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Abstract. This paper presents a brief overview of the main systems
of TIGERs Mannheim, a Small Size League (SSL) team intending to
participate in RoboCup 2018 in Montréal, Canada. This year’s ETDP
mechanical and electrical section focuses on the development of a new
dribbling device which combines good dribbling and damping character-
istics and a new wireless base station. The AI section introduces a new
system for self learning offensive strategies and the use of random search
algorithms to find good pass and scoring positions.

1 Mechanical and Electrical System

Robot version v2016

Dimension Ø179 x 146mm

Total weight 2.65kg

Max. ball coverage 19.7%

Driving motors Maxon EC-45 flat 50W

Gear 18 : 60

Gear type Internal Spur

Wheel diameter 57mm

Encoder US Digital E8P, 2048 PPR [1]

Dribbling motor Maxon EC-max 22, 25W

Dribbling gear 50 : 30

Dribbling bar diameter 14mm

Kicker charge topology Flyback Converter (up to 230V)

Chip kick distance approx. 2.5m

Straight kick speed max. 8m/s

Microcontroller STM32F746 [2]

Used sensors Encoders, Gyroscope, Accelerometer

Communication link Semtech SX1280 @1.3MBit/s, 2.300 - 2.555GHz [3]

Table 1: Robot Specifications

https://tigers-mannheim.de


Compared to last year, most parts of our robots have remained unchanged. De-
tails can be found in [4] and [5]. For RoboCup 2017 we invented a new dribbler
damping mechanism which is described in 1.1. Furthermore, we exchanged our
primary wireless module due to persistent and severe connection problems of
the nRF24L01+ modules. The new Semtech SX1280 module and our new in-
frastructure is described in 1.2. The complete mechanical specifications of our
robots can be found in table 1.

1.1 New Dribbler Damping Mechanism

Just in time for RoboCup 2017 we equipped all our robots with a new dribbler
damping mechanism. The requirements for a dribbler mechanism in the SSL are
twofold. Firstly, the dribbler should be able to exert a backspin on the ball and
constantly maintain the ball at the dribbling bar. Secondly, it should absorb
impact energy when receiving a strong pass or intercepting an opponents goal
kick. This ensures that the ball remains at the dribbling bar and does not bounce
off.

Our previous design had only one rotational joint and could be configured
to either dribble well or to absorb impact energy. The configuration was mainly
done with a silicon stop rubber in the structure which was either present or not.
As we did not use any sophisticated dribbling moves at previous competitions we
always used the configuration for maximum energy absorption. A CAD image
of the old dribbling device can be seen in figure 1a.

(a) Old version with a single de-
gree of freedom

(b) New version with two degrees
of freedom

Fig. 1: Comparison of dribbling and damping unit. Silicon rubbers are shown in
black. Degrees of freedom as arrows.



To improve our ball control capabilities we decided to design a dribbling
device that can receive and dribble the ball well. To achieve this a design with two
translational degrees of freedom is necessary. Our new dribbler is mounted on two
damped linear guides and can be seen in figure 1b. On each side of the dribbler
are two screws with a 4mm thick silicon ring around them. The slot allows the
whole unit to move up and down while it is limited in the forward/backward
direction. With this design, the impact energy of a ball is always absorbed by
the silicon rings. When the dribbler is turned on it exerts a backspin on the ball
and the counter-force lets the whole unit move slightly upwards. This freedom
is necessary as otherwise the whole robot would attempt to drive on the ball.

The new design has been tested and, depending on the carpet, can fully
absorb kicks of up to 5m/s. This allows us to receive very fast passes and still
maintain good dribbling characteristics. As the two linear guides are independent
of each other it may happen that the dribbler is not going upwards perfectly
leveled (especially with a ball at one end of the dribbling bar). In the field it
turned out that this is not a problem and does not affect functionality of the
device. All CAD files for this new dribbling device are already open-sourced with
our 2017 yearly release.

1.2 Semtech SX1280 Wireless Transceiver

Since 2013 we are using the nRF24L01+ wireless module from Nordic Semi-
conductor for our communication. These modules are quite common among the
SSL and there are various off the shelf breakout board variants available on
the market. Most convenient modules use a printed-circuit board antenna. More
expensive ones also offer a SMA connector and a power and low-noise ampli-
fier (PA/LNA). We are using a module with PA/LNA on our base station and
smaller modules without amplifier but with SMA antenna on the robots.

