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Abstract. ZJUNlict have participated in Robocup for about nine years
since 2004. In this paper, we summarizes the details of ZJUNlict robot
soccer system we have made in recent years. we will emphasize the main
ideas of designing in the robots’ hardware and our new software systems.
Also we will share our tips on some special problems.

1 Introduction

Our team is an open project supported by the National Lab. of Industrial
Control Technology in Zhejiang University, China. We have started since 2003
and participated in RoboCup 2004-2012. The competition and communication
in RoboCup games benefit us a lot. In 2007-2008 RoboCup, we were one of the
top four teams in the league. We also won the first place in Robocup China Open
in 2006-2008 and 2011. Last year, we won the first price in Netherland, which is
a great excitation to us. And we incorporate what we have done in recent years
to this paper.

Our Team members come from several different colleges, so each member can
contribute more to our project and do more efficient job.

2 Hardware

2.1 Mechanical Improvement

In order to prevent the ferry rubber band being bashed which happens in
the game several times in the past years. We add the thickness of the big wheel
bracket. At the same time we consider about reducing the weight. So we just
add the thickness of the outer ring of the big wheel bracket. It is shown in Figure
1. We have also changed the length of the resistance arm in the chipping device.
Exactly, we add the length of the resistance arm to make sure that the ball can
be chipped higher.
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Fig. 1. New wheel designed this year

2.2 Labview tools

We need several software tools to get the state of robot, which is inconve-
nient. So we use Labview to integrate all the functions, including speed-monitor,
parameter-set, communication-test, etc. But the tool cannot run without Lab-
view, so we packed the program and all the used plug-in in an installation file
to make it available for any computer. Fig.2 is the GUI window of our Labview
project.

Fig. 2. GUI window of the Labview project



2.3 Frequency-set mode design

Organizing Committee of the RobotCup 2013 required specified frequency.
But our frequency-set mode can only provide 15 specified channels. Thus, we
change the way we set the frequency. Firstly, the new mode was programed to
set the start-point and the step. Then we use the e2prom to store the parameters.
So the frequency-set expression was transformed from (1) to (2). In this way, all
the frequency channels are available.

where

– frq pre is the position,
– frq now is the velocity,
– dial num is the start position.

3 AI System

3.1 Lua Script Architecture

We introduce a script language into our system to improve the flexibility and
robustness of the system. Here we choose the script programming language Lua
[1]. We have transplanted some repeated logic code to Lua such as positioning
tactic, FSM configuration, Behavior Tree’s generation, while left the complicated
algorithms such as path planning, vision handling in C++ workspace. So the
code is divided into two parts, as illustrated in Fig.3.

Tolua++ is an extended version of tolua, which is a tool to integrate C/C++
code with Lua. At Lua side, we need to access some variables and functions
written in C++. Tolua++ helps us deal with this using a package file. For more
details about tolua++, please refer to its Reference Manual1.

The design advantages of script architecture with Lua are:

– Clear Logic: Like other scripting language, Lua is easy to understand. We
can pay more attention to the logic of the code rather than the syntax, and
it’s really easy for different people to express their tactics by Lua scripts
even if the script’s author has little knowledge on programming.

1 Tolua++ Reference Manual: http://www.codenix.com/ tolua/tolua++.html



Fig. 3. Script architecture with Lua

– No Compiling: In RoboCup Small Size League competition, each team has
only four chances for time out, the total time is 10 minutes. Therefore, it is
very important to rebuild the code as quickly as possible in the limited time.
Usually, a modification in C/C++ code takes about 10-20 seconds, but the
compiling takes 1 minute or more. Lua helps us to solve the problem, we can
just modify our strategy in about 10 seconds, and then do a syntax check by
Lua’s own debug tool, which takes almost no time. So we can spend more
time on modifying logic code rather than compiling and debugging.

– Online Debugging: A play script will be loaded every cycle in our code.
So tuning some parameters or functions such as a FSM’s switch condition
or Behavior Tree’s node action do not need to stop the whole program, the
effects will be shown as soon as the modifications in a script file are saved,
which enables easier and faster strategies adjustment.

Fig.5 is an play script used for indirect kick in the frontcourt.

3.2 Tactics Board

Fig.4 is an application for planning the free kick and the indirect kick. With
this application, we can just drag the robots on the board, and it will automati-
cally generate code which can run the real robots instantly. So, we can generate
any tactics in just few minutes.

This application is based on Web. It uses Node.js(Koajs) as its server, and
uses Angular.js and HTML5(canvas) as its client. And it uses socket.io and udp
packets to communicate with our C++ Core. In short, this application generate
a Lua script, then send the script to the C++ Core to run the robots. Because
of the efficient of graphical interface, we do not need to write much code for our
strategy.

3.3 Style Adaptive Dynamic Movement Primitives

Trajectory learning and generation from demonstration has been widely dis-
cussed in recent years with promising progress been made. In some reaching goal
tasks, different goals requires trajectories of different styles. How to reproduce
a trajectory with a suitable style is an issue that must be resolved. In this year,



Fig. 4. Script architecture with Lua

we propose a style-adaptive trajectory generation approach based on DMPs [2],
by which the style of the reproduced trajectories can change smoothly as the
new goal changes.

