
AIS Team Description Paper

Tomás Rodenas, Ricardo Alfaro, Pablo Reyes, Diego Pandolfa, Felipe Pinto,
Maximiliano Aubel, Pablo Yanes, Tania Barrera, Sung Hee Kim, Sebastián

Castillo

Universidad Técnica Federico Santa Maŕıa, Valparáıso, Chile
Innovación y Robótica Estudiantil UTFSM

Abstract. This paper describes the current development status of our
SSL team, AIS, with the purpose to qualify for RoboCup 2018. Through-
out this document, we present the design and implementation we have
got so far in order to meet the requirements involved in the classifica-
tion step for Division B, showing the electrical, mechanical and software
topics involved in our work, which were designed according to satisfy the
RoboCup rules.

1 Introduction

Innovación y Robótica Estudiantil, which is the affiliation of all members on this
team, has been founded in 2001 and corresponds to a self-organized group of
undergraduate and graduate students from several faculties, such as Electron-
ics, Informatics and Mechanical Engineering Departaments at the University
(UTFSM). This RoboCup team belongs to one of several projects from this ag-
groupation, and is conformed by students with different specialization areas such
as computer science, control and automation, or power electronics, but also on
a multidisciplinary approach including students from mechanical engineering, as
well as industrial engineering students.

This SSL team follows the nature of the host students initiative, starting
from its multidisciplinary constitution, the self-organization and motivation with
professor advises when required but managed independently from any professor
funding project, and trascendence over generations renewing its members with
a constantly growing development and enhancement, and making both research
and development works, like [1] where a previous generation of the team applied
reinforcement learning on the goalkeeper task.

This document describes our design and the implementation we have got so
far, showing all the work made in the different areas involved at this category.

In particular, we describe mechanical design, electronics design for different
devices and algorithms implementation for the (robotics) team coordination, also
including the expected implementation we are planning to reach by the time of
the competition.



2 Mechanical Design

The current model corresponds to the third version of the robot designed by
our team throughout the last generations of members. The design was recently
updated changing the mechanical structure, with an special emphasis on the
dribbler development and wheels design.

The material selected for the chassis structure is chosen by means of priorizing
the collision resistance, so an aluminum base is used, while supports for the wheel
motors also consists on four aluminum blocks and a second floor of polymethyl-
methacrylate (PMMA) which stands for supporting the battery. Then, a third
floor is designed also of PMMA, with the aim of supporting the PCB and also
isolating the battery and PCB. Finally, the cover is 3D-printed on ABS material.

-Height: 150 mm.
-Diameter: 180 mm.
-Maximum coverage of the ball: 18%.

Fig. 1: Robot and case model

Fig. 2: Robot assembled

2.1 Drive System

Mechanical locomotion of robots is based on 4 omnidirectional wheels, which are
currently 3D-printed in PLA but we plan to switch to ROBALON which is a



thermoplastic that has to be milled on a CNC router (we also plan to change
the wheels support block material from aluminum to ROBALON). This change
of material is expected to benefit from its very high wear resistance, very high
impact strength, low density and virtually no moisture absorption. Each wheel is
designed with 55 mm of diameter and 15 sub-wheels of 13.5 mm of diameter, so
the robot can move in all directions. Also, each one of the 55 mm diameter wheel
has a set of 15 mini metal V grove guide pulley rail ball bearing wheels. Each
wheel is driven by a Maxon EC45 30 Watts motor [5] and a L6235 driver for
3-phase brush-less DC motor [4], which enables us to program a velocity control
for each motor, ensuring that the robot moves to our desired setpoint speed.

Figure 3 and 4 shows the described wheel.

Fig. 3: Omnidirectional wheel back view

Fig. 4: Omnidirecitional wheel angle view



3 Hardware

Each robot is controlled by a PIC MX440F256H using Pinguino Development
board. This model was chosen because of its simplicity, versatility and periph-
erals features. It has shown an acceptable performance letting us accomplish
communication, movement and playing skills. The peripherals also replace a lot
of external electronics needed to control the motors and dribbler.

