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Abstract. In this paper we show STOx’s latest methodology for mul-
tiagent/robot coordination. The general idea consists on a Game Ana-
lyzer module that dynamically creates tasks that need to be solved in
every game situations together with an Assignment Module that auto-
matically assigns tasks to agents optimally. This architecture has the
advantage that establishes coordination among all agents automatically
and optimally. We show a detailed description of our optimal assign-
ment module by modeling it as a minimax assignment problem and also
present our proposed solution, briefly discussing its computational com-
plexity. Finally, we present a concrete example of plays that happened
during games in RoboCup 2017 and discuss implementation details and
future challenges.

1 Introduction

The Small Size League (SSL) is one of the first leagues in RoboCup and it deals
with the high level coordination of multiple agent/robots in a highly dynamic
and rapidly changing environment. The league’s distinctive mark is precisely its
fast pace, i.e., the high frequency at which events occur during games. For a
team to be competitive and successful within the league, several factors need
to be taken into account. On one hand, robust and reliable robots are required,
in terms of their electrical and mechanical design. It is also important to have
accurate low level control of the robots, capable of handling the most basic skills
required to create more complex plays. Finally, it is necessary to create smart,
fast and dynamic plays as well as techniques that allow the team to adapt to
complex behaviors and learn from experience.

The STOx’s team has grown in experience during its years of participa-
tion, from 2011 to 2017, achieving a 4th place in 2015 and among the top 8 in
2013, 2014 and 2017. Although the team still has plenty of room to improve on
all the elements mentioned above, our greatest interest has been on developing
more sophisticated AI and the ability to make the system able to take better
decisions. This is noteworthy in the latest STOx’s team description papers as
described below.
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In 2014, the TDP [13] showed the details of mechanical and electrical aspects
of our latest generation of robots. In 2015 [7], however, we presented a set of data
processing techniques that aimed at improving the representation of the virtual
world, i.e., the position and velocities of ball and robots within the field, even in
the presence of noise from the vision system. These tools have been of paramount
importance to the decision maker since they provide confidence and allow the
system to make predictions. In 2016 [2], we developed a tool to automatically
identify and reconstruct chip kicks during games and also a methodology to move
from completely fixed plays (i.e., where the positions and actions of all agents
are previously defined by the programmers and are the same every time the
play is ran) to plays automatically generated by the AI system, that are created
on the run depending on the opponent reaction. Finally, in 2017 [1] we showed
our team’s defensive strategy, which is based on robot-to-robot marking, threats
identification, a hierarchical attackers selection (to be marked) and finally an
optimal marker assignment.

With this set of developed tools and inspired in our latest optimal marker
assignment for defensive strategies, we have come up with a general methodology
that allows us to optimally distribute tasks between agents in any game situation.
This new methodology has the following advantages:

– It allows automatic assignment of agents to tasks, avoiding situations where
missing agents might be assigned with tasks.

– It creates optimal agents-tasks assignments, where the traveled distance of
each agent is the lowest possible.

– It is general enough to be used in a variety of different applications other
than robotic soccer.

– It facilitates the creation of defensive and attacking plays that are automat-
ically created by the system on the run in contrast to fixed, preprogrammed
plays.

In the following sections we will show the most important concepts of our
proposed methodology as well as our proposed solution. We also briefly discussed
about its computational load, compared to other possible implementations and
finally, we show some initial results of our methodology applied to games from
RoboCup 2017. Fig. 1 shows a picture of the STOx’s team members in RoboCup
2017 at Nagoya.

2 Multiagent robot coordination methodology

The SSL game is characterized as one of the fastest among the RoboCup com-
munity and it is very important being capable of make intelligent decisions.
Currently there is enough space in the field for fasts and plays difficult to pre-
dict that make the tasks of attacking and defending a difficult one. Specifically,
the distribution of tasks among the agents is of paramount importance, since
the election of one or other agent to perform certain task could radically change
the game result.
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Fig. 1: Picture with the current STOx’s members in RoboCup 2017

We have developed a general framework that allows the system to automat-
ically distribute tasks among agents in a variety of situations during the game.

