
RoboDragons 2018 Extended Team Description

Masahide Ito, Hiroyuki Kusakabe, Yusuke Adachi, Reona Suzuki, Jiale Du,
Yuta Ando, Yuto Izawa, Shogo Isokawa, Taiga Kato, and Tadashi Naruse

School of Information Science and Technology, Aichi Prefectural University
1522-3 Ibaragabasama, Nagakute, Aichi 480-1198, JAPAN

Email: {masa-ito@ist, is151048@cis}.aichi-pu.ac.jp

Abstract. RoboDragons is a team of Aichi Prefectural Univeristy in
the RoboCup Soccer Small Size League. In this paper, we presents the
technical overview of our robots and their main changes from 2017 to
2018. We introduced new robots—have been developed in 2016—to the
last RoboCup, but found out some issues on the hardware through the
games. As one of hardware improvement, we redesigned a part of the
dribbler so as to receive a passed ball more unfailingly; in the software
part, we considered a trajectory tracking controller based on the model
predictive control approach.

1 Introduction

RoboDragons is a team of Aichi Prefectural University (APU), participating
in the Small Size League (SSL) of RoboCup Soccer. This team originated from
Owaribito—a joint team between APU and Chubu University—which was founded
in 1997. In 2002, since two universities have been ready to manage each indi-
vidual team, APU built a new team, RoboDraongs. After that, RoboDragons
has been participating in the SSL, including activities as CMRoboDragons—a
joint team with Carnegie Mellon University in 2004 and 2005. Our best record
was the second place in 2009. We also finished twice in the third place (2007
and 2014) and four times in the fourth place (2004, 2005, 2013, and 2016). In
RoboCup 2017, we placed fifth out of twenty teams.

This paper summarizes the technical information of RoboDragons 2018, which
includes the main changes from 2017 to 2018. We will use the seventh-generation
(7G) robots (Fig. 1) in RoboCup 2018 as in last year. But, on the basis of the

Fig. 1. The seventh-generation RoboDragons robots

Table 1. Description of main hardware components.

Device Description

Main board CPU: SH2A (Renesas Electron.Corp.) operating at 197MHz.
(Fig. 2 (a)) FPGA: Spartan-6 (Xilinx) including peripheral circuits.

Booster Capacitance of capacitor: 4400µF.
(Fig. 2 (b)) Conversion from 15.2V DC to 150–200V DC.

Electric charge takes about 3 s for 200V output.

Kickers Material: 7075 alum. alloy. Solenoid: a coil wound by ϕ 0.6mm
(Fig. 2 (c)) enameled wire. Straight kicker can kick a ball at over 8m/s;

chip kicker can kick a ball as far as max. 3m distance.

Omni-wheel Four omni-wheels driven by Maxon “EC 45 flat 50W”.
(Figs. 2 (d) Gear reduction ratio between motor and omni-wheel is 21:64.

and (e)) Each omni-wheel has 20 small tires in circumference.
Diameter: omni-wheel 55mm, small tire 12.4mm.

Dribbler One roller driven by Maxon “EC 16 30W”. Roller: alum. shaft with
(Fig. 2 (f)) non-repulsive rubber; 16mm in diameter and 61mm in length

Radio system IEEE 802.11abgn 2.4/5 GHz wireless LAN.

Ball detector Infra-red light emission diode and photo diode pair.

Accelerometer BOSCH BMA250 (3-axis (range: ±2G to ±16G))

Gyroscope InvenSence ITG3400 (pitch, roll & yaw (range: ±250 deg/s))

issues that we found out in RoboCup 2017, we have tried to improve the robots.
As one of hardware improvement, we redesigned a part of the dribbler so as
to receive a passed ball more unfailingly; in the software part, we considered a
trajectory tracking controller based on the model predictive control approach.

2 Overview of RoboDragons System

2.1 Hardware Part

Figure 2 and Table 1 summarize the hardware configuration of the 7G robot.
The 7G robots were developed in 2016. The most design is inherited from the 6G
robot, but some components—such as the kickers and the dribbler—have been
changed. See the details in our previous ETDP [1].

