
TIGERs Mannheim
(Team Interacting and Game Evolving Robots)

Extended Team Description for RoboCup 2019

Nicolai Ommer, Andre Ryll, Mark Geiger

Department of Information Technology
Baden-Württemberg Cooperative State University,

Coblitzallee 1-9, 68163 Mannheim, Germany
management@tigers-mannheim.de
https://tigers-mannheim.de

Abstract. This paper presents a brief overview of the main systems of
TIGERs Mannheim, a Small Size League (SSL) team intending to par-
ticipate in RoboCup 2019 in Sydney, Australia. This year, the ETDP will
provide details on our path planning algorithm, which is rather distinct
in the league and is used by our team for several years now. Further-
more, the rating functions for good pass locations are outlined. They are
a major part of our pass-oriented play style. Additionally, we will briefly
introduce our new robot design, which is developed from scratch.

1 Mechanical and Electrical System

This year we are developing our fourth iteration of our robot hardware. This
generation is redesigned from scratch and features higher motor power, more
sensors, and the option for an onboard compute model. A comparison of our
current v2016 model and the next generation v2019 is shown in table 1.

The drive train has been updated from 50W motors to 70W motors. Further-
more, the encoders have been changed from optical ones to magnetic ones which
provide a higher resolution and dirt resistance. The wheel size has been reduced
by 32% to be able to arrange all wheels with 90° spacing. This significantly re-
duces friction effects and eases motion control. The dribbling motor has been
exchanged for a lighter Maxon ECX Speed 13L. The new motor runs a much
higher speeds, hence a two-step gear is required to achieve optimal performance
at 15000rpm.

The primary microcontroller has been updated to a STM32H743 running
at 400MHz. Furthermore, five STSPIN32F0A microcontrollers replace the Alle-
gro A3930 ICs for individual motor control. An additional STM32F031 handles
processing the front infrared barrier for ball detection. All secondary micro-
controllers are connected to the primary one via individual serial connections
(UART). In addition to the v2016 sensors, the new version now also employs a
compass for absolute heading measurements.

https://tigers-mannheim.de

Fig. 1: CAD rendering of v2019 robot without case. The depicted configuration
indicates three camera locations and one Raspberry Pi 3. Battery is located in
the back of the robot.

The v2019 robots have been specifically designed for more autonomy by hav-
ing space for a compute module. They can either be equipped with a Raspberry
Pi 3 with one front looking camera or with a Jetson TX2 with up to three cam-
eras (one front, two up). The front camera will be used for ball detection. The
two upward facing stereo cameras can be used for visual odometry to provide
an alternative position source for the official SSL-Vision.

Figure 1 shows a CAD rendering of the new robot. v2016 and v2019 robots
use the same wireless link and protocol, hence they are transparent to our central
AI software allowing us to run heterogeneous teams in case we need to use old
and new robots.

Further tests need to be done in order to evaluate the usefulness of enhanced
(encoders) and new (compass, cameras, microphones) sensors. At the time of
writing they have only been integrated in hardware but are not used yet in
software.

Table 1: Robot Specifications

Robot version v2016 v2019
Dimension Ø179 x 146mm Ø178 x 146mm
Total weight 2.5kg 2.5kg
Max. ball coverage 19.7% 19.3%
Driving motors Maxon EC-45 flat 50W Maxon EC-45 flat 70W1

Gear 18 : 60 30 : 50
Gear type Internal Spur External Spur
Wheel diameter 57mm 33mm
Encoder US Digital E8P, 2048 PPR [1] RLS RLC2HD, 36864ppr [2]
Dribbling motor Maxon EC-max 22 Maxon EXC Speed 13L HP
Dribbling gear 50 : 30 12 : 32 + 14 : 18
ØDribbling bar 14mm 12mm
Kicker topology Flyback Converter (up to 230V)
Chip kick distance approx. 2.5m approx. 3m
Straight kick speed max. 8m/s max. 8.5m/s
Microcontroller STM32F746 [3] STM32H743 [4]

Sensors Encoders, Gyroscope,
Accelerometer

Encoders, Gyroscope,
Accelerometer, Compass,
Cameras, Microphones

Communication link Semtech SX1280 @1.3MBit/s, 2.300 - 2.555GHz [5]