3.1 Peripherals

ADC conversion The ease of implementation of this kind of modules allows
us to control wheel speed and orientation through a L6235 driver using DAC
conversion. Additionally using ADC conversion we can measure the wheel speed,
allowing us to implement a PID control on velocities for each wheel.

I2C As mentioned before, we use a L6235 driver, which communicates with the
PIC through its I2C module.

UART The UART module allow us to develop serial communication between
the PIC and our APC220 RF module, which will send and receive data from
the centralized decision maker placed on the computer. Additionally we use an
FTDI connected to our UART communication module to watch data of interest.

GPIO The general purpose Input/Output pins let us to program easily in
general any other significant settings, i.e. set the wheel break and direction pins
or activate the kick routine.

3.2 Kicker

The circuit shown in Figure 5 is used for the kicking system. This consists of a
chip charger controller with regulation which is a controller of flyback of high
voltage, raising the voltage from 24 [V] to 100 [V] on a capacitor of 2400uF and,
therefore, storing an energy of 244 [J]. The time of charge of the capacitor takes
up to 3 seconds to reach the voltage setpoint and can be regulated to kick with
different intensities.



GND

GND

GND

GND

GND

APF30212A

Solenoid

Relay

Signal
CHARGE

8

CLAMP
9

VCC
13

DONE
7

FAULT
6

UVL01
2

OVL01
3

UVL02
4

OVL02
5

G
N

D
1

7
*3

R
B

G
1

6

R
V

_
T

R
A

N
S

1

RDCM
20

RV_OUT
18

HVGATE
15

LVGATE
14

CSP
12

CSN
11

FB
10

4

12

3

11

2

10

1

9

7

6

T1

M1

R10

R9

C4C3C2C1

R1

R3

R2

R5

R7

R6

R4

R8

C6

C5
D1 D2

R11

K1

2
1

COM NO

VCC

VCC

VCC

VCC

V_TRANS

V_TRANS

LT3751

FLUX SHLD

+

Fig. 5: Kicker circuit

This circuit implements a Flyback with a turn ratio of 1:10 (primary:secondary).
When the Negative-channel Metal-Oxide Semiconductor (NMOS) is on, the volt-
age on the primary is Vp, which is given by

Vp = Vtrans − Vds(on), (1)

while current in the primary coil rises on a linear basis at a rate r given by

r =
Vtrans − Vds(on)

LPRI
, (2)

where LPRI stands for the inductance on the primary coil. Then, this voltage is
mirrored on the secondary winding as Vs, whose value is given by

Vs = −N · (Vtrans − Vds(on)) , (3)

which is blocked by the diode and thus the energy is stored in the core of the
transformer. When the current limit is reached the NMOS switch latch and the
energy flows into the output capacitor.



Fig. 6: Kicker design

3.3 Dribbler

According to RoboCup rules, the robot is allowed to cover up to 20% of the
ball. Experimentally, it has been proved that it is easier to catch the ball when
the dribbler has a slightly curve to center the ball on its own. So, this design
involves two diameters, D1 and D2 and based on this information, maximum
height possible is calculated obtaining the following expression:

H =

√
1

4
(D2(2d+D2) +D1(4pd− 2d−D1) + 4pd2(1− p)) +

d

2
, (4)

where d and p corresponds to the ball diameter and maximum coverage of
the ball, whose relation is illustrated in Figure 7.

Fig. 7: Relation between variables involved in dribbler design



The dribbler design was made of silicone using a 3D-printed mold. The pro-
cess involved consists on making a chemical reaction to obtain a moldable com-
pound that does not adhere to the surface of the mold.

Fig. 8: View of dribbler mold

Fig. 9: View of dribbler design

Our team uses the engine MAXON EC 16, BRUSHLESS, 30 WATT, SEN-
SORLESS, handled by a ESC LettleBee opto 6s.



