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Abstract. The CMDragons team placed second out of twenty-one teams
in the Small Size League of RoboCup 2014. In this paper, we present the
team’s recent work on the offensive and defensive tactics, low level skills,
and state estimation. Among the offensive tactics, we introduce the con-
cept of contingency options for teams of robots in the presence of uncer-
tainty via zone-based, and support attack. We increase the robustness of
the defense by creating specialized skills for handling loose balls near the
defense area as well concerted multi-robot shot-blocking. We present a
robot ball-manipulation skill for dribbling the ball while simultaneously
turning. Finally, we describe improvements to the ball state estimation
algorithms by accounting for collisions with dynamic robots.

1 Introduction

The CMDragons 2015 team from Carnegie Mellon University (Figure 1) builds
upon the ongoing research from previous years (1997–2010, 2013-2014 [1]). This
paper presents the technical details of our work since our Team Description
Paper of 2014 [1]. The overall architecture and robot hardware have remained
largely unchanged since 2010 [2, 3], and in this paper we focus on the novel
contributions from this year. Our team website1 provides a detailed description
of the robot hardware and links to technical documents from previous years.

In the following sections, we present our work related to the offense and
defense tactics, ball-dribbling skills, and state estimation. Section 2 introduces
the concept of contingency options in offense, and shows two applications of
this concept: Zone-based Team Coordination, and a Support Attacker tactic.
Section 3 presents our innovations in defense, which consist of plays and skills
to defend against corner kicks, to clear stopped balls near the defense area, and
to block incoming shots towards the goal. Section 4 describes a robust method
for dribbling the ball while turning. We discuss improvements to ball tracker in
Section 5. Section 6 summarizes the contributions and discusses future work.

2 Offensive Tactics: Contingency options

We have previously introduced robust skills for fast interception of moving
balls [1], and an attacker tactic that chooses the appropriate skills to intercept

1 http://www.cs.cmu.edu/~robosoccer/small/
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Fig. 1: CMDragons team of soccer robots. In the background, our layered disclo-
sure viewing and debugging tool [4].

and shoot the ball in the minimum possible time. However, in an adversarial
domain, there are multiple possible future outcomes that depend on the exact
actions taken by opponent robots. For example, if a moving ball is unlikely to
be intercepted by an opponent robot, the attacker tactic could continue to use
its time-optimal ball interception skill to receive the ball, while if an opponent
robot is likely to intercept the ball, the attacker tactic would have to do some-
thing different, like drive up to the interception point. The attacker tactic always
chooses to act on the most likely outcome, based on the current perceived world
state, and the models of the opponents’ capabilities. To handle the other possi-
ble outcomes, we therefore introduce contingency options for our offense: robot
roles that enable offense to be robust in scenarios that are not the most likely
ones. We implement this concept through Zone-based Team Coordination, and
a Support Attacker tactic. The purpose of these contingency options is not to
replace the primary attacker, but to complement it. While the primary attacker
acts on the most likely future trajectory of the ball, Zone-based Team Coordi-
nation and Support Attacker enable offense robots to pursue other likely future
trajectories of the ball.

2.1 Zone-based Team Coordination

Our team has introduced several different algorithms to coordinate offense robots.
We have introduced plays as predefined team policies based on individual robot
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skills and tactics [5]. In this system, the plays were organized in a playbook,
with weights that could be adjusted with experience [6]. In our CMDragons
2013 team, we departed from the playbook approach for planning during free
kicks. Instead we introduced a coerce-and-attack planning strategy [7], an al-
gorithm that searched for possible plans taking the opponent predicted moves
into account. The core aspect of the algorithm consisted on the generation of
two possible plans, one of which was revealed to induce the opponents to take
positions that would open opportunities for a second viable plan. During the
game, teamwork was still achieved through a playbook.

Since last year, we are focused on the research underlying the teamwork while
the game is on, rather than stopped for a free kick. We have introduced a Zone-
based Team Coordination in which we divide the field in several zones to be
assigned to offense robots. We investigate several issues related to the definition
of the zones, including (i) their dimensions and number; (ii) their degree of
overlapping; and (iii) their dynamic resetting during the game, as a function of
the score and time left.