Compute module N/A Raspberry Pi 3 or nVidia
Jetson TX2

Onboard cameras N/A 1 front, 2 up

1 Alternative option: Nanotec DF45L024048-A2, 65W

2 Path Planning

This year, the software section focuses on the robot control, including path plan-
ning, trajectory generation and execution on the robot. A common path planning
approach is the Rapidly-exploring random tree (RRT) algorithm which is widely
employed in the SSL. However, some years ago we replaced our RRT algorithm
with a custom algorithm. It searches for paths by generating trajectories. Colli-
sions are detected by stepping over them. The trajectories are the same we use
on our robots for motion control. The advantage is that the resulting trajectory
path can be executed by the robots, while with RRT, another post processing
is required to get a physically reasonable trajectory from a path. Additionally,
we gain information on the time until a robot reaches its destination and we can
better coordinate our own robots because we know the robot positions over time
quite precisely.

The following sections will start with some preliminary information about the
system we use and the constraints we have, before explaining the path planning
algorithm in detail.

2.1 Trajectories

Our robot control is based on two-dimensional bang bang trajectories for the
translative movement with velocity limits and fixed acceleration. The orientation
is controlled separately. The two dimensions are synchronized such that both
one-dimensional trajectories use approximately the same time [6]. One of the
limitations of the trajectory generation is that the end velocity must be zero.
This was a major constraint in the design of the path planning algorithm which
had to be considered. Though, any other trajectory should theoretically also
work, as long as it can be generated from an initial position and velocity and a
final position.

2.2 Robot control

The robot control of our team is rather distinct in the league, yet. Most teams
send velocities to their robots and thus have at least one control loop in their
central software. In contrast to that we send a destination to our robots. A
dedicated base station receives and forwards the SSL-Vision position to each
robot. The communication with our robots is described in details in the ETDP
from 2016 [7]. The robot can drive to the given destination without any further
updates from our software.

The path planning, however, is done in our software. In order to avoid obsta-
cles we need to find an alternative intermediate destination that maneuvers the
robot around the upcoming obstacles. The destination could be updated in each
frame, but in order to achieve a smooth, precise, and independent movement,
the intermediate destination should be as stable as possible. This is considered
during path planning by preferring the last intermediate destination.

The robot control in the software is performed in so called skills, most of
which make use of path planning. Skills are updated with 100Hz with one thread
per robot. They take the current positions and velocities of all objects from our
internal vision filter and update the match (control) command of their designated
robot at the end. The updated match command is sent to the base station [7].

2.3 Path planning algorithm

Given a destination, a set of obstacles and some movement limits and constraints,
the path planning algorithm will find exactly one trajectory. The trajectory is not
necessarily optimal and it may have collisions. In a quickly changing environment
like the SSL we have to find a trade-off between optimal paths and calculation
time. We prefer to find a valid path within one time step (10ms) so that we
can react to fast moving opponent robots as quickly as possible. A collision one
second or more in the future is fine, if no other path can be found in the current
time step. The obstacle might be gone in the next time step anyway.

The algorithm will first generate a trajectory to the destination and check
if there is a collision on this trajectory. If not, it will stop here and return this
trajectory. Otherwise, it will generate a fixed number of trajectories. The way of
generating these trajectories is described in the upcoming sections. A collision
check is performed on each of these trajectories by stepping over them in 100ms
steps. Stepping stops after a fixed amount of time (3s).

Afterwards, each trajectory gets a penalty score. Given ttotal is the total
trajectory time, tcl = 3.0s is the collision lookahead until which a collision is
considered, tcdf is the collision duration on the front of the trajectory and tfcis
the time when the first collision occurs, multiple penalties are considered:

– Total trajectory time: prefer faster trajectories

PtotalT ime = ttotal (1)

– Collision on trajectory (fixed 5s penalty): avoid collisions

Pcollision =

{
5.0 collision_present
0.0 otherwise

(2)

– Distance [m] between position at collision check limit (3s) and destination:
improve paths, if destination is far away

PfarCollision =

{
max(0, |pl − pd|) ttotal >= tcl

0.0 otherwise
(3)

– Time until first collision: Prefer trajectories with collisions farther away

PfirstCollision =

{
max(0, tcl − tfc) intermediate_collision_present
0.0 otherwise

(4)

– Collision duration on front of trajectory: trajectories with less front duration
leave the obstacle faster

PfrontCollision =

{
0.0 always_colliding
3tcdf otherwise

(5)

The total penalty score is the sum of all scores:

Ptotal = PtotalT ime+Pcollision+PfarCollision+PfirstCollision+PfrontCollision (6)

The trajectory with the lowest penalty score is considered the best one of
the current iteration. One extra trajectory is generated with the intermediate
destination of the last iteration. If the penalty score of this trajectory is signif-
icantly larger then the one of the best new one, the new trajectory is returned.
Otherwise, the trajectory of the intermediate destination from the last iteration
is returned.

