
URoboRus 2019 Team Description Paper

Anastasiia Kornilova, Petr Konovalov, Galina Reneva, Dmitrii Iarosh, and
Irina Khonakhbeeva

Saint Petersburg State University, Saint Petersburg, Russian Federation
kornilova.anastasiia@gmail.com

Abstract. URoboRus1 is a team from the Saint Petersburg State Uni-
versity (Russia) developing a solution to participate in the RoboCup
Soccer Small Size League. This paper presents the technical overview of
our robots, control software system and main algorithms. It will be the
first participation in this competition, consequently, a full description of
all components is provided.

Keywords: RoboCup · robotics · multi-agent system · hybrid central-
ized system

1 Introduction

Our team unites passionate students from departments of Software Engineering
and Theoretical Cybernetics (Control Theory), and evolves with a support from
initiative faculty members of these departments. Also, our project is supported
by CybetTech Labs Co Ltd, a company behind the educational robotics kit TRIK
[1], which is widespread in Russian schools. We started to create our solution
in September 2018 on the basis of robots, which were developed by third-party
company on our request, and at the moment of writing we have implemented a
framework for robots control and a library with general algorithms. By April-
May 2019 we plan to support a full game by Robocup-SSL rules.

Successful participation in the professional Robocup-SSL league and con-
sequent improvement of hardware and software are not the only aims for us.
Related goals also include popularization of this competition in Russia, devel-
opment of solution for educational robotics, which is affordable for schools and
universities, and in the future – organization of local Robocup-SSL league in
Russia. While reading this article one will see some solutions which have been
done in this direction. For example, a porting of an SSL-Vision to Windows is in
process, an attempt to make our control system cross-platform are being made
too, furthermore opportunities for different interpretation engines (i.e., Python)
are being considered. As of January 2019 we have already organized a hackathon
for students at the Russian inter-university robotics school [2] and have partici-
pated with our setup in the international robotics festival ”Robofinist” [3].

1 https://en.wikipedia.org/wiki/Uroborus

2 A. Kornilova et al.

2 Robots description

As it was mentioned in introduction, robots, which we use, were made by third-
party company by technical specification, so in the section we provide a descrip-
tion of this specification and some details about its implementation. All infor-
mation about mechanical and electrical design can be found in our repository
[17].

(a) exterior view (b) interior view

Fig. 1: Robots

The robot (Fig. 1) consists of a straight kicker, a chip kicker, four omnidi-
rectional wheels, and a ball spinning device (dribbler), which is equipped with
a ball presence sensor. The robot has inertial sensors and a Wi-Fi transceiver
for communicating with the control software. An LCD screen is installed on the
robot’s motherboard and displays the name of the current Wi-Fi network and
robot IP address in this network. The robot is equipped with a USB service in-
terface to change internal parameters and restrictions. Each device is controlled
by a separate board, that simplifies the process of diagnostics and repairing.

2.1 Main technical characteristics

All main technical characteristics can be found in the Table 1.

Battery The robot is equipped with a removable battery with a capacity of
3000 mAh and an average voltage of 26 volts. The operation time is ≈30 minutes
with an average current consumption of 6A. In order to charge the battery, it
should be preliminarily removed out of the robot. The battery is equipped with a
balancing device, as well as a protective device against overheating, short circuit,
deep discharge and overcharge. It also has a charge level indicator on the front
panel.

URoboRus 2019 Team Description Paper 3

176

14
6

164

180

Èí
â.

¹
 ï

îä
ë.

Ïî
äï

. è
 ä

àò
à

Âç
àì

. è
íâ

. ¹
Èí

â.
¹

 ä
óá

ë.
Ïî

äï
. è

 ä
àò

à
Ïå

ðâ
. ï

ðè
ìå

í.
Ñï

ðà
â.

¹

Ôîðìàò A3

Ëèñò Ëèñòîâ 1

1:2

3.50

ÌàñøòàáÌàññàËèò.
FootBot

Ãàáàðèòíûé ÷åðòåæ

Êîïèðîâàë

ÄàòàÏîäï.¹ äîêóì.ËèñòÈçì.

Ðàçðàá.

Ïðîâ.
Ò. êîíòð.