Both the engine and roller join using a gear system with ratio 1:1, config-
uration that let us drive and automatically center the ball with a 3D-printed
support structure.

In order to build the roller, we used a 3D-printed mold shown in Figure 8,
with silicone to seal and car silicone as non-stick, also including a 5 mm metal
shaft. Then, dribbler shown in Figure 9 mounted into the robot looks like the
plattform shown in Figure 10.

Fig. 10: View of dribbler assembly

4 Communication

For communication we use an RF module consisting of an APC220 which is a
low cost NRF Athena that integrates an embedded high speed microprocessor
and high performance IC that creates a transparent UART/TTL interface. It is
a 430 MHz system capable of transmit up to 1000m.

We send every single robot data through a common channel as hexadecimal
packages in order to achieve a better transmission bytes. Each robot receives
and decodes the data in a pic microcontroller.

5 Kinematic model and wheel speed control

In order to maintain the expected velocity and position, we applied PID con-
trol on every wheel once the setpoint speed is calculated for every robot. To
accomplish this task, our control system sends a velocity vector V = [vx, vy, vθ]

T

to each robot, multiplying then its kinematic model matrix W , defined by the
geometry of the robots, obtaining

u = V TW = [u1, u2, u3, u4]T = φr,

where u is the wheel velocity vector, which divided by r (radius of the wheel),
it is possible to obtain the angular velocities of the wheels, φ. This is the reference
variable to the control speed system shown in Figure 11, and by obtaining direct



measure from the hall sensors of the motor we can obtain the input error variable
to the PID. Then, the controller generates a PWM as output in order to set the
wheel speed. It is important to note that φ is treated as an absolute value,
because the direction is set by enabling or disabling certain pins on the driver
controller.

Fig. 11: Robot wheel speed control system

6 Software

Diagram depicted in Figure 12 shows a general overview of the system, where
we implement a high level AI decision making in order to decide which is the
best action to take from a set of preprogrammed plays based on the game state
that comes just from the vision receiver.

Then we have a low level path planning algorithm to choose the best path in
order to execute the play avoiding obstacles. This is implemented on the desktop
computer in charge of making the centralized decisions for every robot.

Fig. 12: General diagram of the system



6.1 High level AI

The higher order AI level computes at each processing cycle the best actions
to be performed for each robot. This action is chosen by selecting a game-play
from a pre-defined static pool. This fundamental part of the system’s architec-
ture is shown in Figure 13, introducing four identifiable processes. First there is
a SceneRater which analyse and encapsulates all the relevant information from
the game field for choosing a game-play. Then, that information is used for ac-
tually selecting the specific game-play through the block named as PlayChooser,
weighting each detected event for deciding whether an attacking strategy or a
defensive one should be used, and which one in detail must be performed. Once
a game-play is chosen, then a RoleAssigner block is in charge of coherently dis-
tribute the roles associated to that game-play, as well as selecting which robots
should assume each position. Finally, each position must be run by the robots,
process managed through time by a Executer block.

Set of pre-defined plays

SceneRater

Game-plays

PlayChooser

RoleAssigner

Executer

Low level
Path-planning

Events vector
(field data)

Role vector for 
robot assignment

Role vectors
for action performing New

play?

yes

no

High-level AI

Vision/Referee data

Robot control 
system data

Fig. 13: High-Level Artificial Intelligence Architecture. Diagram .

Then, as shown in Figure 13 which depicts the diagram of the algorithm
implemented as the top hierarchy intelligence architecture, the processing cycle
starts with the receiving of new data either from the vision system or the ref-
eree. As illustrated, four blocks are implemented and processed in order: SceneR-
ater, PlayChooser, RoleAssigner, which is executed just if the current play has
changed, and the Executer block.