In our approach we have defined a set T of tasks that need to be performed
by one or more agents in specific situations. Each task is usually associated with
a physical location within the field. For example, a task associated to perform
robot-to-robot marking is related to the physical location of the attacking robot.
The task of going after the ball is related to the ball’s coordinates and so on.

The goal is to assign agents to tasks dynamically during gameplays in an
optimal manner (in some sense). This approach has became a powerful general
approach to distribute tasks among agents that works for a variable number of
agents in the field in any state of the game and for any number of tasks.

We claim that our multi-agent robot coordination is general enough that it
can be used in applications others than robotic soccer where a set of agents
need to perform a set of tasks. In Fig. 2 we show the general scheme of our
coordination framework.

Fig. 2: STOx’s Multi-agent robot coordination framework
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The framework includes two main modules, namely Game Analyzer Mod-
ule and Optimal Assignment Module. The former is in charge of deciding
which tasks need to be done depending on the current game state and the avail-
able agents, together with their locations. The module receives the complete
set of possible tasks, the current game state and analyzes which tasks should
be performed and the subset of agents that will participate in the assignment.
The optimal assignment module receives such information and outputs an
assignment of agents to tasks such that some cost function is optimized.

As an example, consider a situation as the one shown in Fig. 3 where an indi-
rect free kick has been awarded to the yellow team. Such a team will require one
agent to kick the ball (kicker), two agents that will potentially receive the pass
(attackers) and one agent that will create distraction to the defenders (distrac-
tor). The blue team, on the other hand, will require one agent to block the ball
(wall) and at least two agents to mark the two yellow attackers (depending on
the teams strategies, the defending agents could do something else). Under this
scenario, the Game Analyzer module for the yellow team has decided that from
all possible tasks, the team should perform the four tasks discussed above (i.e.,
kicker, attacker, attacker and distractor). Similarly, the Game Analyzer module
for the blue team has decided that 3 tasks (wall, marker and marker) should
be performed for this game state. This module has also related each task with
a physical location in the field. For example, for the attacking team, the kicker
task is related to the ball, the attackers can be related to locations where the
chances of successfully receiving the pass are high and finally, the distractor can
be related to a distraction routine or other strategy. Similarly, for the defending
team, the wall task is closely related to the ball’s position and the marker tasks
are related to the location of the attackers.

For RoboCup 2017, we have defined the set of all possible tasks in the fol-
lowing way:

– Defender: A task where the agents are required to locate near the defense
area edge as in a wall, blocking potential shots to the goal.

– Ball Handler: This task is assigned to an agent that will be performing
activities related with the ball. For example, in a defending situation, it could
be the agent that will act as wall when the opponent team will kick the ball.
When attacking, in a free kick situation, the ball handler will be the agent
that will kick the ball.

– Marker: This is a task related to defending situations. Some threatening
opponents will be assigned markers to perform robot-to-robot mark.

– Supporter: In offensive situations, the supporters are agents that need to
find locations within the field to potentially receive passes.

– Attacker: This task is assigned to an agent with the ball’s possession. This
agent can dribble the ball and will subsequently perform passes.

– Distractor: This task is assigned to agents that will perform distracting
moves durinig the game.

– Clearer: This is usually assigned to agents in charge of clearing the ball
near the defensive area.
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Fig. 3: Example of how the Game Analyzer and Optimal Assignment modules
might work for two teams in a free kick situation. The yellow team is attacking
while the blue team is defending.

Notice that this set of tasks is not fixed and may updated/changed according
to specific needs and requirements. This module is also easily scalable in terms
of the number of available agents. For example, if the team is missing one or
two agents for whatever reason (yellow cards or mechanical/electrical problems)
during the game, the module will just not include them in the agents-tasks as-
signment. This strategy avoids situations where the system commands a specific
robot to go to kick the ball in a free kick and the play is not executed because the
robot is temporarily out of the field. Also, if the number of agents is increased
from the current number, the Game Analyzer will just include the new agents
into the assignment and there will be no need to radically change the program.

