, better tran-
sient response during dynamic conditions and considerably lower noise. The pro-
tection circuits inside the MC33035 will protect the circuit from damage in case
of malfunction.

3.3 Communication Module

Till last year ESP32 WiFi module by Microchip was used as a mean of com-
munication. But we faced a lot of problems due to the protocol used 802.11
n uses the 2.4GHz ISM band because of this choice of band equipment suffers
interference from microwave ovens, cordless telephones, and Bluetooth devices
leading to data loss which causes a lot of trouble. Hence we decided to discard
the module for communication purposes.

This year we decided to use nRF52840 from Nordic Semiconductors. nRf52840
is an advanced low power system on chip (SoC) that provides Bluetooth, ANT,



802.14.5 and proprietary RF capabilities. At its core, we have an Arm Cortex-M4
processor allowing quicker and more efficient computation of complex functions.
It is integrated with automated peripheral power management, fast wake-up us-
ing 64 MHz internal oscillators, easy DMA automated data transfer between
memory and peripherals, quadrature decoder.

The air data rate of nRF52840 is nearly 2Mbps which provides us with bidi-
rectional data transfer and providing a link between our bots and our server. We
are using the Enhanced ShockBurst (ESB) protocol for communication which
can be used at air data rates of 1Mbps and 2Mbps. A base station consisting of
one nRF will be connected to the PC which receives data from the PC, acting
as a central server(Fig: 3). The received data is then sent to the nRFs connected
on the bot by the ESB protocol which uses the proprietary RF capabilities of
the nRFs

Fig. 3: Communication Protocol

3.4 Kicking Mechanism

Variable kicking speeds were achieved by enabling the trigger for different time
periods using the FPGA hence discharging the capacitor to different voltages.
Earlier, the bot was only able to kick the ball at maximum speed which made
it difficult for the bot receiving the pass to position itself. Our testing showed
that with this addition, kicking the ball to a specific position on the field became
more precise.



3.5 Fault Diagnosis Circuit

Previously, ACS712 were used to determine the current drawn by bot during
dynamic gameplay. ACS712 is a fully integrated, hall effect-based linear cur-
rent sensor with voltage isolation and is a low resistance current conductor. In
the present model, the team has integrated ACS712, MAX942, and Monostable
multivibrator to detect the current impulse and short circuit current flowing to
the bot. In this design, the current impulse and short circuit current flowing to
a bot can be distinguished separately and thereby, appropriate action can be
taken accordingly. In the case of a current impulse, the functioning of bot stops
for a short interval whereas, in the case of a continuous short circuit, the bot
shuts down.

3.6 Advanced Control Algorithms

DC motors, in general, do not have a linear rpm-PWM relationship. In a dy-
namic environment such as RoboCup, the external environment influences the
working of the motor, and the motor may require different PWM values to reach
the target. An automated non-linear correction function is essential to provide
outputs in arbitrary conditions. PID control logic is the most popular control
system but tuning its parameters is time-consuming. A PD controller with fuzzy
logic was developed to bypass the tuning process and automatically optimise the
parameters on an STM Microcontroller to be ported later to the FPGA. The
various process used are described briefly below:

– The fuzzy controller takes the error and change in error as input and outputs
Kp and Kd parameters.

– Fuzzification: PE, ZE, NE, PDE, NDE and ZDE were initialised to zero. The
values were updated according to the input membership functions above.

– Creating the Fuzzy Matrix ( Rule Base ): 3x3 matrix used: For simplifica-
tion, a 3x3 Rule Base Matrix was implemented for the Kp Controller and
Kd Controller.

– Defuzzification: The Defuzzification function is responsible for computing
the crisp values of Kp and Kd from the created fuzzy matrix.

– These new values are fed into a PD function. Finally, the resultant PWM is
calculated.



4 Software

The following section has the description of the developments and changes made
on the software side, since our last participation in SSL. Section 4.1 describes
the structure of the roles added this year and the changes in basic behaviors,
Section 4.2 describes the integration of Kalman Filter in our codebase, Section
4.3 discusses the integration of SSL game controller, Section 4.4 highlights a
deep learning-based approach to pilot the RRT* sampling algorithm towards the
destination and away from the obstacles using the concept of artificial potential
field.

The FSM structure of codebase is based on Harel State Machines [7], making
use of hierarchy, parallelism and broadcasting. Each state of the state machine is
a part of its parent state, forming a hierarchical model. We use parallel processing
to run referee server along with the belief state server (the server of the state
containing the current properties such as position and velocities of the bots and
the ball). This ensures that the data is broadcast simultaneously from one state
to another.

4.1 Roles

This section describes the improvement in GoToBall and the FSM architecture
of roles added to the play which are assigned by the Role Assignment Module
as described in KgpKubs TDP 2019[1].