In recent competitions we experience more and more link quality and connec-
tion issues. We suspect the cause of these issues to be the increased usage of this
module within the league and the 2.4GHz WiFi band in general. Furthermore,
the enlarged field of the RoboCup 2017 Multi-Team Technical Challenge took
us to the limit of our wireless range. As this field size will be the new default in
2018 we decided to exchange our primary wireless module.

We selected the SX1280 IC from Semtech as our new base to built upon [3].
The SX1280 offers LoRa, FLRC, and FSK modulation modes. We are using the
FLRC mode as it offers the best compromise between speed and robustness. The
main differences of the SX1280 compared to the nRF24L01+ are shown in table
2. The datasheet of the SX1280 does not note a specific frequency range as a limit
but we decided to use 2.3GHz to 2.555GHz and to tune our antenna circuit within
this range. Without a front-end module (FEM) the SX1280 delivers 12.5dBm
more output power than the nRF24L01+. The bandwidth of the SX1280 is higher
and the data rate lower. Overall, this results in a much better link budget (up to
117dB) and link quality. Due to the lower data rate, we needed to increase the
time on the base station for communicating with one robot from 1ms to 1.25ms



(see also [4]). This yields a total update rate of 800Hz for one robot or 100Hz
for 8 robots.

As there are no off the shelf breakout boards available for this IC we needed
to develop the required RF boards ourselves. This also gave us the chance to
optimize them in size and shape for our robots. Furthermore, we added the
SKY66112 front-end module to our new base station PCB [6]. This FEM incor-
porates a PA/LNA and also an antenna switch for diversity into a single package.
Thereby, we can use two antennas with different orientations on the base sta-
tion and always use the one with the best receive signal strength. Although the
specified frequency range of the SKY66112 only goes from 2.400 to 2.483GHz
the module also works outside these limits as out tests have shown. A picture of
the new base station can be seen in figure 2.

Fig. 2: Base Station v2018 with exemplary display content showing all robots
and an info bar on top.

The new base station also features a 5” touch screen display with a resolution
of 800x480 pixels. On the display we can show the status of all connected robots
to quickly indicate if any problems are present on the robots. Furthermore, we
can manually control a single robot for testing purposes. Future developments
may also show a visualization of the field and robot positions as received from
the SSL Vision or the current game score from the SSL RefBox. The last use
case is appealing as it may also be used as a simple indicator display for the
audience to follow the game more easily. The complete base station is managed
by a single STM32F767 microcontroller.

At the time of writing all robots have been equipped with new wireless mod-
ules and the new base station is operational. We already tested the new equip-
ment at several smaller events and in our lab environment with a heavily crowded



2.4GHz band. Even at WiFi frequencies we do now no longer face any issues with
connection quality or lost packets. Further work will be done to verify function-
ality also on larger fields and during real game situations to make sure this new
solutions works well for RoboCup 2018.

nRF24L01+ SX1280

Frequency Range 2.400 - 2.525GHz 2.300 - 2.555GHz

Output Power (without / with FEM) 0dBm / 21dBm 12.5dBm / 21dBm

Bandwidth 2Mhz 2.4MHz

Data rate 2MBit/s 1.3MBit/s

Diversity No Yes

Base Station TDMA slot time 1ms 1.25ms

Table 2: Comparison of wireless modules.

2 Offensive Strategy and Self Learning

Developments of the AI for last years RoboCup were mainly focused on robust-
ness and dynamic plays. The idea was that based on the current situation each
robot would decide what it should do and what is the best strategy for this
situation. There was no planning in the future and no predefined plays. Plays
and passes involving multiple robots were generated naturally and automatically
while playing the game. The AI has shown some unique and also efficient plays
and strategies against different opponents. Nevertheless, it also has shown to re-
peatedly make the same mistakes once an opponent has found a weakness. The
AI did not learn from its mistakes.

For this year, we developed a strategy that learns from past plays and thus
is able to execute better strategies in future plays. The idea is that there are
still no fixed plans for future strategies but that potential future plays effect the
decision making for the robot in its current situation.