Notice that this module is the one that contains the expertise of the problem
at hand (soccer in this case), since it receives the set of all possible tasks, the set
of all available agents and what the current state of the game is and it has to
decide what needs to be done next. The team’s strategies are expressed within
this module (i.e., the attacking and defending specifics). Also, notice that for
other applications, one would need to include a specific Game Analyzer module
for the task at hand to create tasks according to the specific challenge. However,
the general multi-agent robot architecture may remain the same.

In the following section we describe the details of the optimal assignment
module as well as its current implementation.

2.1 Optimal Assignment Module

Formally, the optimal assignment module receives a set T1 of tasks, together with
their corresponding physical location within the field and a subset A1 of agents
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also with their corresponding locations. Its output is a bijection R : A1 → T1

such that the distance traveled by the agents is the smallest possible.
The idea is that the agents/tasks distribution is achieved such that each

agent is assigned a task that is as closest to it as possible, minimizing the total
distance traveled by all agents. To this end, we propose to find an assignment
that minimizes the largest distance traveled by all agents. This approach has
shown to find assignments where all agents are required to travel short distances
in contrast to other proposals where the sum of all distances is minimized. The
latter usually finds minimal total traveled distance, but with individual distances
that may be large.

In combinatorial optimization, this can be expressed as the minimax assign-
ment problem, which is in turn, a modification of the global assignment prob-
lem, where the objective function is nonlinear. The decision variables xij are
binary and xij = 1 represents agent i ∈ A1 is assigned to task j ∈ T1, while
xij = 0 otherwise. Finally, one agent must be assigned at most one task and the
number of agents must exceed or at least be equal to the number of tasks i.e.,
|A1| = m ≥ |T1| = m. The problem can be formulated as follows:

min z = maxi,j {xijCij}
subject to∑m

i=1 xij = 1,∀j ∈ T1∑n
j=1 xij = 1,∀i ∈ A1

xij ∈ {0, 1},∀j ∈ T1, i ∈ A1

The General Assignment Problem has shown to be NP-complete [14], mean-
ing that there is no algorithm that can solve it in polynomial time. The exhaus-
tion method has shown to be useful to solve the minimax assignment problem
on a computer when n = m < 10. Under our scenario, we consider cases where
m > n, but in all cases m,n < 10.

Solving the general minimax assignment problem As the number of in-
stances for our optimal assignment problem remains low (i.e., the number of
agents and tasks are lower than 10), we propose to use the exhaustion method
to attain an optimal assignment. To this end, we first propose to solve instances
where m = n and then, use such solutions to find the solution of the general
minimax assignment problem. In the following section we will go through the
details of solving the first problem.

Balanced Minimax Assignment Problem The formulation of the balanced
minimax assignment problem is identical to the one shown in Eq. (1), but con-
strained that m = n. In this method, we build all feasible assignments of agents
to tasks and compute the cost for each assignment, which corresponds to the
maximum distance between agents and tasks in such assignment. Afterwards,
we keep the cost of all assignments and find the minimum.
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Each assignment corresponds to one permutation {j1, j2, ..., jn} of tasks of
{1, 2, ..., n} with cost z = max{C1j1 , C2j2 , ..., Cnjn}. The goal is to compute all
n! permutations and then find the one with minimum value. Fig. 4 shows one
example of such permutations where m = n = 3.

Fig. 4: All possible permutations of the 3 available agents. Notice that each agents
permutation corresponds to one unique assignment to tasks where its cost is the
maximum distance between agents and tasks in such assignment.

General Minimax Assignment Problem For the general case, we allow
more agents than tasks (i.e., m < n). This makes sense since under some con-
siderations, it may be possible that only a few specific tasks need to be done.
In these cases, al available agents are included in the decision process and those
selected by the optimization problem are assigned to accomplish the set of tasks.
The remaining agents can be assigned “routinary” tasks such as general defense.

In order to solve the general minimax assignment problem we propose to
decompose the problem into several balanced minimax assignment problems and
select the one with best value of the cost function. The decomposition consists
on selecting a subset of n agents out of the m and solving the balanced minimax
assignment problem for those n agents. Afterwards, we select a different subset
of n agents and solve the problem again. This process is repeated for all possible
combinations of n agents from the complete set of m and finally select the one
with lowest value of the cost function.

