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Abstract. This paper presents a brief technical overview of the main
systems of TIGERS Mannheim, a Small Size League (SSL) team intend-
ing to participate in RoboCup 2013 in Eindhoven, the Netherlands. This
year, we redesigned our bots' mechanic and electronic to improve overall
precision and to add new features. Our software showed very reliable
and stable, so we could concentrate on some improvements in the arti�-
cial intelligence. One main module is a learning play �nder that uses a
knowledge base to determine a play set for the current situations.

1 Mechanical System

In the last two years our �rst robot design has shown some serious mechanical
problems. To overcome these issues we decided to build a new robot from scratch.
The old and the new robot are shown in �gure 1. The mechanical speci�cations
are listed in table 1.

The old robot had two main problems. First, we underestimated the power
of the kicking device and the forces during a shot. The straight kicker connection
from solenoid to plunger was only 3mm in diameter. The thin connection bent
regularly and even the threads used in the parts were vaporized to �ne aluminum
powder after some shots. The dribbling bar had a similar problem. In close
contact situations with other robots our dribbling bar bent and made precise
dribbling impossible. The second major problem which is not only limited to the
mechanical construction was the overall precision of our system.

To improve the mechanical precision we reduced the diameter of the wheels
by moving the transversal rollers more inward to the center of the wheel. Fur-
thermore we changed from an external spur gear with a ration of 30 : 100 to an
internal spur gear with a ration of 15 : 50. This signi�cantly reduces the height
of robots drive unit and thus gives more space for capacitors and electronics. It
also moves the mass center down which helps accelerating the robot faster. The



(a) Version 2011/2012 (b) Version 2013

Fig. 1: The TIGERS soccer robot, old and new version

position of the encoder changed in the new design, too. The encoders were pre-
viously connected to the wheel shaft and are now connected to the motor. This
increases their resolution by the gear ratio. Additionally the encoders themselves
have a higher tick rate. The old ones made 1440 ticks per round (US Digital,
E4P [1]). The new ones make 2048 ticks per round (US Digital, E8P [2]) when
sampling every transition in the encoder signal. To mount the encoders to the
motor we had to back-extend the motor shaft. This job is easily accomplished
when using a arbor press. The modi�cation of the encoder position yields a
increase in odometry resolution of factor 4.74.

Robot version 2011/2012 2013

Dimension Ø180 x 148mm Ø178 x 148mm

Max. ball coverage 15.3% 12.3%

Driving motors Maxon EC-45 �at 30W Maxon EC-45 �at 30W

Gear 30 : 100 15 : 50

Gear type External Spur Internal Spur

Wheel diameter 58mm 51mm

Encoder US Digital E4P, 1440 PPR US Digital E8P, 2048 PPR

Dribbling motor Maxon EC-16 15W
Maxon EC-16 30W with
planetary gear head

Dribbling gear 20 : 40 48 : 24

Dribbling bar diameter Conus 4-8mm 12mm

Chip kicker No Yes

Straight kicker Yes Yes

Table 1: Mechanical Speci�cation



To resolve the issues with the kicking and dribbling systems, we increased
the diameter of the straight kick shaft to 8mm and the dribbling bar to 12mm.
The new version of our robot also includes a chip kicker based on the �at shaped
solenoid design. Furthermore we changed the top cover which is now made out
of two POM parts, whereas the top one has the pattern circles perfectly milled.
Thus the pattern should always perfectly align with the front of our robot which
also increases our precision.

2 Electrical System

To complete our new robot we also made a new electronics board which is
depicted in �gure 2. It is actually made of two custom stacked boards with
an TFT Display on top. The new board combination (named mainboard and
extension board) has several new features. First of all we changed the main
processor from a Cortex-M3 with 72Mhz to the next generation of this chip, a
Cortex-M4 with 168Mhz (STM32F4 [3]). This processor controls among other
things the motors and reads encoder signals. Most of the low level motor control
is done in hardware interrupt routines and thus only generates minimal processor
load. The motor PWM signals use a frequency of 20kHz. The encoder signals are
fed directly into some hardware timers which are periodically polled to calculate
the current wheel speed.

Connected to the main processor are also an accelerometer and a gyroscope to
provide additional sources for the on-board �ltering. Minor features include some
LEDs for signaling fatal problems and a buzzer to generate an audible signal.
Furthermore a USB-to-Serial bridge is connected to the processor to provide a
debug interface to the user. The complete system architecture is shown in �g. 3.

Fig. 2: Mainboard with mounted TFT, camera and wireless module



Co-Processors Two on-board ATmegas from Atmel (ATmega168 [4]) are con-
nected via SPI to the main processor. One is used to monitor the cell voltages
of our batteries (two 2400mAh 2S1P packs) to prevent damage from deep dis-
charge. The other one is used to monitor the motor currents which are di�er-
entially measured above a shunt resistor on each motor drive circuit block. It
also acts as an AD-Converter (ADC) for the infra-red light barrier in front of
the robot. Although the Cortex-M4 has its own ADC built in we chose to use
external ATmegas because we can o�oad digital �ltering to them. Additionally
there is a lot of digital noise around the main processor.

