
Immortals 2020 Extended Team Description
Paper

Omid Najafi1, MohammadAli Ghasemieh2, Mehran Khanloghi3, AmirMahdi
Matin3, AliReza Mohammadi3, and AmirMahdi Torabian4

1 Sharif University of Technology
2 Pars University of Art
3 University of Tehran

4 University of Science and Technology
http://www.immortals-robotics.com

Abstract. This paper describes the recent work done by the Immortals
Robotics Team for the upcoming competitions including the RoboCup
2020.

Keywords: RoboCup 2020 · Small Size League

1 Introduction

The Immortals Robotics Team consists of art and engineering students from
different Persian universities. The team was established in 2007 with the focus
of designing a robust robot while meeting all the requirements according to the
Small Size League rules. The team’s strategy is to adapt itself with all the rule
changes in order to experience the new challenges. This makes the team to take
part in the division-A which is intended for the advanced teams of the league [1].

In the previous years the team reached close enough to a SSL robot design
and solved most of the issues found in the previous designs. The process of
upgrading the robot can be seen in the previous years TDPs and ETDPs [2] of
this team. The readers who are interested in designing or upgrading a SSL robot
are encouraged to study the previous papers of this team.

This year the team had the chance to improve the AI software design which is
the core program running on a desktop or laptop computer and is the means to
navigate each robot. The robots move and take actions defined by this program.
Other enhancements, however, have been continued to be made to the robots
mechanics and electronics which will be explained further.

2 Kicking System

Before 2018 the limit for the ball velocity was 8m/s. In order for robots to kick a
ball that much fast, a strong shooting system including capacitors and solenoids
where required. Since RoboCup 2018, Montréal, Canada, the maximum speed
limit has been decreased to 6.5m/s which makes teams to wonder if they want



2 Immortals Robotics

Fig. 1. Immortals current robot.



Immortals 2020 Extended Team Description Paper 3

to redesign their robots kicking system and optimize the space consumption or
battery power in their robot. This year the Immortals robots kicking system has
been modified in order to optimize the energy consumption from the battery.
This way robots have the chance to stay longer in a match without the need of
their batteries to get changed.

Fig. 2. The latest kicking system of the Immortals robots.

To understand the upgrade process of the shooting system, the reader is
referred to the previous year (E)TDPs of this team [2, 3].

This year it has been decided to redesign the shooting solenoid which is the
part that converts the electrical power to a magnetic field and thus it will move
the metal plunger towards the ball to be kicked. The previous solenoid had a
low resistance so a higher current will pass through it which will result in a
higher speed. However, the kicking force will get a bit hard to control and it
will generate a notable amount of heat. This part has been modified in a way
that less current is flown in the solenoid to optimize energy consumption and
generate less heat. Although the kicking power will decrease, it is still possible
to kick the ball to more than 6.5m/s.

3 Software

This year the main software also known as the AI software is redesigned in order
to be more understandable and extendable. In previous years the software core
was the same for each year but with slight changes according to rules and new



4 Immortals Robotics

referee commands. The new members who wanted to implement a new idea in
the software needed to spend a great amount of time to understand the methods
to use for the robot navigation and data input.

The inputs for the software are vision data, referee commands and a config-
uration file which tells the initial parameter values for the network and match
conditions. The outputs are simple navigation commands to the robots (e.g.
moving with a given speed vector or kicking a ball with a specified amount of
force).

The new software is written in C++ same as the previous one. The only
reason to use this language is the performance and easy to extend capabilities of
it. For example the ability to optimize the code by using GPUs are well known
in this language.

3.1 Finite-State Machine

After a few years of experience in the Small Size League as a software designer
the key idea that every team is looking to implement is to make the robots
to take the correct action at the exact time and condition. If the actions are
performed correctly, the robots will accomplish their task which is scoring a
goal or preventing the opponent from scoring. Unfortunately, there are many
conditions that can happen in a match and each one has its own set of solutions
these solutions are the sequence of commands which are given to a set of robots.
For the software designer it may be hard to implement the solutions with a group
of IF conditions and no special structures.

In order to simplify the implementation for multiple software designers in
the team, a Finite-State Machine implementation structure has been introduced.
This gives a great flexibility and readability of implementation in the code. Each
state is connected to other states by a condition or a set of conditions. This makes
the implementation easier to probe. By tracking each state transition the faulty
part of the code will be simply found.

Each state is basically a function which will be called whenever a complete
picture of a field is received from the vision. The input of the function, or state,
are the vision data. In each state, the set of commands which have to be given
to the robots in the field are defined and if there is a condition which a state
transition is required the next state will be defined to be called next time. Table 1
shows a sample group of commands which can be used in every state:



Immortals 2020 Extended Team Description Paper 5

Table 1. Example commands which can be used in every state.

