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Abstract.  We developed algorithms for avoiding robots of the opposing team, 
since the SSL rules require each team to avert a robot crash.  The algorithms are 
heuristic methods; team AI determines robots to avoid, calculates the tangent line 
to a collision range circle of the opposing team’s robot from a team robot, sets 
the path line of team robot to the tangent line of an extended collision range circle 
of the opposing team’s robot, and limits the robot speed for returning the robot 
direction to the target position after an avoidance.   

Keywords: RoboCup, SSL, obstacle avoidance, omnidirectional mobile robot. 

1 Introduction 

MCT Susano Logics was founded in 2011, and the team was named after a hero of 
Japanese mythology, Susano.  Susano was a brother of Amaterasu, the goddess of the 
Sun.  He exterminated a huge dragon Yamatano-Orochi which had an eight-forked head 
and an eight-forked tail.  Our team was named with the hope of defeating strong and 
intelligent dragons in SSL.   
 

 

Fig. 1. MCT Susano Logics’ Robot 



Susano Logics have been taking part in the RoboCup Japan Open since 2011 and in 
the international contest, RoboCup, since 2013 in Eindhoven, Netherlands.  Our robots 
have a distinctive transparent shell (Fig. 1), however the specifications of robots and 
performance of AI are not at all outstanding.  This year, we developed algorithms to 
avoid collision with our opponents, since the SSL rule requires each team to avert a 
robot crash.  we improved our software.  This TDP describes our algorithms.  

2 Robot Control Methods 

2.1 Low Level Controller of MCT Susano Logics’ Robot 

Figure 2 shows the bottom view of MCT Susano Logics’ robot.  The robot has four omni 
wheels of 50 millimeters in diameter.  Each omni wheel has 15 small discs of 10 
millimeters in diameter.  The height of the robot is 143 millimeters, the weight is 2.5 
kilograms and the height of the center of the gravity is 55 millimeters. 
 

 

Fig. 2. Bottom View of MCT Susano Logics’ Robot 

 
If the small discs revolve with no friction and there is no skid between the direction 

of wheel rotation angles and the floor, the wheel rotation speeds 𝑉ଵ to 𝑉ସ  are the 
components of the robot speed vector 𝑉∠ 𝜃 and the robot rotation speed 𝑉ఠ.   
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where 𝜃ଵ  to 𝜃ସ  are mounting angles of omni-wheels, which are 40, 140, 220, 320 
degrees, 𝑟௪௛௘௘௟ is the radius of the omni-wheel.    

We programmed Eq. (1) to our controller and tested it.  The robot speed for lateral 
direction was accurate but for the longitudinal direction was about 24 per cent too low.  
We could not find the reason for the lowering of the speed.  We devised an adjustment 
equation to compensate for robot speed experimentally.   The compensated speed of the 
robot 𝑉ᇱ is, 

 𝑉ᇱ ൌ ሺ1 ൈ 10ିହθ ൅ 3.05 ൈ 10ିଷ ൅ 9.76 ൈ 10ିଵሻ𝑉  (2) 

The error between the robot speed and its command are within 4 per cent of the 
adjustment equation. 

Figure 3 indicates the control system of MCT Susano Logics’ robot.  The control 
system consists of a main one-chip microcomputer (Microchip, dsPIC33FJ32GP202) 
and four motor drivers.  The main microcomputer receives commands from team AI 
computer via IEEE 802.15.4 wireless communication module (Digi International, XBee 
S1) and calculates motor rotation speeds 𝑉ଵ to 𝑉ସ.  The main microcomputer sends the 
rotation speeds to motor drives via I2C communication line. 

The motor driver consists of a one-chip microcomputer (Microchip, 
dsPIC33FJ12MC202), a gate driver (Microchip, MCP14700), a three-phase H-bridge 
driver with six MOSFETs (Diodes Inc., DMG4822SSD), and a rotary encoder (US 
Digital, E8P).  We adopted Maxon EC45 flat motors(1) and reduction gear of 35:80 ratio 
for driving the wheels.  The EC45 motor has a built-in hole sensor to detect the rotor 
angle and to synchronize the PWM pulse to the angle.  The sensor resolution of 48 pulses 
per round is not adequate for control at the minimum speed of 100 millimeters per second.  
We add a magnetic rotary encoder of 1440 pulses per round. 

The microcomputer generates a three-phase PWM pulse at a control interval of 20 
milliseconds.  We adopt the torque/duty converter technique(2) (Fig. 4).  The PI controller 
calculates the output torque at time k, 𝑀𝑇ሺ𝑘ሻ from the desired angular velocity 𝜔ௗ௘௦௜௥௘ௗ 
and motor angular velocity 𝜔ሺ𝑘ሻ. 