The last RoboCup was the first time that we used the 7G robots. They have
carried the tough competition through to the end, but some technical issues on
the hardware emerged in the latter schedule. One of them related to the dribbler.

We changed the alighment of the front wheels and rear wheels on the develop-
ment of the 7G robots. Those wheels of the 7G robots are symmetrically aligned
while the those wheels of the 6G robots were asymmetrically aligned. The reason
was that the symmetric alignment would yield simplifying control of the robot
motion. This change, however, gave not only such effect but also shortening the
width of the dribbler. As a result, the robots often failed to receive a passed ball.

Redeveloping the dribbler costs high. So, we focused on side brackets of the
dribbler. There were some spaces where we might whittle down, while there
was ball detectors. Whittling down the spaces and redeveloping a new smaller

(a) Main board (b) Booster (c) Kickers

(d) Wheel motor (e) Omni-wheel (f) Dribbler

Fig. 2. Main hardware components

(a) before redesigning (b) after redesigning

Fig. 3. The old and new design of the dribbler (especially, the side brackets)

ball detector achieved to make the place—where a ball can touch the dribbling
roller—wider as shown in Fig. 3. In fact, the available width for a ball on the
dribbling roller increases from 33.65millimeters to 41.2millimeters.

2.2 Software Part

Figure 4 depicts an overview of our software system, which is mainly composed
of three modules as follows:

1. The Rserver module receives the data from the SSL-Vision server, and
then the Kalman filter in the Tracker submodule estimates the states of
the ball and robots. The estimated states with the other information are

Fig. 4. Overview of the software system

shared among all modules. The Rserver sends a command packet to all robots
through the Radio submodule; the SensorWatch submodule receives the
information from the robots.

2. The View module provides a graphical user interface that a human operator
can know the game situation and also can send the referee commands for
tests.

3. The Soccer module chooses the best strategy for the current situation, as-
signs each robot a role based on the chosen strategy, and computes a motion
command to perform the role for each robot.

See our ETDP 2017 [1] as for a bi-directional communication and the packets
between the host computer and each robot.

As stated in Subsection 2.1, we redesigned the side brackets of the dribbler
so as to receive a passed ball more unfailingly. For the same purpose, we also
concentrated on improving the accuracy of robot motion. The detail is explained
by next section.

Fig. 5. A General Control System in SSL

3 Trajectory Tracking Controller based on Model
Predictive Control

A robotic soccer team in the SSL generally adopt the same control system as
depicted in Fig. 5. In this figure, a command PC has a (feedback) controller to
track a desired/planned trajectory; each robot also utilizes a kind of feedback
controller—like a PID controller—with Pulse Width Modulation to control DC
brushless motors connected to omni-wheels. Let’s focus on the control flow of
the command PC, especially around a trajectory generator and a controller. The
trajectory generator plans a trajectory based on the (sub-)target position given
by a strategy; the controller compensates the error so that the actual state of a
robot can track the planned trajectory.

In these years, RoboDragons have adopted online updated trajectory instead
of a pair of the trajectory generator and controller. It is similar to what Skuba
have presented in their ETDP 2011 [2]. This approach is simple and effective,
but does not work well sometimes because the rapid growth of the SSL has
required the high accuracy for some plays. We need control approaches so as to
elicit performance of the hardware maximally and safely.

Model Predictive Control (MPC) [3] has recently attracted the attention of
engineers and researchers. It is a kind of online optimization method including
future prediction, and also can deal with the constraints. This approach has been
already applied into RoboCup Soccer SSL [4], Middle Size League [5], and their
similar setting [6].

This section gives a trajectory tracking controller based on the linear MPC
approach. The proposed MPC controller handles velocity constraints in a differ-
ent way with the conventional controllers [4, 6]. The performance of the proposed
controller is evaluated by experimental results.