Specifically, the SceneRater evaluates conditions as which team has the ball,
whether a team has or not a high and middle chances of making an annotation,
the partial position of the ball in the field, which team is closer to the ball, among
others relevant features. All of this evaluations are described as active (with a
value of 1 or true) or inactive (zero value or false). This information is condensed
in an event vector, which is used by the following blocks. Also relevant, the
SceneRater block updates other field information, such as the number of robots
in play for each team, and keeps the assignation for the goalkeeper, noting that
information for the goalkeeper has to be stored since unlike other robots, the
role of this robot is not dynamic and none of the other robots can switch roles
with it.



The PlayChooser, after receiving the vector of detected events, evaluates all
pre-defined game-plays, each one of them rating differently the events detected.
Every play has been implemented for different situations, by the creation of a
hand-tuned rate matrix that weights each event. The game-plays consider, based
on real (human) soccer strategies, defensive and offensive plays, where the last
ones are sub-distributed as opening and ending plays. Offensive plays rates with
higher values the detection of the ball in the enemy team area, and even more if
the ball is close to the enemy goal area. Coherently, defensive plays strongly rates
when the enemy team has the ball and even more if they have an opportunity for
shooting to the team goal area. Given that there could be also Referee managed
situations, the set of game-plays also include some for them, which are prioritized
in case of receiving referee instructions.

Each game-play is described by a set of roles, one role for each agent, intro-
duced in a priority order in case of using less robots than the maximum allowed.
Each role considers a set of actions to be developed by the agent, as moving,
receiving or giving a pass or shooting to the goal area. One of the roles is the
goalkeeper, the first introduced always assuring its performance. To assign the
roles, each one of them is defined with a vector of desirable situations, as if the
team has the ball and the game-play considers a pass, the closest robot to the
ball will be assigned as the one giving the pass. Other agent, the one closest to
the enemy goal area, e.g., will be selected as the one receiving the pass, and so
on. In a defensive strategy, the closest to the team goal area, besides the goal
keeper, is probably the one assigned to protect that area. These considerations
are evaluated in a discarding fashion, i.e., if the closest to the ball has already a
role assigned, the second one closer is then chosen by the next role that requires
that situation. It is important to note that the RoleAssigner block is processed
in the case that the current game-play has changed, otherwise role assignments
would be changing through the reproduction at the game-play.

A set of actions are defined also with a game-play step: e.g., if one agent must
receive a pass, it is likely that both robots – the one giving and the one receiving
– must get in position first, and do not continue if the other robot has not get
into position yet. To do so, the architecture includes the Executer block, which
is in charge of evaluating if either an action has finished or not, managing the
changing of steps and computing the next step of an action execution for each
robot. Then, this block controls the continuity of the game-play and condenses
at the current processing cycle all the robots actuator variables: wheels velocities
and dribbler or kicker activation.

In order to simulate the robotic team coordination, and test different multi-
agent algorithms, we make use of GrSim [6], software that has been very helpful
to test game strategies.

6.2 Low level path planning

Under the high level plays we run a path planning algorithm to find the best way
of executing these tasks. We have tested different methods looking for a suitable
algorithm which gives good results at the moment of avoiding obstacles.



The first method tested was Potential Field algorithms [3]. This proposes a
potential field representation for obstacles and target, using sources for the prior
and sink for the latter. In this way, vector trajectories are generated avoiding
obstacles and leading the agent to the target, as we let a ball fall down. A
disadvantage of this method, is that we could obtain local minimums without
reaching the target.

Based on this approach we found the ”Ameliorative APF Algorithm” [7].
This method has a threat coefficient, defined as eor, determined by synthesizing
the effect of the relative position and velocity among the robot, the obstacle and
the goal (it takes values from 0 to 1). Also we define the maximum and minimum
threat range given by (Dthreat)max and (Dthreat)min. Then the relative position
of the obstacle and the robot is described by parameter (α+β), while γ gives the
direction angle of the obstacle relative to the robot (γ ∈ [0, π2 ] means that the
robot is going to collide). The following pseudo code gives the robot’s velocity
vecvr.