2.1 Offensive Behavior

This section will introduce the basic foundation of the offensive decision mak-
ing. One key aspect of the offensive strategy are the OffensiveActionMoves. An
OffensiveActionMove represents a specific action a robot can execute. An Offen-
siveActionMove can be a simple pass, a kick on the opponents goal, or a special
behavior in close engagements with robots from the opponent team. Currently
we have ten OffensiveActionMoves. In source code listing 1 the abstract interface
of each OffensiveActionMove can be seen. Table 3 shows the currently imple-
mented OffensiveActionMoves.



OffensiveActionMove Description

ForcedPass Forced pass in standard Situation

DirectKick A direct kick aimed at the opponent goal

ClearingKick A defensive action to clear a dangerous ball near our penalty area

StandardPass A normal pass to another robot

LowChanceKick A direct kick aimed at the opponent goal (low scoring chance)

GoToOtherHalf We have ball control in our half, but no suitable pass target

KickInsBlaue A pass to an area that is free of opponent robots

RedirectGoalShot Redirect the ball into the opponents goal

RedirectPass Redirect the ball directly to another friendly robot

Receive Catch and receive an incoming or fast traveling ball

Table 3: Currently implemented OffensiveActionMoves ordered by their priority

Algorithm 1 AOffensiveActionMove

pub l i c ab s t r a c t c l a s s AOffensiveActionMove {
pub l i c ab s t r a c t EAct ionViab i l i ty i sAct i onViab l e ( . . . ) ;
pub l i c ab s t r a c t void ac t i va t eAct i on ( . . . ) ;
pub l i c ab s t r a c t double c a l c V i a b i l i t y S c o r e ( . . . ) ;

}

There are three methods that each OffensiveActionMove has to implement.
The method isActionViable determines the viability of an ActionMove. The via-
bility can either be TRUE, PARTIALLY or FALSE. The method activateAction
controls the actual execution of the move. The method calcViabilityScore will
determine a score between 0 and 1 for the current Situation. This score should
be connected to the likelihood, that this action can be executed successfully.

In our current implementation there are two different sets of OffensiveAc-
tionMoves, one set for “normal” actions and one set for “redirect” actions. This
means that in a first step the robot has to decide whether it can normally move
towards the ball or if it has to overtake the ball in order to receive or redirect
the ball. The main criteria for this decision are the current position and velocity
of the ball.

In source code listing 2 it is shown how the best OffensiveActionMove, out
of one given OffensiveActionMoveSet (normal or redirect), is determined. It is
important to notice that the OffensiveActionsMoves inside a given set have a
specific ordering, which represents the priority. The OffensiveActionMove in the
first position of the set has the highest priority. An OffensiveActionMove will
be activated if its viability returns TRUE and it has a higher priority than all
other OffensiveActionMoves that return a TRUE viability. Actions that return
the viability FALSE will be ignored in any further processing. All actions that
are PARTIALLY viable are sorted by their viabilityScore and if there is no action
that has a TRUE viability, then the action with the highest viabilityScore will



be activated. In case all actions have a FALSE viability then a default strategy
will be executed.

The separation into viable and partially viable actions, combined with pri-
orities leads to a very stable and easy modifiable/extendable algorithm for the
offensive strategy. For example, the OffensiveActionMove that controls direct
kicks on the opponent goal will return a TRUE viability if there is a high chance
to score a goal. If there is a extremely low chance to score a goal it will re-
turn FALSE. Otherwise, if the hit chance is reasonable but not really high, it
will return PARTIALLY. Additionally, this action has a high priority. Thus, the
robot will surely shoot on the goal if there is a good opportunity to score a goal.
However, if the viability is PARTIALLY the action will be compared with the
other actions and based on the viabilityScores the robot will decide whether it
should shoot on the goal or execute another action, e.g. a pass to another robot.