3.1 A Kinematic Robot Model

Assume that all frames in this paper are planar and right-handed systems. Locate
the world frame Σw:

wO-wX wY at the center of the soccer field, where its

𝑂0

𝑂1

𝑋0

𝑌0

𝑋1

𝑌1

𝑝

𝑝51

𝑝61

𝑝50

𝑝60

𝜃

Fig. 6. World and Robot Frames Fig. 7. Velocity Constraints

wX-axis heads to the opponent’s goal. Also, locate the robot frame Σr:
rO-

rX rY at the center of the robot, where its rX-axis heads to the robot’s front.
The relationship between the two frames is depicted in Fig. 6. We specify the
reference frame of variables and vectors by using the left superscript, e.g., wp =
[wpx,

wpy]
T
.

Suppose that the robot motion can be represented as a linear time-invariant
continuous-time system. Then, by focusing on only translational motion of the
robot for simplicity, we get the following state space model:

d

dt
x(t) =

[
αx 0
0 αy

]
u(t−HwTs), (1a)

y(t) = x(t), (1b)

where x := [rrx,
rry]

T
, u := [rvx,

rvy]
T
, αx and αy are scaling parameters for

the associated velocities, Ts is sampling period, and HuTs represents the dead-
time on communication from the command PC to each robot, respectively. An
MPC controller generally utilizes the discrete-time model of (1). Discretizing (1)
gives

x(k + 1) =

[
1 0
0 1

]
x(k) +

[
αxTs 0
0 αyTs

]
u(k −Hw), (2a)

y(k) = x(k). (2b)

Due to the hardware limitation, the control input is subject to the following
constraint:

∥u∥ ≤ v̄, (3)

where v̄ ∈ R+ is the maximum speed of the translational velocity.

3.2 Model Predictive Tracking Controller with Transformed
Velocity Constraints

In the linear MPC framework, we must represent a control objective as a per-
formance index (or an objective function) of the quadratic form with linear con-

straints. Our control objective is trajectory tracking. To achieve it, the following
performance index can be straightforward considered:

V (k) =

Hp∑
i=Hw

∥ŷ(k + i|k)− yref(k + i|k)∥2Q(i)

+

Hu−1∑
i=0

∥û(k + i|k)− uref(k + i|k)∥2R(i) , (4)

where û and ŷ are controlled input and output for prediction in the MPC con-
troller, yref and uref are set-point trajectories (like reference trajectories) for
û and ŷ, Hp and Hu are prediction horizon for û and ŷ, and Q and R are
weighting matrices, respectively.

The most problem in this design is how we should deal with the velocity
constraint (3) which is NOT linear. For this problem, we propose a solution by
using transformation based on the set-point trajectory for the controlled input.
On the rvx-

rvy plane as shown in Fig. 7, let the angle between uref and rvx as
ψ. By using ψ, we can decompose v̄ into v̄x and v̄y as follows:

v̄x = |v̄ cosψ|, (5a)

v̄y = |v̄ sinψ|. (5b)

The decomposed limits transform the constraints (3) into

|rvx| ≤ v̄x and |rvy| ≤ v̄y. (6)

If you pay attention to the case that the actual velocity accidentally goes out
of the constraints, we can use the following equations instead of (4) and (5):

V (k) =

Hp∑
i=Hw

∥ŷ(k + i|k)− yref(k + i|k)∥2Q(i)

+

Hu−1∑
i=0

∥û(k + i|k)− uref(k + i|k)∥2R(i) +W

2(Hu−1)∑
i=0

ϵi, (7)

v̄x = |v̄ cosψ|+ ϵx, (8a)

v̄y = |v̄ sinψ|+ ϵy, (8b)

where W is a weighting parameter and ϵi is called a slack variable. The slack
variables contribute relaxing the constraints if any. See Fig. 7 to find out the
light green area expanded by the slack variables.

Finally, in order to obtain actual control input, we need to solve a Quadratic
Programming (QP) problem, i.e., to minimize the performance index (4) or (7)
under the velocity constraints (6) with (5) or (8). For this, we can use CVX-
GEN [8] and YALMIP [7], etc.