2.4 Generating trajectories based on intermediate destinations

Trajectories are generated from a fixed number of intermediate destinations
around the current robot position. They can either be generated randomly, or
in a systematic way. The latter has the advantage of more predictable results,
while the randomness might help avoiding to get stuck. Experiments have not
shown significant differences, though. We used the systematic generation during
RoboCup 2018.

Fig. 2: Systematic generation of intermediate destinations (blue dots with
green/red borders) with an angle step size of 0.4rad and distance step size of
1m. Figure 3 shows an excerpt of this image with more details.

Figure 2 shows the systematic intermediate destinations. They are arranged
in 0.4rad angle steps and with 1m distance steps, with an offset of 0.1m to the
robot center. These parameters turned out to work well for the current velocity
limits and robot dimensions.

A new trajectory is generated from the current robot position and velocity
to each intermediate destination. No intermediate destinations are skipped, so
the order in which those destinations are processed is not important. Then,
another trajectory is generated from multiple locations on these trajectories to
the destination with a step size of 0.2s. When the first collision free trajectory
was found, the stepping is stopped for the current intermediate destination and
the next one is processed. Figure 3 illustrates this. It shows the intermediate
destinations with a blue dot. For each step on the first trajectory there is a ring
around the intermediate destination. The size of the ring indicates the time past
during stepping. The color encodes the penalty score of the resulting trajectory
for each step. Remember, that at each step a second trajectory to the target
location is generated and the combination of the part of the first trajectory until

that time step and the second trajectory is rated. Green is good, red is bad.
Only the eight best trajectories are also shown, but much more trajectories are
generated while processing all intermediate destinations.

Fig. 3: Result of a single path planning execution with intermediate destina-
tions, best trajectories and selected intermediate destination. 1) Current robot
position, 2) best intermediate destination, 3) destination, 4) obstacle zones, 5)
best trajectories (green: best, red: worst), 6) intermediate destination (blue) and
markers for each time step from start to intermediate destination, 7) stepping
stops earlier, if a collision-free trajectory was found (that’s why there are less
circles around the blue point).

2.5 Modeling obstacles

Obstacles are not static shapes, but can depend on time. The path planning al-
gorithm takes a list of obstacles as input. Each obstacle implements one method:

c o l l i d i n g (po int : Vector2 , time : double) : boolean

Simple obstacles, like defense area, field borders and the restricted area
around a ball are not time dependent and are only modeled as rectangular or
circular shapes. Our own robots are modeled using their current trajectory. The
margin depends on the velocity on the trajectory. If a robot is moving fast the
margin is larger then when a robot is moving slowly. The opponent robots are
modeled as a circle shifted towards the moving direction. The circle reflects the

theoretical action space of the opponent based on a fixed acceleration motion
model. The ball is modeled using a ball trajectory. The ball trajectory is based
on the two- phase ball model, presented by ER-Force in their 2016 ETDP [8].

2.6 Optimizations

Several optimizations, introduced over the years, have been applied to the basic
algorithm. They are outlined in this section.

Collision checks are only performed until a fixed maximum time (3 seconds).
There are two major reasons for this. Firstly, most obstacles are moving robots
and balls. The longer we look into the future, the less likely it is that we have
predicted the state of these obstacles correctly. There is also plenty of time to
react on those obstacles later. Ignoring these obstacles simplifies the path be-
cause it can focus on the critical time horizon while being only modeled by a
single intermediate destination. Secondly, this also limits the maximum process-
ing time. Large peaks in the processing time should be avoided for a smooth and
fast reacting movement.

The current robot position or the destination could be inside an obstacle.
In this case, there would be no collision free trajectory and the path planning
would not work well. To solve this the duration of the front and back collision on
the trajectory is also considered in the penalty score and the first collision time
is calculated starting from the first non collision time step on the trajectory.