 𝜔௘ሺ𝑘ሻ ൌ 𝜔ௗ௘௦௜௥௘ௗ െ 𝜔ሺ𝑘ሻ (3) 

 𝑀𝑇ሺ𝑘ሻ ൌ 𝑀𝑇ሺ𝑘ሻ ൅ 𝑘௣൫𝜔௘ሺ𝑘ሻ െ 𝜔௘ሺ𝑘 െ 1ሻ൯ ൅ 𝑘௜ ∙ 𝜔௘ሺ𝑘ሻ (4) 

Where 𝜔௘ሺ𝑘ሻ is the angular velocity error at time k, 𝑘௣ is the proportional gain and 𝑘௜ is 
the integral gain.  Both gains are settled experimentally.  The duty ratio of PWM pulse 
𝐷𝑢𝑡𝑦ሺ𝑘ሻ is, 

 𝐷𝑢𝑡𝑦ሺ𝑘ሻ ൌ  
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where 𝑉௖௖ is the battery voltage (11.1 V), 𝑅 is the motor coil resistance, 𝐾௠ is the motor 
torque constant, 𝐾௡ is the motor speed constant.  These values are indicated in the data 
sheet. 

 



 

Fig. 3. Block diagram of Robot Controller 

2.2 Robot Speed Control 

Figure 4 shows the speed control sequence of our robot.  At the start, the AI sends a start 
speed value SP0 to robots.  We normally set SP0 value to 1.2 meter per second, but 
decreased to 0.8 or 1.0 meter per second on slippery fields.   The AI keeps the speed 
value constant during five control cycles of waiting for the acceleration of the robot.  We 
set the maximum speed of the robot SPmax to 3.0 meters per second experimentally.  
When the robot approaches the target position, the AI limits SPmax from the distance 
between the robot and the target position for not to overpass the goal.  When 𝐷𝑖𝑠𝑡௧௣ is 
larger than 60 millimeters, SPmax is, 

 𝑆𝑃௠௔௫ ൌ ඥ0.0048 ൈ 𝐷𝑖𝑠𝑡௢௕ െ 0.22 െ 0.26 (6) 

If 𝐷𝑖𝑠𝑡௢௕ is less than 60 millimeters, the AI will keep the robot speed to the minimum 
value of SPmin.  We set the SPmin to 0.01 meter per second. 
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Fig. 4. Speed Control Sequence of the Robot 

The AI varies the robot speed at every control cycle of 16 milliseconds.  We set the 
variance Δ𝑆𝑃 to േ0.04 meter per second.   When the robot speed becomes low, Δ𝑆𝑃 is 
set to -0.02 meter per second, in order to keep the high speed. The robot speed at time k 
SP(k) is, 

 𝑆𝑃ሺ𝑘ሻ ൌ 𝑆𝑃ሺ𝑘 െ 1ሻ ൅ Δ𝑆𝑃 (7) 

 Δ𝑆𝑃 ൌ ቐ
൅0.04    |𝑆𝑃ሺ𝑘 െ 1ሻ ൏ 𝑆𝑃௠௔௫                                                    
െ0.04    |𝑆𝑃ሺ𝑘 െ 1ሻ ൐ 𝑆𝑃௠௔௫ 𝐚𝐧𝐝  𝑆𝑃ሺ𝑘 െ 1ሻ ൐ 𝑆𝑃௟௢௪     
െ0.02    |𝑆𝑃ሺ𝑘 െ 1ሻ ൐ 𝑆𝑃௠௔௫ 𝐚𝐧𝐝  𝑆𝑃ሺ𝑘 െ 1ሻ ൑ 𝑆𝑃௟௢௪     

 (8) 

where 𝑆𝑃௟௢௪ is the threshold of Δ𝑆𝑃 and we set the value to 0.03 meter per second. 

3 Obstacle Avoidance 

To find a robot path for avoiding opponent team robots, we once adopted a rapidly 
exploring random tree (RRT) algorithm.  The RRT succeeded to find a path, however, 
quick movement of opponent team robots forced team AI to find another path in a short 
time.  Furthermore, the RRT often found a new path on reverse direction, thus the robot 
came back and forth.  Therefore, we abandoned this method. 

3.1 Obstacle Avoidance Algorithms 

DPL Coordinate System 
Figure 5 indicates the basic idea of a desired path line (DPL) coordinate system(3).  
Assuming a robot on the real field wants to reach the target position, a line drawn from 
the robot center ሺ𝑋, 𝑌ሻ to the target position ሺ𝑋், 𝑌 ሻ is DPL.  We introduce a relative 
coordinate system with the robot center as the origin and the DPL as the x-axis.  On DPL 
coordinate system, the target positon ൫𝑋்_஽௉௅, 𝑌 _஽௉௅ ൯ is on the DPL x-axis thus,  

 ൫𝑋்_஽௉௅, 𝑌 _஽௉௅ ൯ ൌ ቀඥሺ𝑋 െ 𝑋்ሻଶ ൅ ሺ𝑌 െ 𝑌 ሻଶ, 0ቁ (9) 



The x coordinate of the target position 𝑋்_஽௉௅ shows the distance from the robot to the 
goal. 