Algorithm 2 Pseudocode - Find the best OffensiveActionMove

// I t e r a t e over a l l o f f ens iveAct ionMoves in t h i s s e t
f o r ( AOffensiveActionMove ac t i on : a c t i o n s S e t ) {

EAct ionViab i l i ty v i a b i l i t y = ac t i on . i sAct i onViab l e ( . . . ) ;
i f ( v i a b i l i t y == TRUE) {

// a c t i v a t e f i r s t move that got dec l a r ed as v i a b l e
ac t i on . a c t i va t eAct i on ( . . . ) ;
r e turn ;

} e l s e i f ( v i a b i l i t y == PARTIALLY)
par t i a l l yMoves . add ( ac t i on ) ;

}

par t i a l l yMoves . s o r t ( . . . ) ; // s o r t by v i a b i l i t y S c o r e
i f ( ! par t i a l l yMoves . isEmpty ( ) ) {

// choose f i r s t p a r t i a l l y v i a b l e move to be ac t i va t ed
par t i a l l yMoves [ 0 ] . a c t i va t eAct i on ( . . . ) ;
r e turn ;

}

2.2 Self Learning Offensive Strategies

For this years RoboCup we developed a self learning system to improve our
offensive strategies. The system is based on trees that store executed plays and
their outcomes. This information can then be used to improve decision making
in the future. Figure 3 shows how such a tree can look like. The actual trees
that are generated during a game are much bigger. A node of the tree represents
an OffensiveActionMove that got executed in the past for this situation in this
path of the tree. Additionally, each node has a score that reflects how successful
the action has been in the past. The scores are displayed on the arrows and
as color of the node. Success is measured in a global score that represents how



good a given situation is for our team. This score is what we try to optimize. A
path through the tree represents a dynamically generated play which has been
executed in the past, consisting of multiple OffensiveActionMoves. We track
all executed OffensiveActionMoves in our plays during execution. A play starts
when we obtain ball control and ends when we lose ball control. When the play
ends all containing OffensiveActionMoves will be stored in the tree structure
and the weights of the tree get updated, based on the success of the executed
action.

Fig. 3: Offensive Action Tree: This Figure shows an OffensiveActionTree for a
single OffensiveSituation. The numbers on the arrows show the weight for a single
OffensiveActionMove within its path. The color of the nodes also represents the
weight.

Multiple trees will be generated during a game, one tree for each OffensiveSi-
tuation. An OffensiveSituation describes the current game situation in a very
abstract way, e.g. “Ball is in the opponents half and we will reach the ball ear-
lier”, “Close to opponent penalty area” or “Skirmish around ball”. In order to
use the trees for our future decision making we have to track the point in time
when our team obtains ball control. In the moment we obtain the ball we will use
the current OffensiveSituation to choose the matching tree. As long as we have
ball control this tree will be used and updated, no matter if the OffensiveSitua-
tion changes during execution. When our team obtains ball control we start at
the head of the tree. Then the robot will choose an OffensiveActionMove, based
on the algorithm described in section 2.1. Once an action has been executed the
active position of the tree will move along the executed path. Figure 4 shows
the current state in the tree and the potential future paths. Note that there are
many more potential future paths than displayed, every path that has not been
stored in the tree yet has the weight one.

In order to optimize the offensive decision making, the weights of the tree
have a direct effect on the viabilityScores of an OffensiveActionMove. Starting



from the current position inside a tree we will examine all potential paths. We
will look for the path with the maximum weight. Therefore, all the weights along
a patch are multiplied. In the situation described in Figure 4 a FORCED PASS
has already been executed, now the AI is looking for a OffensiveActionMove
that could be executed next. Now, we can step along the potential paths and
obtain bonus values for the OffensiveActionMoves. The values written in the
brackets are the products of the maximum weights along a path. In this example,
we can see that through our learned tree the algorithm will give the action
REDIRECT PASS a slight bonus multiplier of 1.1, while the REDIRECT GOAL
action has a standard value of 1. However, this is just a small bonus, depending on
the actual viabilities the robot can still choose to execute a REDIRECT GOAL.

Fig. 4: Currently Active Path: This Figure shows the actual weights of the Of-
fensiveActionMoves and the maximized multiplied scores of each path. The mul-
tiplied scores are written in brackets. The blue marked OffensiveActionMoves
have already been executed. The orange marked OffensiveActionMoves are the
potential moves that can be executed in the future.