The accuracy of the trajectory heavily relies on the robot state (position and
velocity). However, due to the system delay we do not know the current state of
our robots. Instead of predicting this state based on measured data we simply
assume that the robot moves exactly on the trajectory that we calculated in the
previous step. It is only reset if the measured position significantly differs from
the trajectory position. That way there are no issues with delays in the state
and imprecise measurements.

As mentioned in section 2.3 the path planning algorithm may return a tra-
jectory with a collision on it. Depending on the time to the collision and the type
of obstacle the velocity limit is reduced significantly first. If it gets too close and
our robot is fast an emergency brake is applied. This is a special command that
is also used during HALT and will bring the robot to a stop as fast as possible.

When coordinating multiple robots it can happen that both robots try to
avoid each other in a symmetric way and push each other away from their des-
tinations. To avoid this a priority map is applied. Each robot has a different
priority. Robots with a higher priority neglect the robots with a lower priority.
In a match the priorities are populated from the roles that the robots have.
Otherwise, the robot IDs are taken as a default.

2.7 Evaluation

The idea of an alternative path finder, that is not based on RRT, was introduced
in 2015. Since then, it has been evolved to what is described in this paper. At

RoboCup 2018 automatic referees had checked for collisions throughout all games
for the first time. We were one of the teams with the fewest collisions throughout
the tournament. This shows that our approach works well in avoiding collisions.

One of the main constraints of the path planning algorithm is the processing
time. In the previous sections it was already mentioned that there are some
limits to avoid unpredictably long processing time. The processing time primary
depends on the number of intermediate destinations that are generated. That is
why those are fixed. Additionally, it depends on the number of obstacles. At each
time step on a trajectory a collision check is performed for each obstacle. Luckily,
the number of obstacles is also limited to the number of objects on the field. The
trajectories are a crucial part in the processing time. For one robot about 35.000
trajectories are generated per second. Hence, the cost for this generation has to
be cheap.

Fig. 4: Random crowded path planning scenario with 32 robots. Used for perfor-
mance evaluation. 1) current robot position, 2) selected intermediate destination,
3) detected collision on selected trajectory, 4) selected (best) trajectory (green
part: lookahead for collisions, orange part: No collision checks performed), 5)
destination.

A performance evaluation has been done by generating 1000 random constel-
lations of 32 robots, a ball, and a defense area in one half of a division A field
(12x9m) in simulation. One example of such a constellation is shown in figure 4.
In each of these constellations the yellow robot with ID zero starts in the shown

corner and gets a destination in the diagonally opposite corner of the field half.
The robot always reached the destination within a time of 5.7s to 14s with an
average of 6.9s. The average maximum processing time per run and iteration is
3.6ms (including any garbage collection from the JVM) and the overall average
processing time per run and iteration is 0.3ms. A video of part of the simulation
can be found on YouTube2.

Fig. 5: A wall of robots. This is a scenario, where the robot (yellow 0) will
never reach the destination (yellow circle). In this case, a random sampling of
intermediate destinations has been used instead of systematic sampling. Both
perform equally bad.

Figure 5 shows a worst case example with a wall of robots. If the robot is send
from one side of the wall to the other it will never reach the destination. The
robot will drive around in a rather random way, continuously trying to find a
way to the destination. As this is a very artificial constellation, which will never
happen in a real game, this is not a problem in our case but it shows the limits
of our path planning approach. An RRT algorithm would easily find a path to
the destination here. This example is a worst case in terms of processing time.
The average and maximum processing time per run and iteration is a bit larger
here: 6.1ms average maximum per run and 0.9ms overall average. That is still
within the limit of 10ms if running with an update rate of 100Hz.

2 Path planning with many obstacles: https://youtu.be/1qjdgbAWT2I

https://youtu.be/1qjdgbAWT2I

It should be considered that in a real match path planning is performed for
all robots in parallel and the AI also needs quite a bit of the CPU. A slightly
exaggerated example can be seen on YouTube3 with 32 robots moving towards
each other and sorting themselves in a row. In this case the average processing
time per robot and iteration grew to 4ms with peaks of up to 60ms (including
garbage collection again).

During past RoboCup matches, a laptop with a modern quad-core CPU
has been used without noticeable performance issues. During local testing, the
system even simulates two teams, doubling the resource consumption for both
path planning and AI.

2.8 Next steps

One of the next steps is to find another trajectory type that is even better suited
for our robot control but could still be used with the path planning algorithm.
While we are basically satisfied with bang bang trajectories we are still looking
for trajectories that better adapt to the physical limits of our robots.