GoToBall: GoToBall is one of the most fundamental functionalities in Ro-
boSoccer. Attacking, defending and other roles depend on it. The previous Go-
ToBall architecture used a coarse approach to get to the ball without aligning
towards a particular angle and then used a fine-tuning method to align itself
with the ball once it reached the ball. Time is wasted in fine-tuning method,
which is now resolved by rotating while moving. This improved KickToPoint as
well, which depends on GoToBall. GoToBall is now improved to align while it
moves towards the ball and achieved significant improvement in the Attacker
sub-behavior, leading to smoother kicking and passing.

The Role Assignment Module is used for automatic allocation of tasks to the
bots which have completed or failed their previous assigned role in a dynamic
soccer game environment. We have a fixed set of tasks, and each of them is
related to a particular situation based on the positions of agents and the ball
on the field. Using the current game state, we then assign each bot a task. An
overall architecture is implemented to coordinate the various sub-behaviors of
defender, attackers and midfielders. Various roles added to the play are described
below:

Co-ordinated Defense Play: For the defensive sub-behavior, roles are dy-
namically assigned to each of the robots of two defenders and a goalkeeper.



The defenders protect the ball within a specified threshold and clear the ball.
The goalkeeper has two main behaviors of following the ball subject to various
conditions, and it clears the ball for safe conditions.

Fig. 4: Defender FSM structure

The Defender has 3 states (Fig. 4):

- Setup: This state is initially called when the play is inherited in the be-
havior.

- Marking: This state is transitioned to when the opponent bot is in our field.
This is the default state for both the defending bots. The defender positions itself
to block the ball by using the path of the ball which is predicted by monitoring
the angle of the nearest opponent bot.

- Clearing: This state is transitioned to when the ball is in our D-box or
within a certain threshold distance from one of the defenders. In this state, the
defender nearest to the ball clears it towards the opponent goal. When it takes
longer than a certain affordable time duration, it clears it for a free-kick.



Fig. 5: Goalie FSM structure

Co-ordinated Offense Play: The attacker sub-behavior integrates the mid-
fielder and the two attackers based on the dynamic positioning of the opponent
bots. The attacker searches for the best position to shoot the ball based on our
own scoring system and henceforth assigns the pass receive role to the bots or
directs the nearest bot to align itself and shoot towards the goal. The method
for calculating the scores uses the system of open angles [13]. It calculates the
probability of our bot receiving the ball if passed, considering the opponent’s
adversarial environment. It shoots the ball towards the goal if a goal is possible.

If the ball is in our possession, our search algorithm sketches a hypothetical
curve joining the ball position to the target. Based on the dynamic positioning
of the opponent and our own bots on this curve, it chooses one of the skills based
on the conditions mentioned below.

The Attacker has 6 states (Fig. 6):
- GoToBall: This state is transitioned to when we are not in possession of

the ball.
- AlignKick: This state is transitioned to when we reach the ball and align

ourselves with the target, which may be a bot or the goal depending on various
circumstances.



- Pass Receive: This state is transitioned to when there is no clear shot at
the goal and the best way to advance the ball is to pass it to an available bot.

- Shoot-At-Goal: This state is transitioned to when the bot in possession
of the ball has a clear shot at the goal.

- Dribble-Move: This state is transitioned to when a bot is in possession of
the ball but has no clear shot at the goal, and no other bot is closer to the goal
or unmarked. The best way to advance the ball is to dribble and move forward
with it.

Fig. 6: Attacker FSM structure

4.2 Kalman Filter

The input data received from the camera, irrespective of the quality of the device,
is always noisy. Even if the deviation from ground truth is rare, it can cause
problems in velocity calculations. In real-time, even small deviations from real
values can result in wrong commands being sent to the robots, compounded by
over-correction, resulting in failure of roles. Earlier, we were using the Savitzky
Golay filter [10]. This time we have successfully implemented the Kalman filter
[11] on the data received from the vision. The difference between them is that
the former helps in reducing the noise, whereas the latter sees through the noise.

The main use of the Kalman filter is for velocity calculations. The velocity
of the ball is a critical piece of information because it helps in predicting the
position of the ball, which is important for the interception of the ball. Earlier,
the velocity was calculated in a naive manner:



velocity =
x(t) − x(t−∆t)

∆t
,

where x(t) and x(t −∆t) are the positions of bot at timestamp t and (t −∆t)
respectively.

Due to noise in the received data, even if the ball is lying at rest at some
point (x, y), we get its position in the range (x±∆x, y±∆y) (Fig. 7). This leads
to unwanted velocity results. Using the Kalman filter, these unwanted velocities
are not considered.