Fig. 5 shows one example of such methodology for m = 4 and n = 2. For
each shown combination, one balanced minimax assignment problem of size 2
needs to be solved.

Complexity Analysis As stated in Sec. 2.1, it has been shown that the general
assignment problem is NP-complete, which restricts the solution in computers to
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Fig. 5: All possible subset of 2 agents out of 4 that is possible to create. In each
situation, the blue dots correspond to not selected agents, the orange dots are
the agents selected to solve the balanced minimax assignment problem and the
green dots correspond to the tasks.

only instances with low values of m and n. Additionally, the exhaustion method
used here iterates over all possible combinations of agents and permutations of
tasks to find the optimal assignment.

Another possible solution that is often used when m < n is to add to the
problem “dummy” tasks with zero cost in order to make it a balanced assignment
problem. However, in this case we did not consider it since it requires more
operations than the method proposed here. Below, we show a simple complexity
analysis of the number of operations that need to be done in both cases and
show that our proposal requires less computational load.

In our method, we first calculate the distance matrix C of all distances be-
tween agents and tasks. Afterwards, we iterate over all possible combinations of
n agents, which is

(
n
m

)
= m!

n! (m−n)! . For each combination we solve the balanced

assignment problem by generating all possible permutation of tasks to agents
for the n-size problem which is n!. In each permutation we need to compute
the maximum distance of the assignment problem (maximum value among n
values), meaning that the proposed method needs to perform m!

(m−n)! operations

to find the optimal value.

For the “dummy task” approach, the number of total iterations required to
find the optimal assignment is always m!, i.e, the number of iterations required
to perform all possible permutations of m agents/tasks. This analysis shows that
our method requires less operations than the one adding the “dummy task”.
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3 Experiments and results

Our multi-robot agent coordination methodology has been implemented in STOx’s
software since RoboCup 2017 and tested in all games. As mentioned above, the
pre-programmed plays are not possible when using the methodology since the
system is automatically assigning tasks to agents optimally on the run, which
brings us closer to our ultimate target of achieving an automatic and optimal
AI system.

In Fig. 6 we show a sequence of images that correspond to one specific game
situation in one game from RoboCup 2017. The images are representations of
logs visualized in our software and show sequences of what happened during
a short lapse during the game together with some information that helps to
better understand the situation. In the sequence, we show one play where several
assignments are performed. The reader will be able to judge the optimality of
the assignment in each situation depending on the generated tasks. During the
play, we also show that our team starts in a defensive position and changes to
an attacking position after recovering the ball.

Other results already available, but not shown here will be presented in an
ongoing paper. Some of them are qualitative results of the assignment optimality,
quantitative measures of the computational time taken to solve the minimax
assignment problem and comparisons with other assignment methods.