The Zone-based Team Coordination algorithm must assign robots to zones,
as well as the behavior for each robot in its zone. Given a set of robots R assigned
to offense, we partition the field F into |R| zones, such that there exists a one-
to-one mapping from robots to zones. Each robot ri ∈ R thus gets assigned to a

corresponding zone Zi ⊆ F , where
⋃|R|
i=1 Zi = F . Figure 2 shows an example of

such an assignment, with three offense robots and their respective zones.
Given an assignment of zones to robots, our algorithm determines the be-

havior of each robot ri in its zone Zi. Let Xg
i be a set of guard positions in each

zone Zi. If ri computes that the ball will enter zi, then ri moves to intercept the
ball in its zone at the optimal location xa(ri); otherwise ri moves to one of the
guard positions xg(ri) ∈Xg

i . The target location xt(ri) for ri is thus given by:

xt(ri) =

{
xa(ri) if xa(ri) ∈ Zi
xg(ri) otherwise

(1)

Figure 2 shows one robot intercepting the ball at its optimal location xa,
and two robots placed in their assigned guard positions. We note that, when
multiple robots predict the ball to be heading toward their zone, they all move
to intercept it within their own zone, thus creating multiple contingency options.

We continue to investigate algorithms to set guard positions, as a function of
the joint attack, the ball positioning, and the opponent positioning. Our plan is
to analyze the impact of multiple alternative choices for the zone definition and
robot policy assignment in extensive tests in our simulation environments.

2.2 Support Attacker

To further create contingency options in offense, we present the concept of a Sup-
port Attacker, which complements Zone-based Team Coordination: while Zone-
based Team Coordination ensures good offense coverage of the field, Support
Attacker provides a contingency option specifically near the ball.
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Fig. 2: Offense robots of the yellow team (three rightmost yellow robots) are each
assigned an attacking zone, delineated by yellow lines. Black circles show the set
of possible default locations for each zone, while gray circles show the active
default location for each offense robot.

The Support Attacker robot rSA always stays at a fixed distance dSA from
the ball, in a direction uSA from which it is likely to be recover a loose ball:

xt(rSA) = xb + dSAuSA, (2)

Our ongoing work involves investigating algorithms to determine dSA and
uSA. A simple but effective assignment for dSA is a constant value that is large
enough to not interfere with the Primary Attacker, but small enough to provide
support in case the ball follows a trajectory other than the predicted most likely
one. It is also possible to adapt dSA as a function of the current action of the
Primary Attacker, or other features of the world.

Our algorithm determines the direction uSA as a function of the distance
from the ball at which opponents are located. If there is an opponent nearby,
uSA is chosen to block a potential shot on our goal; if there is no opponent
nearby, uSA is chosen to be aligned with the opponent’s goal, ready to shoot.
Figure 3 shows an example of a robot acting as a support attacker. We note that,
even though the support attacker always tries to maintain a distance dSA from
the ball, dynamic role assignment [5] enables a Support Attacker to become the
Primary Attacker when appropriate.
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Fig. 3: Offensive play of the yellow team with three robots attacking by zone
and one being a support attacker. The support attacker locates itself at the
intersection between the black circle (dSA) and the black line (direction of uSA).

3 Defense

In this year, we expanded on the threat-based defense detailed in last year’s Team
Description Paper [1]. We briefly summarize the defense evaluation algorithm
here, to provide context for the innovations described below.

The evaluator considers the positions of the ball and the opponent robots to
compute the first-level threat and several second-level threats, which are positions
on the field. The first-level threat represents the most immediate means for a
goal to be scored on our team. When an opponent is about to receive the ball,
the first-level threat is the position of that opponent; otherwise, it is the position
of the ball. The second-level threats represent possible indirect attacks on our
goal; they are given by the locations of all opponents except one which is most
likely to able to receive the ball first.

The available defenders are then positioned based on the locations of the
threats. Primary defenders, of which there are usually two, move around the
edge of the defense area, acting as the last line of defense before the goalie;
secondary defenders move further out on the field, intercepting passes and shots
by the opponent earlier on. The primary defenders typically defend against the
first-level threat, staying between the ball and the goal; if there are two, but
only one is needed to do so, the other will move elsewhere on the defense area
to guard some second-level threat. The secondary defenders guard against the
second-level threats; each one positions itself on a line either from a second-level
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threat to the goal (to block an indirect shot) or from the first-level threat to a
second-level threat (to block a pass).