The separation of the OffensiveActionMoves into 2 different sets and addi-
tionally into viable and partially viable actions has shown some good results. It
is easy to add more OffensiveActionsMoves later and to modify behavior of the
offensive. The self learning trees extend this algorithm by dynamically modifying
the viabilityScores based on learned data. So far, the algorithms for the offensive
trees are still in development. Thus, they have not been tested in a real envi-
ronment in their newest implementation. We hope to collect some data in the
upcoming RoboCup 2018, to check if the offensive trees indeed help to improve
our offensive strategies.



3 Random Search Optimization

In RoboCup Soccer an AI constantly evaluates the current situation and chooses
appropriate actions to win the game. On the one hand, new information is
available roughly every 16 milliseconds. We call this information frames. The
evaluate-reaction cycle has to be completed within this time constraint to react
on the latest information available. On the other hand, the situation is described
among others by position and velocity data of all robots and the ball. Calculat-
ing the optimal solution from this high dimensional real valued input domain
within the given time constraint is difficult. To cope with this input domain, we
exploit the fact that the situation does not change significantly from one frame
to another. With this in mind, we can calculate several solutions, take the best
ones and memorize these solutions for the next frame. In the next frame, those
memorized samples get reevaluated and compared against new samples, where
the best of both get memorized for the next frame and so forth.

One example where we use this kind of random search optimization is to
find the best supportive positions as shown in figure 5 for the yellow team. This
could either be pass receiving positions (green circles) or shot on goal positions
(red circles). To find these positions we randomly select about five points within
a specific shape on the field. In this example it is the red rectangular outlining
figure 5. If a position is not valid (e.g. if it is inside the penalty area) a new
point is randomly selected until the maximum number of positions or tries is
reached. Additionally, the positions are rated (among others) by ball visibility
or a goal score chance as described here [5]. In our implementation this is the
computationally most expensive part. After that, some robots (depending on
the situation) go to these positions.

Fig. 5: Random search example: supportive positions. This figure shows calcu-
lated receiving positions (green circles) and possible shoot positions (red circles)
for the yellow team. The red rectangle is the shape, where all positions are gen-
erated. The blue lines represents the velocity of the robots, which is taken in
account when calculating the visibility of a position.



In the next frame, the best positions of the last frame will be rated and com-
pared again with newly selected positions. This leads to an optimization, which
constantly improves itself and adapts to new situations. As in the presented ex-
ample, we want more than one position. Additionally, those positions have to
have a certain distance from each other to avoid a bulk of robots. Therefore all
positions near the best positions are removed during selection. Since it take some
time for the robot to drive to the position, the positions have to be stable.

In our implementation, the scores are discretized such that there is a higher
probability to be equal. In the equal case, the older position is rated higher than
the newer, which provides enough robustness to the positions.

This random search optimization decouples the analysis of the situation from
the frame and distribute it over several frames. The number of samples and tries
enables the team to dynamically adapt the computational time spend on this
specific problem, which can also be situation depended. It enables us to include
time consuming methods like trajectory calculations in our rating. In addition,
using a random selection, we do not have to divide the field into sectors or a
grid, which provides more adaptation to different opponents.

On the contrary, the implementation of the random search optimization is
more complex than a simple grid. In addition, it may happen that the algorithm
does not find any position, if for example all random positions are inside the
penalty area.

RoboCup 2017 has shown that this algorithm reduces the computational ef-
fort and returns good solutions within a few frames. A proper visualization of
the scoring and a step wise simulation is crucial to tune this algorithm. Never-
theless, it is hard to control the random optimization. Especially when analyzing
a running game it is not clear whether it was just bad luck or an error within the
scoring of the positions. In addition, the problem of calculating and combining
different scores remains unresolved.

This year we will focus on other shapes than a simple rectangle where the
positions are generated. Here one can use different shapes depending on the
situation to decrease the search space.

4 Publication

Our team publishes all their resources, including software, electronics/schemat-
ics and mechanical drawings, after each RoboCup. They can be found on our
website1. The website also contains several publications2 with reference to the
RoboCup, though some are only available in German.

1 Open source / hardware: https://tigers-mannheim.de/index.php?id=29
2 publications: https://tigers-mannheim.de/index.php?id=21

https://tigers-mannheim.de/index.php?id=29
https://tigers-mannheim.de/index.php?id=21
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