Í. êîíòð.
Óòâ.

Ô
àé

ë:
ÊÐ

ÂÒ
.0
9.
00

.0
0.
00

 F
oo

tB
ot

Øèôð:
Âåðñèÿ 3

Ðà
çð

àá
.:

Í.
 ê

îí
ò
ð.:

Fig. 2: Robot blueprint

Dimension diam. 180 * 146mm

Total Weight 3,5kg

Max Ball Coverage 19%

Driving Motors Maxon EC 45 Flat 70W

Gear 18:60

Gear type internal spur, cyllindric

Wheel Diameter 57,1mm

Encoder Encoder MILE, 1024 CPT, 2 Channels, with Line Driver

Dribbling Motor Maxon EC MAX 22

Dribbling Gear 50:30

Dribbling bar diam. 17

Kicker Topology Fluback converter (UP to 290V)

Chip Kick distance 2,5m

Straight kick not tested

Main Controller STM32F407VG

Battery ”Open Robotics”, 7S 3AH Battery with integrated BMS

Motor Drivers ”Open Robotics”, 5 X BLDC Motor Driver

Sensors Encoders, IMU , Ball Sensors

Communication link ESP8266

Table 1: Technical characteristics

4 A. Kornilova et al.

Connection Connection with robot can be established via 2.4G Wi-Fi and it
receives IP address automatically from DHCP. Protocol of communication with
robots is defined in the section Robot communication module.

Motors The robot is equipped with four mid-flight brushless motors for omni-
base and one more ”dribbler” brushless motor to spin the ball. The motor control
method is vector control with current control in the windings and limiting the
maximum torque on the rotor. Every engine is served by a separate driver board
with a microcontroller.

Robot control There is a special coordinate system associated with robot.
(Fig. 3). So that the robot starts to perform actions, a special UDP packet with
parameters should be sent to the robot. Movements of the robot are controlled
by using SpeedX (speed along axe X), SpeedY (speed along axe Y), SpeedR
(angular speed of the robot). To kick ball, paramaters Kick-up or Kick-forward
should be set. For more details see in Robot communication module.

3 Control software

This software was developed by using C++ with Qt framework [4]; this choice
was partly motivated by its cross-platform nature. Software implementation of
the algorithms was performed by using Matlab [5], partly due to its convenience
at the stage of prototyping.

Our software system basically consists of the following two parts:

1. Centralized control tool [6] is commissioned to solve the following tasks:
– collecting data about field geometry and game situation from robots and

SSL Vision [7]
– providing this data to the Matlab algorithm library, which calculates

control signals for robots
– transmitting those signals to the robots

2. Matlab algorithm library [8] provides to analyze the situation in the field and
to assign the current roles to the robots based on this analysis. This library
is also used by the Matlab Engine to calculate control signals to every robot
with regard to its currently assigned role.

An overview of modules and their interaction is illustrated in the Fig. 4.

3.1 Centralized control tool

The connection with SSL server is established through SSL receiver module,
which distributes the received data among all other modules. Centralized con-
trol tool sends commands to robots via Robots communication module. These
commands are evaluated by Matlab engine and collected by Matlab communica-
tion module. UI module is responsible for graphical user interface which displays
situation in the field and allows operator to start some algorithms in test mode
or control robots manually.

URoboRus 2019 Team Description Paper 5

Fig. 3: Software system diagram

SSL receiver module The task of SSL receiver module is to support connec-
tion with SSL server and receive data from it. In this module we use standard
classes that are supplied with SSL-Vision and are intended to receive and parse
packets of Google Protobuf protocol [9]. The result of parsing is transmitted
to Matlab communication module and UI module via Qt signals and classes. If
packet from SSL server contains geometry we also generate Qt signal for updat-
ing field parameters which are saved as a Qt class and shared between Matlab
algorithm library and UI.

Robots communication module Task of this module is to maintain connec-
tion of the centralized control tool with the robots, to receive data from their
sensors, and to send control signals to the robots.