3 Pass target rating

In the past years we worked on improving our pass-focused play style. In our 2017
ETDP [9] we explained the concept of pass targets and pass synchronization.
This concept was also used during RoboCup 2018 with some minor improve-
ments. In this section the calculation of the pass target score(s) is explained.
Note that the generation of pass target locations is not part of this section an
can be looked up in [9].

3.1 Previous approaches

Until RoboCup 2018 each pass target T had exactly one score associated with it.
This score was based on numerous probabilities like goal chance, pass intercep-
tion hazard, overall pass distance, etc. Let us denote the individual probabilities
as pi where i ranges from 0 to n, the total number of probabilities taken into
account. Then the final score stotal is calculated as:

stotal =

n∑
i=0

wi · pi (7)

Where wi denotes individual weights per considered probability. The prob-
ability values are bounded between the values zero and one, with the general
meaning of being bad towards zero and good towards one. Here, the problem
with our previous approach becomes visible. First of all, it is very susceptible
to tuning errors. Let us assume there is a probability for a successful pass ppass
3 Path planning with 16vs16 robots: https://youtu.be/7Mc683k6_4w

https://youtu.be/7Mc683k6_4w

and an associated weight wpass. Due to the fact that ppass approaches a proba-
bility of one it may dominate over all other probabilities. This leads to endless
sequences of pass play. This could be countered by adjusting wpass but selecting
a wrong magnitude for the weight may also lead to no passes being made at all.

Furthermore, only one pass target score is used for all situations whereas it
may be desirable to adjust them depending on situation. With the given approach
this leads to multiple sets of wi making tuning even more error-prone.

3.2 “One score, one strategy” rating

Instead of using one single score stotal for all pass targets we decided to split up
the score into multiple strategy-oriented scores. During RoboCup 2018 we used
two distinct scores. One score denoted the probability to shoot a goal from the
pass target location. We call this a redirect goal as the ball is passed to a robot
and then redirected into the goal. Hence, let us denote this score as srgoal. The
second score simply denotes the probability to receive a pass and stop the ball.
We denote this score as spass. srgoal and spass are always computed for all pass
targets T . If we denote G = {T | srgoal > 0} then the best pass target Tbest is
computed by:

Tbest =

{
maxT (spass) G = ∅
maxT (srgoal) otherwise

(8)

This means that we will use srgoal as soon as there is a pass target with a
chance to shoot a goal. This aligns with the main objective of the game. If this
is not possible, we favor game control and ball possession and select the best
possible pass to a friendly robot.

Having two distinct scores also simplifies tuning and adds robustness. If
passes are intercepted too often, this probability can be weighted higher without
affecting goal shots. Thereby, we could select to play safe passes but very risky
goal shots. Furthermore, misadjusting a weight can no longer negatively impact
the complete pass target rating.

Redirect Goal Shot Score The redirect goal short score srgoal is a combi-
nation of several criteria: The redirect angle, the overall distance of the pass
and goal shot, the pass success probability and the goal shot success probability.
Figure 6 shows how the score looks for every point on the field for one specific
scenario. The most dominant and most important criteria is the redirect angle
α. The redirect angle is the angle between the ball position, the pass target and
the opponents goal. If a redirect is not possible then the overall score is automat-
ically zero (deep red dots in figure 6). The criteria are mapped to probabilities
as follows:

pangle = 1− rel (α, 45◦, αmax) (9)

pdist = 1− rel (d, 0, dmax) (10)

with:

rel(x,min,max) =

1 x ≥ max
x−min

max−min min < x < max

0 x ≤ min
(11)

Where αmax defines the maximum acceptable redirect angle, d the distance
from pass origin to pass target and from there to the goal, and dmax the maxi-
mum total distance acceptable for d. Angles smaller than 45° have a maximum
Pangle score. Furthermore, the pass success probability ppass is defined by the
width of the free corridor from the pass origin to the pass target. Goal success
probability pgoal has been described in detail in our 2017 ETDP [9] (section 2.2
“The Score Chance”).

Fig. 6: srgoal on every point on the field. Red colored areas are bad redirect
positions to score a goal. The greener a point is drawn, the better the point has
been rated. The white dot shows the position of the ball.

srgoal is then defined as:

srgoal = pangle · pdist ·max (0.75, pgoal) ·max (0.75, ppass) (12)

pgoal and ppass have been bounded to be no less than 0.75 so that they cannot
pull down srgoal to zero. This can only happen if α > αmax or d > dmax. Due
to the hard angle restriction srgoal is zero quite often. In those cases the pass
strategy with spass is employed as mentioned above.