Algorithm 1 Ameliorative APF Algorithm

1: loop:
2: if Dro > (Dthreat)min then
3: if Dro ≤ (Dthreat)min then
4: if vor 6= 0 then
5: if (α+ β) ∈ [−π

2
, π
2

] then
6: if (α+ β) ∈ [−π

2
, 0) ] (0, π

2
] then

7: if γ ∈ [0, π
2

) then
8: get eor
9: else

10: goto bottom.

11: else
12: goto bottom.

13: else
14: goto bottom.

15: else
16: goto bottom.

17: else
18: bottom:
19: eor = 0
20: get vr

21: else
22: CRASH BACK

The second method tested was Rapidly Exploring Random Trees (RRTs),
which is shown in Algorithm 2 and consists on expanding a tree on the target
zone, avoiding to add nodes that could produce collisions with targets. The added
points to the tree are randomly chosen with probability p in a straight line to
the target, and with probability (1− p) selecting a random point on the space,



making more exploration and avoiding to get stucked on a different location to
the target, as shown in Algorithm 3.

Algorithm 2 Rapidly Exploring Random Trees

1: procedure BUILD-RTT(xinit)
2: T.init
3: for k = 0 to K do
4: xrand ← RandomState()
5: EXTEND(T, xrand)

return T

Algorithm 3 procedure involved on RRT

1: procedure EXTEND(T ,x)
2: xnear ← NEAREST-NEIGHTBOR()
3: if NEW-STATE(x, xnear, xnew, unew) then
4: T.add-vertex(xnew)
5: T.add-edge(xnear, xnew, unew)
6: if xnew = x then return Reached
7: else return Advanced

return Trapped

For improving its performance, we have implemented and tested some of
the algorithms based on RRT, way-points, smoothing and some extensions like
RRT* presented on 2011 [2].

Fig. 14: Path planning simulation



7 Expected Capabilities

By the time of the competition we expect to have built at least four robots, if
there were not any more electrical failures in hardware we would expect to have
built five robots, and have improved some aspects like:

– Improve the motion control for each robot, in order to be able to follow the
ball facing it in a more efficient way. At the time of qualifications, robots are
not able to face the ball at the same time they are chasing the ball.

– Implement dribbler and kicker on all the team. Although all robots that have
been built by the moment of submitting this document, just 2 robots have
included the kicker module.

– Referee box has already been tested, but there are remaining constraints in
order to cover all rule cases.

– Test the implementation of game strategies with the final team (with the
final number of robots).

References

[1] Gabriel A Ahumada, Cristobal J Nettle, and Miguel A Solis. Accelerating
q-learning through kalman filter estimations applied in a robocup ssl simu-
lation. In Robotics Symposium and Competition (LARS/LARC), 2013 Latin
American, pages 112–117. IEEE, 2013.

[2] Adam Bry and Nicholas Roy. Rapidly-exploring random belief trees for mo-
tion planning under uncertainty. In Robotics and Automation (ICRA), 2011
IEEE International Conference on, pages 723–730. IEEE, 2011.

[3] Shuzhi Sam Ge and Yan Juan Cui. New potential functions for mobile robot
path planning. IEEE Transactions on robotics and automation, 16(5):615–
620, 2000.

[4] Vincenzo Marano. L6235 three phase brushless dc motor driver. Application
Note, ST, 2003.

[5] AG Maxon Motor. Ec-powermax 30 catalogue information, 2008.
[6] Valiallah Monajjemi, Ali Koochakzadeh, and Saeed Shiry Ghidary. grsim–

robocup small size robot soccer simulator. In Robot Soccer World Cup, pages
450–460. Springer, 2011.

[7] Cao Qixin, Huang Yanwen, and Zhou Jingliang. An evolutionary artificial
potential field algorithm for dynamic path planning of mobile robot. In
Intelligent Robots and Systems, International Conference on, pages 3331–
3336. IEEE, 2006.

Acknowledgments

AIS Team would like to acknowledge the previous team members that helped us
to get here and to all the people that support and help us in any way. We could
not have made it alone.