All commands to robot and data from him is counted in the robot system
of coordinates. Each robot is continuously sending packets with data from its
sensors via UDP datagrams. These packets have the special format (Fig. 5),
where:

– Ball sensor - byte which indicates if ball is near robot dribbler or not (using
robot ball sensor)

– elements of quaternion - indicates orientation of the robot
– Kicker charge status - byte which indicates if kicker is charged and ready for

kicking
– Voltage - indicates current voltage from the battery
– IP - IP address of the robot in the network to which it is connected
– left inertial sensor x - x axis data from inertial sensor which is situated on

the left side of the robot
– left inertial sensor y - y axis data from inertial sensor which is situated on

the left side of the robot

6 A. Kornilova et al.

– right inertial sensor x - x axis data from inertial sensor which is situated on
the right side of the robot

– right inertial sensor y - y axis data from inertial sensor which is situated on
the right side of the robot

– CRC32 - control sum which was calculated using algorithm CRC32

They are received using QUdpSocket (QtNetwork module2) and parsed. Then
extracted data is transmitted to Matlab communication module.

Fig. 4: Structure of packet received from the robot

When Robots communication module receives control signals from Matlab
communication module, it converts them to the special UDP datagram packets
(called ”Control packets” (Fig. 6)), where:

– Speed X – value from -100 to 100, which indicates percentage of power for
motors to move robot along the x axis of its coordinate system

– Speed Y – value from -100 to 100, which indicates percentage of power for
motors to move robot along the y axis of its coordinate system

– Speed R – value from -100 to 100, which indicates percentage of power for
motors to rotate robot (positive value means clockwise rotation of the robot)

– Dribbler speed – value from 0 to 100 which indicates power of dribbler motor
in percentages

– Dribbler enable flag – byte which indicates that dribbler should be turned
on/off

– Kicker voltage level – value from 0 to 30 which indicates power of next
kicking action (kicker needs time for charging to be ready for kicking)

– Kicker charge enable flag – byte which indicates if kicker charging should be
started or not

– Kick up – byte which indicates if chip kicker should be activated
– Kick forward – byte which indicates if straight kicker should be activated
– CRC32 – control sum which was calculated using algorithm CRC32

and then transmits them to robots.

Matlab communication module This module is responsible for launching
Matlab engine, transmitting coordinates of objects on the field to Matlab Engine
and extracting control signals for robots from engine after evaluation. We use

2 http://doc.qt.io/qt-5/qtnetwork-index.html

http://doc.qt.io/qt-5/qtnetwork-index.html

URoboRus 2019 Team Description Paper 7

Fig. 5: Structure of control packet

Matlab C++ Engine API library [10] for getting access to Matlab engine from
C++ source code. To underpin calculation of control signals we transmit the
coordinates of the ball and robots, as well as sensors parameters to Matlab
engine, and then evaluate file ”main.ml”. During evaluation special structure
”Rule”, which keeps control signals for robots, is initialized. After evaluation
this structure is exported from Matlab engine and sent to Robot communication
module.

Fig. 6: Main window of our application. 1. Game Field 2. Matlab block 3. Remote
control block 4. IP Settings 5. Information bars

1. To work with Matlab engine we have introduced class MlData which keeps
”Engine” and data of type ”mxArray” for importing and exporting from
Matlab engine (i.e., Yellows, Blues, Balls, etc.). To launch Matlab Engine
we use function engOpen(). After that it is needed to specify output buffer for
Matlab Engine by using engOutputBuffer(), set Rule to zero, and to specify
the directory where files with our algorithms are accomodated.

8 A. Kornilova et al.

2. The coordinates of the balls and robots from the two teams are organized
in arrays of doubles. When needed to be transferred the the Matlab Engine,
these arrays are first copied to mxArrays. Then they are loaded to Mat-
lab environment by using function engPutVariable(). Finally, Matlab engine
evaluates ”main.ml” with new loaded data.

3. The control signals calculated in Matlab algorithm library are inserted into
the structure Rule. For extracting it from Matlab algorithm library we use
function engGetVariable().