The Kalman filter was implemented independent of our codebase, and then
the constants were tuned to get the best results. This was done in Python with
the help of the NumPy library. Then the filter was applied to the vision data.
This was done in C++ using the Eigen library. Initially, the filter was applied
on the data received from grSim (a RoboSoccer simulator), which gives us the
actual values of the position of the ball and the bots. The filtered velocities are
shown in Fig. 8.

This was done to find the constants which converge to the values in the least
number of frames. Then the filter was implemented on data from the camera
(Fig. 9, 10). The received input contains high amount of noise. As stated earlier,
such a noisy input completely ruins the velocity calculations. The Kalman filter
converged to the actual values quickly.

Fig. 7: High amount of noise in the received input.

4.3 SSL Game Controller

The SSL Game Controller replaces the SSL-refbox. With the introduction of au-
tomatic referees, there was a demand for several new features. To accommodate
these, the SSL-refbox has been rewritten to take advantage of modern technolo-
gies.



Fig. 8: Filtered Velocities

Fig. 9: When the robot was moving at some initial velocity .

Fig. 10: When the robot was at rest and then given some velocity.



The referee messages sent by the UI are received by our system clients. The
various clients are:

• ssl-ref-client: A client that receives referee messages
• ssl-auto-ref-client: A client that connects to the controller as an autoRef
• ssl-team-client: A client that connects to the controller as a team

A list of features added are:

• Modern, scalable Web-UI
• More control of the state (change almost all values)
• Automatically save and restore state
• State history with undo button
• Game Log that documents commands and events
• New interfaces for autoRefs and teams
• A graphical client can be integrated

The clients use the information to broadcast the messages on the rostopic. An
additional state is assigned to each skill which checks for an incoming message
from the /ref data topic while transitioning from one state to another. Parallel
processing is used to run the referee server alongside the main belief state server.
This ensures that the referee messages can be accessed at any time during the
execution of a play. When a message to halt the game is received, the plays
transition to the ref state which uses multiprocessing to place the bots as per
the referee message. The play is resumed from that state when a message to
resume is received. The GoToBall FSM is changed accordingly.

4.4 Deep Learning rooted Potential Piloted RRT* for expeditious
path planning

Randomised sampling-based algorithms such as RRT* have widespread use in
path planning, but they tend to take a considerable amount of time and space to
converge towards the destination. RRT* with an artificial potential field (RRT*-
APF [8]) is a novel solution to pilot the RRT* sampling towards the destination
and away from the obstacles, thus leading to faster convergence. But the ideal
potential function varies from one configuration space to another and differ-
ent sections within a single configuration space as well. Finding the potential
function for each section for every configuration space is a gruelling task. Deep
Learning is pretty standard today to solve path planning based problems [9].
To solve this problem, in particular, we devised the DLP-RRT* algorithm[2].
The two-dimensional configuration space was divided into multiple regions and
a deep learning-based approach, by using custom feed-forward networks to tune
the sensitive parameters which determine the potential function. These param-
eters act as a heuristic and pilots the tree towards the destination, which has a
substantial effect on both the rate of convergence and path length. DLP-RRT*,
which is a novel algorithm developed by our group, has shown the ability to



learn and emulate the shortest path that was generated by Dijkstra’s algorithm
and converges much faster than the current random sampling algorithms as well
as deterministic path planning algorithms described in this paper [3]. This helps
in dynamic RoboSoccer environments where path planning queries are frequent
and require a quick generation of optimal paths. The following tables depict the
performance of DLP-RRT* in comparison with RRT* and Dijkstra’s algorithm
in a given 2D configuration space.

Time of Convergence (in seconds)

S.No. RRT* DL-P-RRT* Dijkstra

1 2.329800 0.986253 8.857095
2 1.998531 0.81104 9.103717
3 5.170486 0.978344 8.656968
4 2.336515 0.910896 8.927036
5 1.288411 0.238291 8.410355

Length of the final path

S.No. RRT* DL-P-RRT* Dijkstra

1 2733.29 2267.12 2207.77
2 2639.58 2597.48 2518.91
3 2971.05 2256.47 2198.63
4 2662.99 2697.83 2620.49
5 2679.56 2125.55 2090.69

Fig. 11: The potential at every section of the configuration space, with the length
of the arrows proportional to the magnitude. The green circle indicate the des-
tination and the red one, source. The grey circles indicate obstacles.

5 Discussion and Future Works

Modular Learning Strategies in Robot Soccer: Dividing possible sets of
commands to send to robots into tasks or ’skills’, which can collectively be used in
higher layers like ’roles’ can make it easier to quantify the complex environment



around the robot. We aim to use a modular machine learning paradigm in which a
complex ’behavior’ is learned from a collection of simpler learned ’sub-behaviors’
and so on. There have already been some promising publications on ’layered
learning’, we aim to study these, implement them if needed and improve on
them.
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