Distance 𝐷𝑖𝑠𝑡௢௕ is the distance from the robot to a robot of opposing team (obstacle) 
൫𝑋ோ_஽௉௅, 𝑌ோ_஽௉௅ ൯ is, 

 𝐷𝑖𝑠𝑡௢௕ ൌ ට𝑋ோ_஽௉௅
ଶ ൅ 𝑌ோ_஽௉௅

ଶ (10) 

A circle around an obstacle with a radius of twice the radius of SSL robots 𝑅஼ோ 
indicates the collision range.  If the DPL intersects the circle 𝑅஼ோ, the robot will collide 
with the obstacle. We allow a margin of 70 millimeters thus set 𝑅஼ோ to 250 millimeters, 
because we use the radius 𝑅஼ோ to judge start avoidance. 

 

 

Fig. 5. Basic Idea of DPL coordinate system 

Single Obstacle Avoidance 
Figure 6 shows the temporal target position (TTP) calculated on DPL coordinate system.  
If the circle 𝑅஼ோ intersect the x-axis, AI calculates angles between the x-axis and the 
tangent lines from the circle 𝑅஼ோ to the robot center.   

Assume angle 𝜃ଵ is the angle between the line from the center of obstacle to the 
origin and the tangent line from the circle 𝑅஼ோ  to the origin.  Angle 𝜃ଶ  is the angle 
between the line from the center of the circle 𝑅஼ோ to the origin and the x-axis. 

 𝜃ଵ ൌ sinିଵ ቀ
ோ಴ೃ

஽௜௦௧೚್
ቁ (11) 

 𝜃ଶ ൌ tanିଵ ቀ
௒ೃ_ವುಽ

௑ೃ_ವುಽ
ቁ (12) 

The angle in the first quadrant α௣ and the fourth quadrant α௡ are,  



 α௣ ൌ 𝜃ଵ െ 𝜃ଶ (13) 

 α௡ ൌ 𝜃ଵ ൅ 𝜃ଶ (14) 

Team AI selects the avoidance direction with the smaller value of α௣ or α௡.   
We introduced an expanded obstacle circle with a radius of 𝐸஼ோ in order to set a TTP 

and to find the position to end the avoidance.  The coordinates of TTP are the contact 
point of the circle 𝐸஼ோ from the origin. 

 ൫𝑋்்௉_஽௉௅, 𝑌 ்௉_஽௉௅ ൯ ൌ ቊ
൫𝐷𝑖𝑠𝑡௢௕ ∙ cosሺ𝜃ଵሻ ∙ cos 𝛼௣, 𝐷𝑖𝑠𝑡௢௕ ∙ cosሺ𝜃ଵሻ ∙ sin 𝛼௣൯

ሺ𝐷𝑖𝑠𝑡௢௕ ∙ cosሺ𝜃ଵሻ ∙ cos 𝛼௡, െ𝐷𝑖𝑠𝑡௢௕ ∙ cosሺ𝜃ଵሻ ∙ sin 𝛼௡ሻ
 (15) 

The temporal path line (TPL) is also indicated on Fig. 6.  We set the radius of 𝐸஼ோ to 300 
millimeters. 
 

 

Fig. 6. Decision for the Temporal Target Position (TTP) 

 
Sometimes the robot enters the circle 𝐸஼ோ.  At that moment, team AI adjusts the TTP 

on the circumference of circle 𝐸஼ோ (Fig. 7). 

 ൫𝑋்்௉_஽௉௅, 𝑌 ்௉_஽௉௅ ൯ ൌ ቊ
൫𝑋ோ_஽௉௅, 𝑌ோ_஽௉௅ ൅ 𝐸஼ோ ൯   หat 𝛼௣ selected

൫𝑋ோ_஽௉௅, 𝑌ோ_஽௉௅ െ 𝐸஼ோ൯    |at 𝛼௡ selected
 (16) 

 

 

Fig. 7. Temporal Target Position for the Robot inside the Circle 𝐸஼ோ 



At the moment of the circle 𝑅஼ோ  leaves the x-axis, team AI sets back the robot 
direction to the x-axis, DPL (Fig. 8).   

 

 

Fig. 8. Returning from the Avoidance Sequence 

As already mentioned in Eq. (6), we limit the moving speed of the robot by the 
distance between the robot and the target point (𝑋்_஽௉௅).  This is because if the maximum 
speed of the robot SPmax is limited by the distance between the robot and the TTP, our 
robot will arrive at the TTP with its minimum speed and will take too much time to reach 
the final destination.  However, our robot cannot change direction at high speed at the 
end of the obstacle avoidance sequence.   