User interface The main task of UI (Fig. 7) is to show positions of the robots
and the ball on the game field, give human operator access to special settings and
manual control of robots. The field (1) with scroll sliders and zoom controller
is situated in the middle of the user interface. It shows ball, robots of both
teams, and has marks with field coordinates in the corners. Matlab settings
block (2) is in the left corner of the bottom panel. It allows user to pause or
to continue evaluating of control signals, as well as to choose directory where
algorithms are located. Remote Control block (3) is at the center of the bottom
panel (Fig. 8). It allows to control robots manually using keyboard. Settings for
robots IP is situated in the left corner (4) under ”setting robots IP” button (Fig.
8). Moreover, some information about connection to SSL server is provided by
special information bars (5) at the bottom of the window.

(a) Remote control window (b) IP Settings

Fig. 7: Extra program windows

3.2 Matlab algorithm library

As it was mentioned in section Matlab Communication module, general scheme
of robots control consists of the next steps:

URoboRus 2019 Team Description Paper 9

1. receiving new SSL packet with data about robots (Yellows, Blues) and ball
(Balls) positions on the field and loading them to the Matlab engine

2. main.ml evaluating, during which a special structure ”Rule” with control
signals is being filled

3. pulling this structure out and sending control signals to the robots

There are 5 variables which are shared between Centralized control tool and
Matlab algorithm library – Blues, Yellows, Balls, Rule, ballInside. The first three
variables describe data from SSL, the fourth one contains control signals for
robots, the last one defines is ball inside any robot or not. All this variables are
declared as double array (except ballInside, which is double scalar), both C++
and Matlab.

At the beginning of ”main.ml” evaluation all needed variables and structures
are initialized by using mainHeader function. During this function global struc-
ture RP are declared by using loaded data from SSL. This structure will be
shared between all algorithms in the future evaluation. Structure RP contains
the next main fields.

1. Blue – array of structures with information about blue robots (robot presence
on the field, robot position, robot angle)

2. Yellow – array of structures with information about yellow robots (robot
presence on the field, robot position, robot angle)

3. Ball – structure which contains information about ball position
4. Pause – flag which controls stopping and starting of evaluation
5. Rule – array of structures with control signals for robots (Fig. 9)

During evaluation ”RP.Rule” should be filled with calculated control signals.
Rule has the next fields:

1. ”Robot in use” flag – controls do we need to send control signal to this robot
or not

2. Number of robot – number of robot according to SSL Pattern [11]
3. Speed X – robot speed along X-axe of its local coordinate system
4. Speed Y – robot speed along Y-axe of its local coordinate system
5. Kick forward flag – controls should robot kick forward
6. Speed R – robot angular speed
7. Kick up flag – controls should robot kick up

Fig. 8: Rule format description

10 A. Kornilova et al.

Control signals are calculated using algorithms presented in section Matlab
algorithm library. To stop evaluation we use a special function PAUSE, which
switches ”RP.Pause” flag. This flag is checked on each iteration at the beginning
of main.ml and in case if it is true evaluation is stopped.

3.3 Build configurations

Compilers Initially, the project was developed for Windows platform only for
the sole reason that then it would be easily accessible by school students. This
motivated us to choose MSVC-compiler [12] for our application. Our current
objective is to remaster the software for running on Linux. As a first step to this
end, we have already converted the core programs to the to MinGW-compiler
[13]. Our software system can be compiled by both of these compilers for Win-
dows platform at this moment.

Architectures Our application needs Matlab. So as not to impose a restric-
tion on the bit-version of the Matlab, both Matlab x64 and Matlab x86 were
supported.

Continuous Integration Travis CI [14] with static code analyzer Vera++
[15], which automatically checks codestyle of pull requests, is used for automatic
tests. Although Matlab is needed for running our software system in full, but for
testing build process of the project and running it, the testing build process calls
for only Matlab Runtime Compiler [16], which is in free access. Our plans include
transition from Matlab to MRC in order to make our software independent of
any commercial products.

SSL At the moment we have to support our Centralized control tool with two
versions of SSL-vision: old (2012 year) and new (2018 year). The old version is
available on both Windows and Linux, while the new version is only available on
Linux. We actively use the old one, because of more convenient way to deploy
our setup. At the moment we actively try to port new SSL-vision to Windows.

4 Algorithms

The developed algorithms can be categorized into three groups: basic algorithms,
advanced algorithms and roles (behaviour patterns). Now we illustrate every
group by describing its most important algorithms.