The computation is described in terms of tasks: each threat generates one or
more tasks, each consisting of one or two positions, a priority, and other auxiliary
information; the tasks are then assigned in decreasing order of priority to the
available defenders. Second-level threats to block shots include two positions:
one near the defense circle, in case the task is assigned to a primary defender,
and one further out, for a secondary defender.

We have extended this evaluator to account for various special situations
throughout the game.

3.1 Three or more primary defenders

Corner kicks taken by the opponent team present a challenging problem for
our defense, since opponents tend to attack with more robots than during the
rest of the game, and they have an opportunity to build a play from a static
ball. Assigning the appropriate defensive roles in which robots do not interfere
with each other’s navigation is particularly challenging when opponents quickly
change formations. Figure 4 shows our solution to this, which involves assigning
the role of primary defender to all our defensive robots.

This reduces the problem of positioning the defenders from a two-dimensional
problem to a one-dimensional one, ensuring that the evaluator can assign po-
sitions to them in a manner which prevents collisions and interference. In this
mode, the first-level threat and associated defender position or positions are
computed as normal. For second-level threats, only shot-blocking tasks and only
their positions near the defense are considered. All the positions are sorted by
their linear position around the defense area. Now, in order to avoid collisions
while allowing all robots to reach their target positions, the positions must be
moved away from each other. The first-level position(s) are treated as fixed, since
they represent the most important positions to block; the second-level positions
are moved away from the first-level positions if necessary so that there is enough
space between them for robots to reach the positions without colliding.

3.2 Clearing a stopped ball near the defense area

Since the defenders are not allowed to enter our own defense area, it is difficult
for them to clear a ball which is stopped and near the area (approximately, less
than one robot diameter away). One possible solution is to use their dribbler
mechanisms to move the ball away from the defense area. However, this would
give the opponents an opportunity to steal the ball and shoot from a close
range. Instead, in this situation, the primary defenders protect the ball from the
opponents while the goalie moves out from the goal to clear it.

3.3 Blocking incoming shots

When two primary defenders are positioned to block a potential shot, it is of-
ten necessary to leave a small gap between them to fully block the angle to the
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Fig. 4: Examples of our defense’s response to opponent positions while all de-
fenders are primary defenders. If opponent 2 crosses behind the other three op-
ponents, the defenders smoothly shift to follow the movement, staying in order
without crossing past each other.

goal. While the goalie is positioned to block direct shots that pass between the
defenders, bounces from the sides of the defenders emerge from the gap at unpre-
dictable angles. We have solved this problem by forcing the primary defenders
to quickly come together when there is an incoming shot aimed between them,
reducing the likelihood that this can happen. Additionally, to prevent collisions,
our algorithms evaluate which is better positioned to intercept and clear the
ball. That defender then moves forward to do so, while the other stays behind.

4 Dribbling while turning

Many teams in the SSL, including CMDragons, currently dribble the ball by
imparting backspin on it. This method helps the robot drive into the ball while
maintaining contact with it. However, imparting backspin on the ball while turn-
ing is much more difficult than doing so without turning; in this section, we
describe our ongoing effort to achieve reliable dribbling while turning quickly.

First, we describe a few intuitive approaches that fail to be robust enough
while turning quickly. The first approach one could take is simply to drive around
the center of the ball to turn to the desired direction. This approach works well
when the ball has no spin on it, as no forces are applied on it while the robot
drives around. However, when the robot has imparted backspin on the ball, the
ball will roll and be lost as the robot turns around it.

Figure 5a shows a different intuitive but ultimately insufficient approach,
in which the robot drives forward with speed s while gradually changing its
orientation with speed ω, forming a circle of radius R. These quantities are
constrained by s = ωR, and which two parameters are free depend on the use
of the skill. We note that the robot turning in place is a special case of this in
which R is the distance between the robot’s center and the dribbler. As Figure 5a
shows, there is no force to balance the centrifugal force experienced by the ball,
and therefore the ball escapes the robot’s dribbler.