We assume a triangle of DPL, TPL and the line between the TTP and the target 
position and assume the circumscribed circle of the triangle (Fig. 9).  Then we consider 
the radius of the circle rSPmax as the minimum turning radius 𝑅௠௜௡. 

 

 

Fig. 9. Decision Method for the Minimum Turning Radius 

The minimum turning radius of our robot 𝑅௠௜௡ with varying the moving speed SP 
were measured experimentally. 

 𝑅௠௜௡ ൌ 262.5𝑆𝑃ଶ ൅ 252.5𝑆𝑃 ൅ 95 (17) 

Therefore the SPmax from rSPmax is, 

 𝑆𝑃௠௔௫ ൌ
ି଻.଼ାඥோೄು೘ೌೣିଷସ.ଶ଼

ଵ଺.ଶ
 (18) 



Multiple Obstacle Avoidance 
Figure 10 indicates the algorithms of multiple obstacle avoidance.  If a circle 𝑅஼ோ of an 
obstacle intersects the DPL, team AI calculates the distance between the obstacle of 
intersected and all other obstacles (e.g. Distbot1-2).  If the distance Distbot is too small to 
pass the robot (e.g. Distbot1-2), then AI checks the next obstacle.  If Distbot is adequate for 
passing through (e.g. Distbot1-3) or no obstacle is next to the obstacle (e.g. left side of 
Obstacle 2), AI calculates and compares angle α௣ and α௡ for selecting the direction for 
avoidance.  At the same moment, AI also checks the distance from the side or goal line 
of the field to the obstacles.  If the extended circle 𝐸஼ோ of the obstacle intersects the side 
or goal line, AI selects another direction for the avoidance.  In Fig.10, Distbot1-3 is wide 
enough and the circle 𝐸஼ோ of Obstacle 1 has no intersection point with the line, AI sets 
the TTP on the  circle 𝐸஼ோ of Obstacle 1.  Team AI is programmed not to check the 
obstacles which are further than the target point (e.g. Obstacle 4).  We set the threshold 
width of passing through to 500 millimeters. 
 

  

Fig. 10. Multiple Obstacle Avoidance 

 
  



Penalty Area Avoidance 
Figure 11 indicates the algorithms of the penalty area (PNA) avoidance.  We set two 
virtual obstacles, +P and –P, which are (100,  േ100) inside of the corners of the PNA.   
If the DPL of robot intersects the front line (PNL) and a side line (േPNL) of PNA (e.g. 
robot (a)), team AI sets the TTP on the circle 𝐸஼ோ of the virtual obstacle which is close 
to the side line of intersected (-P). 

If the DPL of the robot intersects with both േPNL  (e.g. robot (b)), team AI sets the 
TTP on the circle 𝐸஼ோ of the virtual obstacle of close to the robot (+P).  If the robot (b) 
reaches to the circle of the virtual obstacle +P, DPL will not intersect +PNL.  
 

 

Fig. 11. Algorithms of the Penalty Area (PNA) Avoidance 

3.2 Experimental Results 

Figure 12 demonstrates two experimental results of obstacle avoidance.  The blue 
line shows the trace of the robot, yellow dots show the center and yellow circles show 
the radius 𝑅஼ோ of the obstacles.  The robot started from (-1500, 200) and ran to (-4500, 
4300).  There were three obstacles on y = 2250.  In Fig. 12 (a) the robot went to the 
right side because there were not adequate spaces between obstacles, but in (b) the robot 
went through the obstacles.  In both cases, the robot went too far from the obstacles and 
the recovery from the avoidance was not good.  It might because of the excessive speed 
of the robot.  

 



 
(a)  (b) 

Fig. 12. Results of the obstacle avoidance 

Figure 13 demonstrates robot trace of the penalty area avoidance.  The starting 
position of the robot was (-5800, -1500).  At the start position, DPL intersects both side 
lines of the penalty area, thus the robot went to TTL on circle 𝐸஼ோ of a virtual obstacle 
at (-4900, -1100).  Then the robot turned around the circle of the virtual obstacle and 
went to TTL on another circle of the virtual obstacle.  After passing through the second 
virtual obstacle, the robot reached the target position of (-5800, +1500). 

 

 

Fig. 13. Results of the penalty area avoidance 



4 Discussion 

Our algorithms showed avoidance ability for static obstacles, however, robots of the 
opposing team move quickly and change direction often on the SSL field.   We have to 
assess our algorithms in the context of a live game.   

If both our team and opposing team’s robots are running toward the same target 
position, they may crash.  In this case, we should limit the robot speed strictly.  
However, if the target is the ball, it is important to arrive fast.  We need to install 
sophisticated algorithms for judging the current situation. 
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