4.1 Main terms

– SSL coordinate system – global coordinate system associated with data re-
ceived from SSL-vision

URoboRus 2019 Team Description Paper 11

Fig. 9: Main terms

– Robot coordinate system – local coordinate system associated with robot
control model

– Robot position consists of the Cartesian coordinates of robot center and the
polar angle of robot in the SSL coordinate system – (x, y, α)

– Robot velocity is a vector of velocity in robot coordinate system – −→v
– Robot angular speed is angular robot speed – ω

– Minimal robot speed is a minimal speed at which robot starts to move – vmin

– Minimal angular robot speed is a minimal speed at which robot starts to
rotate – ωmin

– P, I, D – are the proportional, integral, and differential coefficients of the
considered PID-controller

4.2 Basic algorithms

MoveToPoint This algorithm controls robot’s moving to the destination point.
(Fig. 11)

Input: robot position, destination point.

Output: robot velocity.

P-controller is used to calculate the magnitude of robot velocity:

V = Vmin + P · |
−→
S |

To translate direction vector −→s to robot coordinate system we use the next
formulas:

−→s =

−→
S

|
−→
S |

−→
V = V ·

(
sinα − cosα
cosα sinα

)
· −→s

12 A. Kornilova et al.

Fig. 10: Algorithm MoveToPoint

Fig. 11: Algorithm RotateToPoint

URoboRus 2019 Team Description Paper 13

RotateToPoint This function controls robot rotation to the destination point.
(Fig. 12)

Input: robot position, destination point.
Output: robot angular speed.
To rotate to the destination point we use P-controller, which looks like:

w = sign(∆) · wmin + P ·∆

where ∆ – difference between current robot angle and destination point angle in
SSL coordinate system.

GoAroundPoint This algorithm drives the robot around a given point at a
given distance R and controls that robot is rotated to the point (looking after
the point). (Fig. 13) If initially the robot is not at the requested distance from
the point, the algorithm preliminary drives the robot to this distance.

Input: robot position, center of rotation, radius of circle.
Output: robot velocity, angular robot speed.
To rotate around point we use algorithm RotateToPoint with some modifi-

cations. This algorithm is used in cases of circles with small radius, therefore the
high accuracy is necessary, so we use PD-controller. Formula of angular speed
is:

w = sign(∆) · wmin +∆ · P + (δ −∆) ·D

where ∆ – is difference between desired and current angle at current step, δ –
difference between angles at previous step.

Fig. 12: Algorithm GoAroundPoint

The next point where robot should move is calculated as:

−→s =

−→
S

|
−→
S |

point = M + c1 · −→n + c2 · L · −→s

14 A. Kornilova et al.

where M =
(

x
y

)
, −→n – normal vector, c1 and c2 – coefficients, L = |

−→
S | −R .

To calculate robot velocity we use MoveToPoint algorithm to point.
Starting from this moment we combine MoveToPoint and RotateToPoint into

functionMoveToWithRotation, which moves and rotates robot to the destination
point simultaneously

4.3 Advanced algorithms

TakeAim This function drives robot to the line, which connects ball and aim.
This function controls, that robot stops at the desired distance from the ball on
this line. (Fig. 14)

Input: robot position, aim coordinates, and parameters for function GoAround-
Point.

Output: robot velocity, angular robot speed.

Fig. 13: Algorithm TakeAim

If robot is in desired point, it rotates to the point using RotateToPoint. In
other case, GoAroundPoint is called.

Catch ball This function allows robot to take a pass from other robot. The
main idea is as follows. As soon as the robot is hit by the incoming ball, do not
catch the rest the robot should move with velocity, which is co-directional with
ball velocity and depends on it. In this case kinematic energy will decrease, and
ball will not bounce off far. (Fig. 15)

Input: robot position, ball position.
Output: robot velocity, angular robot speed.
In case if ball speed, calculated from ball positions in previous and current

frames, greater than minimal value (constant), estimated ball trajectory is calcu-
lated. In other case robot just rotates to the ball using RotateToPoint function.