Pass Score The pass probability ppass shows how likely it is that a pass to
a specific point can be intercepted from an opponent robot. Furthermore, the
overall pass distance is considered as one additional criteria. Hence, spass is
calculated as follows:

spass = ppass · pdist (13)

Note that ppass and pdist can be different to the ones in (12). E.g. dmax can
be different or the corridor width for ppass can be based on different values.
Figure 7 shows how the two probabilities for ppass can look like for one specific
situation.

Fig. 7: spass is a combination of two probabilities. The first probability (left
side) shows how likely it is that the opponent can intercept the pass. The second
probability (right side) represents the pass distance. The assumption is that long
ranged forward passes that cannot be intercepted are good passes.

3.3 Results

The “one score, one strategy” rating showed good results during RoboCup 2018.
It is easier to control and easier to maintain than the previous approaches. Mostly
because now the redirect goal shot and pass scores can be tweaked independently
from each other, without effecting the behavior of the other strategy score.

One of the next steps is to add a new strategy, thus also a new strategy score
for intermediate pass positions. This can be very important if the field size is
increased again. The new strategy should represent some kind of mid-field play,
that will be more important when the field size increases.

4 Publication

Our team publishes all their resources, including software, electronics/schemat-
ics and mechanical drawings, after each RoboCup. They can be found on our
website4. The website also contains several publications5 with reference to the
RoboCup, though some are only available in German.

References

1. US Digital. E8P OEM Miniature Optical Kit Encoder, 2012. http://www.
usdigital.com/products/e8p.

2. RLS, A Renishaw associate company. RLC2HD Datasheet, September
2017. https://www.rls.si/en/fileuploader/download/download/?d=0&file=
custom%2Fupload%2FRLCD03_03RLC2HD_datasheet.pdf.

3. STmicroelectronics. STM32F745xx, STM32F746xx Datasheet, December
2015. http://www.st.com/st-web-ui/static/active/en/resource/technical/
document/datasheet/DM00166116.pdf.

4. STmicroelectronics. STM32H743xI Datasheet, July 2018. https://www.st.com/
resource/en/datasheet/stm32h743bi.pdf.

5. Semtech Corporation. SX1280 Datasheet, May 2017. http://www.semtech.com/
images/datasheet/sx1280_81.pdf.

6. O. Purwin and R. D’Andrea. Trajectory generation for four wheeled omnidirectional
vehicles. In Proceedings of the 2005, American Control Conference, 2005., pages
4979–4984 vol. 7, June 2005.

7. A. Ryll, M. Geiger, N. Ommer, A. Sachtler, and L. Magel. TIGERs Mannheim -
Extended Team Description for RoboCup 2016, 2016.

8. C. Lobmeiner, P. Blank, J. Buehlmeyer, D. Burk, M. Eischer, A. Hauck, M. Hoff-
mann, S. Kronberger, M. Lieret, and M. Eskofier. ER-Force - Extended Team
Description for RoboCup 2016, 2016.

9. M. Geiger, C. Carstensen, A. Ryll, N. Ommer, D. Engelhardt, and F. Bayer. TIGERs
Mannheim - Extended Team Description for RoboCup 2017, 2017.

4 Open source / hardware: https://tigers-mannheim.de/index.php?id=29
5 publications: https://tigers-mannheim.de/index.php?id=21

http://www.usdigital.com/products/e8p
http://www.usdigital.com/products/e8p
https://www.rls.si/en/fileuploader/download/download/?d=0&file=custom%2Fupload%2FRLCD03_03RLC2HD_datasheet.pdf
https://www.rls.si/en/fileuploader/download/download/?d=0&file=custom%2Fupload%2FRLCD03_03RLC2HD_datasheet.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/DM00166116.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/DM00166116.pdf
https://www.st.com/resource/en/datasheet/stm32h743bi.pdf
https://www.st.com/resource/en/datasheet/stm32h743bi.pdf
http://www.semtech.com/images/datasheet/sx1280_81.pdf
http://www.semtech.com/images/datasheet/sx1280_81.pdf
https://tigers-mannheim.de/index.php%3Fid%3D29
https://tigers-mannheim.de/index.php%3Fid%3D21