System Architecture The basic DMP equations are detailed in ??Ijspeert2002,
and now we discuss how to change the trajectory style according to different
goals, here we propose a new method named Style Adaptive Dynamic Move-
ment Primitives (SADMPs). Fig.6 shows the architecture of the SADMPs. We
first collect and analyze different motions demonstrated by human. The captured
motions are modeled and clustered using PDM [3] in order to get the principal
trajectory of each cluster, which is the average of the trajectories in a cluster [4].
Then we train these principal trajectories using the DMPs trainer separately to
get their weight parameters. Finally, we use the adapter to combine the training
results with the new goal to reproduce new motions. Here a new desired goal
gnew acts not only on the transformation system, which is similar to the original
DMPs, but also helps to generate a fused style of the reproduced motion.

Algorithm for Learning The learning of wnew in SADMPs can be accom-
plished within two steps: (I) Obtaining the weight parameters wk = [w1

k · · ·wN
k ]T

for the kth principal trajectory. (II) Employing an adaptive goal-to-style mech-
anism to merge different wk.

In the first step, different with the training method used by [2], LMS method
is used to train the parameters wk of every principal trajectory in this paper.



1: firstState = “goReady”,
2: name = “Ref FrontKickV8”,
3: attribute = “attack”,
4: timeout = 200,
5: [“goReady”] = {
6: match = “{A}{L}[SMD]”,
7: switch = function()
8: if reachTarget(“L”) then return “pass” end
9: end,

10: A = getBall(dir1), L = goMultiPos(posList),
11: S = rush(pos1), M = rush(pos2),
12: D = rush(pos3), G = goalie() },
13: [“pass”] = {
14: match = “{AL}[SMD]”,
15: switch = function()
16: if kickBall(“A”) then return “kick” end
17: end,
18: A = chip(shootPos), L = receive(shootPos),
19: S = middle(), M = leftBack(),
20: D = rightBack(), G = goalie() },
21: [“kick”] = {
22: match = “{ALSMD}”,
23: switch = function()
24: if kickBall(“L”) then return “finish” end
25: end,
26: A = goAssist(), L = shoot(),
27: S = middle(), M = leftBack(),
28: D = rightBack(), G = goalie() }

(a)
(b)

Fig. 5. An example of indirect free kick in frontcourt: (a)Lua script; (b)positions of
robots in every state. In the script (a), the basic settings are from line 1 to line 4. Then
we define the specific states in this play. For example, the state goReady comprises a
role match item (line 6), switch condition (line 7-9) and execution (line 10-12).



Fig. 6. The architecture of the proposed SADMPs model. This method comprises t-
wo parts, one is for learning, and the other is for generalization. The darkgreen-shaded
components constitute an adaptive goal-to-style mechanism. Two points should be not-
ed for the extension: 1) the architecture is for one-DoF, J copies of this architecture
could be employed for an J-DoF application. 2) Although there are only two cluster-
s obtained in this figure, the SADMPs can work for the situation existing multiple
clusters.

The main reason for this design is that LMS method can obtain the weight
parameters by using the same kernel functions for different principal trajectories
in the same dimension, which is the basis of the goal-to-style mechanism in the
next step. Here is the update rule:

wi
k ← wi

k + αr

T∑
t=0

(ftarget(u(t))− f(u(t)))ψi(u(t))u(t)∑N
i=0 ψi(u(t))

, (1)

In our study, we have more than one dimension for a principal trajectory, and
the weight parameters of each dimension should be learned independently and in
parallel. The different principal in one dimension trajectories share the common
differential equations and kernel functions in one dimension. But in different
dimensions, they could use different kernel functions.

In the next step, an Adapter is responsible for the adaptive goal-to-style
mechanism. In the original DMPs formulations, the goal position g and the
temporal scaling factor τ determines the style of the trajectory. In SADMPs, we
further coupled g to the weight parameters, thus the style of a new reproduced
movement changes smoothly between movement primitives in different styles.

The goal of kth principal trajectory in one-DoF is gk. We sort the one-DoF
goals of all the principal trajectories in an ascending order, g1 < g2 < · · · < gM ,
M is number of the principal trajectories. Note that the goals g may be ranked
in a different location for different DoF. If gk ≤ gnew ≤ gk+1, then wnew can be
represented as



wi
new =


d(gk)wi

k+1 + d(gk+1)wi
k

d(gk) + d(gk+1)
gk ≤ gnew ≤ gk+1,

wi
1 gnew < g1,

wi
M gnew > gM .

(2)

where d(gk) = |gnew − gk|. It is clear that the wnew is determined by the
distance between the new goal and the goals of principal trajectories. In another
word, the nearer goal constitutes a high proportion of wnew.

Fig.7 is the result for a shooting ball task.
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Fig. 7. Result on shooting ball task. (a) Two goals B1 and H4 is demonstrated for a
shooting ball task; (b) The generated trajectories for other goals.

4 Conclusion

Owing to our all team member hard work, we can obtain this result. If the
above information is useful to some new participating teams, or can contribute



to the small size league community, we will be very honor. We are also looking
forward to share experiences with other great teams around the world.
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