Point, which is a foot of perpendicular from the robot center to the ball
trajectory, is calculated. It is considered, that pass was taken to other robot in

URoboRus 2019 Team Description Paper 15

Fig. 14: Algorithm CatchBall

case if distance from the robot center to this point is less than ϵ. If distance to
this point is greater than δ then robot moves to this point using MoveToPoint.
In other case a new point is calculated, which got from the current point using
movement along the ball trajectory, proportionally to the ball velocity. Robot
moves to the new point and turns to the ball.

BuildPath This function builds path between starting point and destination
point. There are several obstacles (defined as circles) on the plane between those
points. (Fig. 16)

Input: starting point S, destination point F, array of obstacles (obstacle is a
pair of center of circle and radius), parameter step.

Output: array of points of path.
In algorithm segment SF is considered. If it doesn’t cross any obstacle, then

the path is SF . In other case, from all obstacles which were crossed, algorithm
chooses the nearest one to the point S using Euclidean metric. Then algorithm
calculates point C on the line, which is perpendicular to the SF and crosses
the center of the nearest obstacle. C is located at distance step from the ob-

stacle (segment OS). In case step is positive then
−−→
OC is turned clockwise from

−→
SF . In other case – counterclockwise from

−→
SF . Then algorithm calculates path

recursively for SC and CF segment.
In practice we limit depth of recursive call. Therefore if path wasn’t con-

structed, we assume that point is unattainable.

MoveToAvoidance This function controls movement of the robot to the des-
tination point with obstacle avoidance. Obstacles are defined as circles.

Input: robot position, destination point, array of obstacles (obstacle is a pair
of center of circle and radius).

Output: robot velocity, angular robot speed.

16 A. Kornilova et al.

Fig. 15: Algorithm BuildPath

In algorithm robot is a material point, therefore to avoid obstacles we increase
obstacles radius by robot radius. It may happen, that current robot position A
is inside obstacle (for example, due to equipment error). To avoid incorrect path
planning, we use a point A′ which lies at some distance from the obstacle on the
line OA, where O is obstacle center and A lies between O and A′.

On each step we calculate two paths – with positive step and with negative
step using BuildPath function, choose the shortest path and move to the next
point using MoveToPoint.

4.4 Behaviour models

Goalkeeper This function describes goalkeeper behaviour. Goalkeeper is mov-
ing along the goal and its trajectory is a line. If estimated trajectory of the ball
is crossing the goal, robot is moving to the point of their intersection. Estimated
trajectory is a line calculated from previous ball positions. (Fig. 17)

Input: robot position, ball position, goal center, goal vector
−→
N .

Output: robot velocity.

To calculate intersection point of goals and ball trajectory we use the next
formula:

t =

−−→
CBnew ∧ −→u

−→
δ ∧ −→u

point = Bnew + t ·
−→
δ

where ∧ – pseudo-scalar product.

To move to the point of intersection we use function MoveToPoint with PD-
controller. In case of axe which is perpendicular to the goal, the speed is the
most important thing, in case of parallel axe stabilization of robot is necessary.
Therefore robot velocity along axes X and Y in global coordinates is calculated
in different ways with different P and D coefficients. After this step velocities
are transformed to robot coordinate system and summarized.

URoboRus 2019 Team Description Paper 17

Fig. 16: Algorithm Goalkeeper

Attacker This function controls attacker behaviour. It provides kick in aim
direction.

Input: robot position, ball position, aim position.
Output: robot velocity, angular robot speed, kick ball flag.
In this algorithm every combination of robot position, ball position and aim

position belongs to one state of four possible states. Depending on what state
describes the current arrangement of these objects robot makes a decision on
further actions.

– State 1: robot is far from the ball. It means that distance from the point to
the ball is greater than defined constant. In this case robot moves to the ball
using function MoveToWithRotation, until distance to the ball will reach
defined constant.

– State 2: robot is not in state 1, but robot doesn’t take aim. It means that
ball is not on the line between robot and aim. In this case we use algorithm
GoAroundPoint, which provides robot movement around the ball until robot
will reach desired point.

– State 3: robot is not in state 2, ball is on the line between robot and aim,
and robot is near to the ball. In this case robot moves to the ball until touch
it. In state 1 robot doesn’t move closely to the ball, so as not to touch it
when aiming.