In the situation shown in Fig. 6, STOx’s is the yellow team, the game is in
stop mode and the referee have just issued a free kick in favor of the blue team.
Fig. 6(a) shows the initial positions of all agents as well as the ball position. The
red arrows show the change in position from several agents of the blue team when
the game restarts. In Fig. 6(b), the blue agents have moved, one of them closer
to the ball, another near STOx’s defense area and two of them near the middle of
the field, probably to create distraction. Since this is clearly a defense situation,
our Game Analyzer has created a set of tasks to defend from the attacking play as
follows: 1 Ball Handler, 1 Clearer, 2 textbfMarkers, 1 Defender. The optimal
assignment is performed and the results are shown as colored dash lines in the
figure. The ball handler is the agent that was previously closer to the ball (shown
in dashed red line), the two most threatening attackers are marked by the two
closest STOx’s markers shown with blue line and the clearer and defender are
also selected with minimum distance shown in white and green line respectively.
Red arrows show the movements of three opponent agents. This is an important
step in the sequence since notice in Fig. 6(c) that one opponent agent that was
not previously marked moved closer to STOx’s defense area becoming a serious
threat in the play and requiring a new task/agent assignment. The STOx’s agent
that was previously assigned as Clearer, it is now assigned as Marker of the
new threatening opponent. The two other previously marked opponents made
small movements and out algorithm changes one of them as Clearer and the
other remains as Marker, but changes the agent being marked. Notice that
all chenges has performed by our assignment algorithm and are optimal in the
traveled distance by the agents. In Fig. 6(d) the kicker has just kicked the ball
and the Game Analyzer decides that a Clearer is no longer needed. When the
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new assignment is performed, all agents remain with the same tasks, but the
one that was previously assigned as Clearer is now a Defender. The orange
arrow shows the ball movement direction, while red arrows show the opponents
movement for the next image. In Fig. 6(e) the ball has traveled more distance
and the opponent agent that was previously unmarked has moved to receive
the ball and hence has become a threat. The assignment is performed and this
agent is marked now by one Marker, who will move near the attacker to stop
it from receiving the pass. Magenta arrows show how STOx’s agents will move
in the next and final step. In Fig. 6(f) we can appreciate the next assignment.
The pass made by the blue team was not successful since the ball was recovered
by one of STOx’s markers. For this reason, the Game Analyzer changes from
defensive mode to attacking mode and marks are no longer required. In this
scenario the tasks are the following: 1 Ball Handler, 2 Support Attackers
and 2 Defenders. In the figure we can see that the agent that was previously a
marker is now assigned as Ball Handler (red dashed line), one of the defenders
is now assigned as Support Attackers and the other previously marker is the
other Support Attacker. The latter are shown in black dash lines. The Ball
Handler will now possibly dribble the ball to attempt a pass to one of the
support attackers while they will move close to the opponent defense area to
receive the pass. In this last assignment, notice that the robots that are closer to
the opponent defense area are the one chosen to be Support Attackers. Also
notice that the assignment makes sense since they do not have to change sides
(i.e., the one who was in the left side of the field will remain in that side as well
as the one who was in the right side).

4 Conclusions and discussion

In this paper we have presented the latest contributions of the STOx’s team
in our participations in the RoboCup competitions. We have also showed our
general coordination methodology which is based on a Game Analyzer that dy-
namically generates tasks that need to be done depending on the current game
situation. These tasks and the set of available agents are inputs to our Optimal
Assigner, which assigns agents to tasks in an optimal manner. We have modeled
this situation as a minimax assignment problem, where the objective is to mini-
mize the maximum distance between agents and tasks in all assignments. For the
nature of the problem at hand, we have proposed to use the exhaustion method
to solve it, by evaluating all possible combinations and showed that this method
works better than assigning dummy tasks to the problem when the number of
agents is not equal to the number of tasks.

Our methodology has been successfully tested in all STOx’s games from
RoboCup 2017 and only a simple play example is shown here where initially the
team is in a defending state and goes to an attacking state by recovering the
ball. All task generations and assignments are performed automatically and are
optimal in the sense of agent’s traveled distances.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6: Results of our multiagent robot coordination in one play of RoboCup
2017
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From the implementation point of view, we have shown that our solution is
feasible and that it is fast enough to run in real time during regular games. The
generation of tasks and more importantly, the tasks assignment, is performed
frame by frame during the games. It is noteworthy that due to the nature of
the objective function in Eq. (1), it is possible to find more than one optimal
assignment. In this situations, we have decided to keep the solution (among
all the optimal solutions) with minimum sum of distances between agents and
tasks. Another aspect that worth mentioning is that it is important to be aware
that agents are usually moving and because the assignment is performed frame
by frame, it only takes into account the current agents positions. Under some
conditions this might be problematic since it changes assignments from frame to
frame leading to an indecisive system. Our solution to this problem has been to
perform the assignment in all frames, but only updating to the new assignment
if it is better than the current one (e.g., if the new calculated assignment is
lower by some threshold value than the current one). Another solution that we
are currently exploring is to include velocities in the optimization problem that
takes into account the agents motion.

Finally, new challenges might be added to our methodology under recent
changes in the league rules. Probably, the most important one is the increase in
the number of agents, which for RoboCup 2018 will be 8 and for 2019 will be
11. This might be a problem within our methodology since the computational
time required to solve the minimax assignment problem grow exponentially with
the number of agents. Further experiments will be required and new methods to
solve the problem might also be needed.
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