Function Explanation
Navigate2Point(robot, destination, maxSpeed) Navigate the robot to a destination.
ERRTNavigate2Point(robot, destination, maxSpeed) Navigate the robot while avoiding obsta-

cles.
Mark(robot, oppRobot) Position between the goal and an opponent

robot.
FetchBall(robot, point) Navigate the robot to a position on line

which the ball is moving on and most close
to the point.

OneTouchDirect(robot, point, target) Navigate the robot to a position on line
which the ball is moving on and most close
to the point. Kick the ball towards the tar-
get.

CircleBall(robot, radius, angle) Position robot on a circle around the ball
in a specific angle.

Face(robot, point) Face the robot towards a point.
Chip(robot, power) Robot should perform a chip kick whenever

the ball was intercepted.
Direct(robot, power) Robot should perform a direct kick when-

ever the ball was intercepted.
CircleKickBall(robot, target, power) Position robot on a circle around the ball

and towards the target, then kick the ball.

As shown in Table 1 the commands are fairly simple to be understood. This
simple implementation saves a great amount of time for the programmers to
extend or debug the code.

3.2 Debugging
Another experience with the previous AI software was the process of debugging
the algorithms and, in general, the code itself. To overcome this problem, a
logging protocol has been implemented which defines the messages that are sent
from the AI software while operating. Using that protocol, whenever a computer
is running the AI software while connected to the network, any other computer
in the same network can run a logging software and monitor the AI software’s
parameters including not just the simple inputs from the vision, but also the
state, predictions of the algorithms and et al. Fig 3 shows the graphical visualizer
which monitors and records the parameters in the AI software. The visualizer is
implement in python while the AI is written in C++ as mentioned before.

Fig 4 shows a simple plotter which visualizes the changes in the speed and
commanded velocity of a single robot. This logging tool is also written in python.

3.3 Analyzing
With the tools and designs which were introduced above, it is now possible
to demonstrate different features of this project. Below, we will describe the



6 Immortals Robotics

Fig. 3. A demonstration of the ERRT path plan in the graphical visualizer.

Fig. 4. An example logging program compatible with the new AI software.



Immortals 2020 Extended Team Description Paper 7

analyzing process in the AI with an example. In the example the goal is to find
the best spot in order for a robot to perform a one-touch kick5.

There are many parameters to notice while performing a successful one-touch
kick (e.g. Initial Ball Velocity, Robots Angle, Velocity of the robot, Target posi-
tion of the kick). A simple solution to find the optimum values for the parameters
is to run tests with different initializations of the parameters. Here, the tests are
performed in grSim [6].

For this example at first, a ball and two robots are stationed at defined
locations and a target position is randomly picked in a defined window.

Second, after waiting for a while, one of the robots moves toward the ball and
kicks it towards the target position. Meanwhile, the other robot tries to reach
to the target position.

Third, After the ball has been moved the second robot is commanded to
perform a one touch kick and direct the ball to the center of the goal. This
process continues until the ball passes the fields side line or the ball stops moving.
If the ball enters the goal, the target position is tagged as a success, in other
cases it is tagged as a fail. After this the round counter increases by one and the
process is repeated from the first state.

At last, After 500 rounds the process is finished and the results are shown in
the debugging tools (i.e. the graphical visualizer).

Fig 5 shows how a single round is performed.

Fig. 5. The analysis process shown in the graphical visualizer. Starting from left.

To define this process the FSM chart shown in Fig 6 can be implemented in
the project6.

5 A one-touch kick is a robots action where a ball is kicked immediately it touches the
front of the robot.

6 The chart was drawn in creately.com



8 Immortals Robotics

Fig. 6. The FSM chart for the analysis process.

Now that the FSM is known, each state can be implemented. The pseu-
docodes of the states are defined in Tables 3, 4, 5 and 6. These state functions
have access to global variables which are defined in Table 2.

Table 2. Global variables of the FSM.

var targetPosition, initRobotPositions, initBallPosition,
oppGoalPosition:Position;

var round, cnt:int;
var successPositions,failPositions:Position[];
var nextFunc2Run:function;

In Table 2, the targetPosition is the location where the robot will perform
its one-touch kick. This variable is initialized in every round.

The initRobotPositions and initBallPosition are the initial locations of the
robots and the ball in every round. These variables are defined before the start
of the test. oppGoalPosition is the position of the center of the opponents goal
line. This variable is defined before the start of the test.

successPositions and failPositions are two vectors which store the positions
according to their tags, fail or success.

nextFunc2Run is the function which will run in the next cycle (i.e. The next
time a new vision dataset is received). This variable is defined as a C++ pointer
to function in our executable code.