– State 4: ball is inside robot and robot has taken the aim. To check is ball
inside robot we use data from robot ball-sensor. In this case robot kicks the
ball.

5 Acknowledgements

We wish to express our deep gratitude to prof. Alexey Matveev (SPbU) for his
review and useful advice for the scientific sections of this paper. We also would
like to thank Iakov Kirilenko (SPbU) for his enthusiastic encouragement and
professional support. Special thanks should be given to previous research group

18 A. Kornilova et al.

(circa 2012-2016), which developed Robocup-SSL game for two-wheeled robots
based on Lego, Arduino, and TRIK – Ilya Shirokolobov, Ruslan Sevostyanov,
Kirill Ovchinnikov – for their responsiveness and advertency.

Our grateful thanks are also extended to JetBrains Research, which encour-
ages leading students from our team with a scholarship. Finally, we wish to thank
Presidental Lyceum of physics and mathematics 239 and CybetTech Labs Co
Ltd for their valuable technical support on this project.

References

1. Cybernetic constructor TRIK, official webpage, https://trikset.com official En-
glish webpage, http://blog.trikset.com/p/eng.html

2. Russian inter-university robotics school, official webpage, https://vk.com/

roboschool_vlg

3. Robofinist, official webpage, https://robofinist.org
4. Qt, official webpage, https://www.qt.io
5. MATLAB, official webpage, https://www.mathworks.com/products/matlab.html
6. Centralized control tool repository, https://github.com/robocup-ssl-russia/

LARCmaCS

7. SSL Vision system, official repository, https://github.com/RoboCup-SSL/

ssl-vision

8. Matlab algorithm library repository, https://github.com/robocup-ssl-russia/
MLscripts

9. Google Protocol Buffers, official webpage, https://developers.google.com/

protocol-buffers

10. Matlab C++ Engine API, official webpage, https://www.mathworks.com/help/
matlab/matlab_external/engine-c-api-1.html

11. Official SSL Vision standard pattern, http://wiki.robocup.org/images/9/96/
Small_Size_League_-_Standard_Pattern_2011.pdf

12. Microsoft Visual C++ compiler, official webpage, https://visualstudio.

microsoft.com/ru/vs/features/cplusplus

13. MinGW compiler, official webpage, http://www.mingw.org
14. Travis CI, official webpage, https://travis-ci.com
15. Static code analyzer Vera++, official webpage, https://bitbucket.org/

verateam/vera/wiki/Home

16. Matlab runtime compiler, official web page, https://www.mathworks.com/

products/compiler/matlab-runtime.html

17. Electrical and mechanical components https://github.com/

robocup-ssl-russia/schemes

https://trikset.com
http://blog.trikset.com/p/eng.html
https://vk.com/roboschool_vlg
https://vk.com/roboschool_vlg
https://robofinist.org
https://www.qt.io
https://www.mathworks.com/products/matlab.html
https://github.com/robocup-ssl-russia/LARCmaCS
https://github.com/robocup-ssl-russia/LARCmaCS
https://github.com/RoboCup-SSL/ssl-vision
https://github.com/RoboCup-SSL/ssl-vision
https://github.com/robocup-ssl-russia/MLscripts
https://github.com/robocup-ssl-russia/MLscripts
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://www.mathworks.com/help/matlab/matlab_external/engine-c-api-1.html
https://www.mathworks.com/help/matlab/matlab_external/engine-c-api-1.html
http://wiki.robocup.org/images/9/96/Small_Size_League_-_Standard_Pattern_2011.pdf
http://wiki.robocup.org/images/9/96/Small_Size_League_-_Standard_Pattern_2011.pdf
https://visualstudio.microsoft.com/ru/vs/features/cplusplus
https://visualstudio.microsoft.com/ru/vs/features/cplusplus
http://www.mingw.org
https://travis-ci.com
https://bitbucket.org/verateam/vera/wiki/Home
https://bitbucket.org/verateam/vera/wiki/Home
https://www.mathworks.com/products/compiler/matlab-runtime.html
https://www.mathworks.com/products/compiler/matlab-runtime.html
https://github.com/robocup-ssl-russia/schemes
https://github.com/robocup-ssl-russia/schemes

	URoboRus 2019 Team Description Paper