Fig. 8. Test Experiment (S: (−4m, −2m), P: (4m, −2m), G: (1m, 2m))

3.3 Experimental Validation

We evaluated the performance of the proposed MPC controller by the following
experiment:

1) The robot rests at Point S and waits for starting.
2) The robot drives to Point P as the initial target position.
3) The target position changes to Point G at the moment when the robot reaches

within 2 meters of Point P.
4) The robot goes to Point G while turning left.
5) The experiment ends, when the robot arrives at Point G.

For comparison,

– the online updated trajectory as in [2]; and
– the following feedback controller based on pole placement for error system

between the actual response and set-point trajectory:

u(t) = uref(t) +Kp{yref(t)− y(t)} (9)

were also tested by same experiments. Figure 9 shows the experimental results
with the following parameters: αx = 0.9924, αy = 0.9777, Hp = Hu = 10 steps,
Hw = 1 step, Q = 255I2, R = 15I2, W = 400, and Kp = I2, respectively.

From Fig. 9 (a), command/actual velocities (green and blue) were mostly
between the upper and lower limits; some parts of them went over the limits
because of the slack variables. In Figs. 9 (b) and (c), it is hard to find the perfor-
mance differences among three kinds of methods. However, Table 2 summarize
the results with respect to tracking error and arrival time, which indicates that
the proposed MPC controller is slightly better than the other methods.

Table 2. Tracking Error and Arrival Time

Tracking Err. Tracking Err.
Arrival Time(Max.) (Ave.)

Online updated traj. as in [2] 1.076m 0.350m 389 frame
Pole placement of Err. Syst. 1.028m 0.224m 396 frame
Proposed MPC 0.695m 0.203m 367 frame

(a) Velocities generated from the
proposed MPC controller

(b) Tracking error between the actual and
set-point trajectories

(c) Actual and set-point trajectories on the wX-wY plane

Fig. 9. Experimental Results

4 Concluding Remarks

We have presented the system configuration of RoboDragons 2018 robots. The
main novelties of this ETDP are to improve the side brackets of the dribbler and
also to introduce a new trajectory tracking controller based on model predic-
tive control. Our robots will succeed to pass the ball between teammates more
frequently than last year.

Acknowledgement.

This work was supported by Aichi Prefectural University and JSPS KAKENHI
Grant Number JP16K00430.

References

1. Adachi, Y., Kusakabe, H., Suzuki, R., Du, J., Ito, M., and Naruse, T.: “RoboDragons
2017 Extended Team Description,” RoboCup Soccer Small Size League, 2017.

2. Chaiso, K. and Sukvichai, K.: “Skuba 2011 Extended Team Description,” RoboCup
Soccer Small Size League, 2011.

3. Maciejowski, J.M.: “Predictive Control with Constraints,” Prentice Hall, 2000.
4. Zeng, Z., Lu, H., Zheng, Z.: “High-speed trajectory tracking based on model predic-

tive control for omni-directional mobile robots,” in Proc. the 25th Chinese Control
and Decision Conference (CCDC’13), pp. 3179–3184, Nanjing, China, 2014.

5. Zarghami, M., Fakharian, A., Poudeh, A.G., and Adhami-Mirhosseini, A.: “Fast and
precise positioning of wheeled omni-directional robot with input delay using model-
based predictive control,” in Proc. the 33rd Chinese Control Conference (CCC’14),
pp. 7800–7804, Nanjing, China, 2014.

6. Barreto S., J.C.L., Conceicao, A.G.S., Dorea, C.E.T., Martinez, L., and de
Pieri, E.R.: “Design and implementation of model-predictive control with frictional
conmpensation on an omnidirectional mobile robot,” IEEE/ASME Trans. Mecha-
tronics, Vol. 19, No. 2, pp. 467–7804, Nanjing, China, 2014.

7. Löfberg, J.: “YALMIP: A Toolbox for Modeling and Optimization in MATLAB,”
in Proc. the CACSD Conference, Taipei, Taiwan, 2004.

8. Mattingley, J. and Boyd, S.: “CVXGEN: A code generator for embedded convex
optimization,” Optimization and Engineering, Vol. 13, No. 1, pp. 1-27, 2012.