Figure 5b shows our proposed approach, in which the robot turns while push-
ing the ball, but facing in a direction φ that provides the necessary centripetal
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(a) Robot dribbling ball while driving
forward and turning. No force can bal-
ance the centrifugal force fC .

fN

fF

fCR

φ

(b) Robot dribbling ball while facing
slightly inwards. There exists an angle
φ for which the forces are balanced.

Fig. 5: Two approaches to dribbling while turning. The gray shape represents
the dribbling robot, the orange circle the ball and the dotted blue circle the
desired trajectory. Black arrows show the forces acting on the ball, in the rotating
reference frame.

force to maintain the ball on the dribbler of the robot: facing slightly inwards
while turning provides a component of the normal force from the robot that
always points towards the center of the circumference. The constraints s = ωR
hold in this case as well. The necessary angle offset φ can be obtained analytically
by noticing that all the forces in Figure 5b need to cancel out in the rotating
reference frame. Therefore, we obtain the pair of equations:

|fN | cosφ = |fC |
|fN | sinφ = |fF |. (3)

Then, given the acceleration of gravity g, the coefficient of friction of the carpet
µ and the mass of the ball m (which cancels out in the end), we obtain:

|fN | cosφ = mω2R

|fN | sinφ = µmg. (4)

Solving these equations for φ gives the result for the desired heading:

φ = tan−1
(
µgω2R

)
(5)

Creating a more sophisticated model, accounting for the spin of the ball, is
ongoing work. However, this model showed promising results: Figure 6 shows
this algorithm in action in RoboCup 2014, where it enabled multiple goals.

5 Ball tracking accounting for collisions

To track the state of the ball moving on the ground, we use an Extended Kalman
Filter (EKF). While the EKF provides us with a good prediction model for the
ball while it is moving freely on the ground, its predictions are less useful when
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Fig. 6: Our robot quickly turns while dribbling the ball after intercepting it, and
shoots into the opponent’s goal.

the ball is about to collide with something else. This is because the EKF relies
on a linearization about the estimate of the state of the ball, but collisions are
highly nonlinear in nature.

Algorithm 1 Function to predict ball location accounting for collisions against
robots. Input: current ball state bt = (xb

t ,v
b
t ) estimate and covariance Σb

t ; time
∆t in the future to predict ball state. Output: ball state bt+∆t estimate and
covariance Σb

t at time t+∆t.

1: function PredictCollisions(bt,v
b
t ,∆t)

2: (bt+∆t, Σ
b
t+∆t)← PredictLinear(bt, Σ

b
t )

3: bs ← bt . record source state of current path segment
4: repeat . update bt+∆t while there are collisions
5: rc ← CollidingRobot(bs, bt+∆t)
6: if rc 6= ∅ then
7: (bs, bt+∆t)← Reflect(bs, t+∆t)
8: end if
9: until rc = ∅

10: return (bt+∆t, Σ
b
t+∆t)

11: end function

To mitigate this limitation of the EKF, we have augmented the prediction
used to update it to explicitly account for the ball colliding against robots on
the field. Algorithm 1 describes this process at a high level. Starting from the
linear prediction of the ball trajectory (line 2), the algorithm repeatedly updates
the trajectory while it finds collisions on the way (lines 4-9). For this, we find
whether the trajectory intersects any robots (line 5) assuming there is at most
one, and then reflect the trajectory about the point of collision (line 7). Figure 7
illustrates this process, which takes into account the geometry of the typical SSL
robot (flat in the front, circular around the body) as well as typical reflection
coefficients for its surfaces.
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Fig. 7: Application of Algorithm 1. The ball initial estimate is orange, and robots
are black. Red and green paths indicate detected collisions and the corrected
trajectory, respectively. Superscripts show the iteration of the loop in lines 4−9.

6 Conclusion

This paper presents the innovations of the CMDragons team since our last Team
Description Paper [1]. Our focus has been placed on making the team more
robust, by introducing the notion of contingency options on offense, expanding
the abilities of defense, making our predictions of the state of the world more
accurate, our skills more reliable. These innovations have allowed us to stay
competitive in the RoboCup Small Size League, reaching the finals in the 2014
tournament. As we move forward, we will improve the team gameplay of our
robots, introducing elements of game theory and execution monitoring.
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