Immortals 2020 Extended Team Description Paper 9

Table 3. Implementation of the Setup state.

function S1_setup()
placeRobots(initRobotPositions);
placeBall(initBallPosition);
targetPosition = pickRandomPosition();
logData();
if round >= 500 then

nextFunc2Run := S4_done;
cnt := 0;

else if cnt >= 130 then
nextFunc2Run := S2_initKick;
cnt := 0;

else
cnt := cnt + 1;

In S1_setup(), the robots and the ball have to get placed in the specified
positions. This can be done by replacing the balls by hand or by robots and at
last navigating the robots towards the specified positions. If the test is being per-
formed in a simulator (e.g. grSim) it is possible to immediately place the robot
by a command. Since the current test is performed in grSim, the robots will be
placed using the placement commands implemented in grSim. These commands
are shown as initRobotPositions() and initBallPosition() in the pseudocode. In
every cycle (i.e. every time the function is called) A variable called cnt is incre-
mented by one. It is checked in an if statement to check whether it is time to
transit to the next state or to stay in the current state. Another if statement
checks if the round number has reached to 500, if so, the FSM will transit to the
done state which brings the process to an end.

Table 4. Implementation of the Initial Kick state.

function S2_initKick()
circleKickBall(Robot3, targetPosition, 100);
ERRTNavigate2Point(Robot0, targetPosition);
logData();
if cnt >= 5 then

nextFunc2Run := S3_oneTouchKick;
cnt := 0;

else if ballIsMoving() then
cnt := cnt + 1;

In S2_initKick(), Robot #3 tries to aim the targetPosition and kick the ball
towards it. Meanwhile, Robot #0 will try to reach the targetPosition. After a
few moments when the ball is moving, the FSM will transit to the next state.



10 Immortals Robotics

Table 5. Implementation of the OneTouchKick state.

function S3_oneTouchKick()
halt(Robot3);
oneTouchDirect(Robot0, targetPosition, oppGoalPosition);
logData();
if ballIsOut() then

if ballInGoal() then
successPositions.add(targetPosition);

else
failPositions.add(targetPosition);

nextFunc2Run := S1_setup;
round := round + 1;

else if ballIsNotMoving() then
failPositions.add(targetPosition);
nextFunc2Run := S1_setup;
round := round + 1;

In S3_oneTouchKick(), Robot #3 gets into a halt mode and Robot #0 will
wait for the ball to reach it. Once the ball gets fetched by the robot. it will get
kicked towards the oppGoalPosition. The state transition will not happen until
the ball exits the field or stops moving. When one of the transition conditions
happen it will be judged whether the test was a success or a fail according to
the position of the ball in relation with the goal.

Table 6. Implementation of the Done state.

function S4_done()
halt(Robot3);
halt(Robot0);
logData();
logData(successPositions, GREEN);
logData(failPositions, RED);

In S4_done(), the robots are halted and the results are sent to the visualizer
as red and green points.

After running the code with 500 rounds in 1 hour and 20 minutes, the results
were shown on the visualizer with 142 successful and 358 failed attempts. Fig 7
shows the visualizer at the end of the test. It is now clearly seen which areas
have a high possibility in scoring a goal by a one-touch kick under the tested
conditions.



Immortals 2020 Extended Team Description Paper 11

Fig. 7. The final results of the analysis.

Finally, it is worth to notice that the test has been performed in a simulation
to give a better result in a short amount of time. It is clear that this test has
to be made on robots in the real world. In that case, the number of rounds will
obviously need to decrease to a few tens. The focus of this section was to show
how an analysis procedure is taken in the Immortals AI project.



12 Immortals Robotics

References

1. Immortals Robotics Website, http://www.immortals-robotics.com.
2. Immortals 2019 Team Description Paper, https://ssl.robocup.org/wp-

content/uploads/2019/03/2019_ETDP_Immortals.pdf.
3. Immortals 2018 Team Description Paper, https://ssl.robocup.org/wp-

content/uploads/2019/01/2018_TDP_Immortals.pdf.
4. Immortals Open Source Project. https://github.com/Ma-

Ghasemieh/Immortals_ssl_opensource_mech.
5. Immortals Open Source Publish in RoboCup 2016.

https://github.com/lordhippo/immortalsSSL.
6. Monajjemi, Valiallah (Mani), Ali Koochakzadeh, and Saeed Shiry Ghidary. ”grSim

– RoboCup Small Size Robot Soccer Simulator.” In Robot Soccer World Cup, pp.
450-460. Springer Berlin Heidelberg, 2011.