Kicker A third ATmega is used on our external kicker board, which is mounted
near the bottom of the robot to generate some distance between the very noisy
kicker circuit and the sensitive mainboard. The main processor communicates
via SPI with all ATmegas. A custom data protocol with checksums ensures the
consistency of the exchanged data. The kicker ATmega controls the charging of
the capacitors (2x 2200uF/250V) and the discharge through high-voltage IGBTs.
During charging it monitors the voltage and the current �owing through the
power part. Based on the current voltage a di�erent duty-cycle is selected which
decreases the overall charging time. Our current �rst-try implementation reaches
a voltage of 200V in 2s. The current monitoring can be used to detect hardware
malfunction or to limit the duty-cycle as well. In contrast to the old design our
kicker is now based on the step-up converter principle as this technique requires
much less space on the kicker board.

Wireless Our old robot used DECT modules which had the great advantage of
using the 1.9Ghz frequency band which is rarely used in RoboCup. This module
is closed-hardware and thus a black-box for us. We encountered a varying latency
up to 50ms. These problem made the closed-loop control of the robot quite
di�cult and inaccurate as we had to deal with a varying dead-time. Furthermore
the module has only a throughput of 115.2kBit/s [5].

Due to all these disadvantages we decided to select another wireless module
for our new robot. The nRF24L01+ module from Nordic Semiconductor is well-
known and has proven to work well in the Small Size League. Although it works
in the 2.4Ghz range it allows to select from 125 di�erent channels [6]. The upper
channels are also forbidden for commercial WLAN equipment, which allows to
select a good frequency even if there is a lot of such equipment or other teams
using this module. Additionally this module allows data rates of up to 2MBit/s.
We built a custom base station for these modules which has a wired network
connection. The station electronic is built around a Cortex-M3 from STmicro-
electronics connectivity line which allows to interface the network with up to
100MBit/s. The base station uses a time-division protocol to communicate with
the bots, thus we only need one channel to communicate with all bots. As this
system is totally known and open hardware we shall be able to minimize latency
problems.



Fig. 3: Electrical system overview with components connected to the main pro-
cessor (green), to the media processor (orange) and ATmega sub-processors
(blue)

Extension Board The extension board on top of the mainboard is equipped with
another Cortex-M4 (STM32F4) which is also clocked at 168Mhz. It is connected
via a high-speed serial connection to the main processor. It interfaces a 320x240
pixel TFT display with touchscreen capability to provide an easy interface to
the user. Compared to buttons on the boards it has the great advantage of being
a recon�gurable UI. Furthermore the so called media processor also interfaces 2
MB of external SRAM which is needed for storing and processing images as the
Cortex-M4 only has 192kB internal RAM.

The media processor also features an USB Full-Speed Host port. We devel-
oped drivers for interfacing USB mass-storage devices and are currently working
on support for Human Interface Devices (HID class). Supporting HID devices
also allow us e.g. to plug a keyboard into the robot and use it for some kind
of text console on the display. Even more sophisticating is the option to plug a
wireless gamepad into the host port and control the robot directly with a game
pad without the need for any other infrastructure. This is mainly intended for
Human-Computer matches or for demonstration events.



Besides these features the media processor also interfaces a digital audio
system via an I2S bus. A small speaker is mounted below the display on the
extension board. Unlike the buzzer this speaker can play real sounds or music.
The audio system has already been successfully tested by playing a WAV �le
from an USB stick.

On-Board Vision One of our greatest innovations this year is the usage of an
on-board vision module. The OV7725 camera module allows to capture images
of 640x480 with a frame rate of 60fps. With a reduced resolution of 320x240
it can even capture 120fps [7]. The images are captured via a DCMI interface
which is hardware supported by the Cortex-M4. The media processor can directly
store the images in the external SRAM via a DMA transport and thus does
not consume CPU cycles when fetching images. The processor can focus on
processing the images. Our current setup uses the camera facing down to the
dribbling device of the robot. We intend to use it for ball detection if the ball is
close to the robot. With this feature we can even �see� the ball in close-contact
situations where the �eld-cameras cannot identify the ball. By signaling the ball
position back to our central software we have an additional information channel
for our AI. Furthermore the camera can be used to detect the horizontal position
of the ball in front of the robot and also if the ball is bouncing o� of our dribbler.
This information could be used to improve our dribbling skills.

Control With a whole processor only used for image processing and the avail-
ability of a �oating point unit in the Cortex-M4 we plan to move our �ltering
and control from the main computer to the di�erent robots. The robot has sev-
eral on-board sensors that can be used for control. These include high-resolution
odometry, motor current, accelerometer and a gyroscope.

All these sensors can be combined by a Kalman-Filter and used for a cascad-
ing closed-loop controller. The accelerometer and the gyroscope can be polled
with up to 400Hz, the motor current and the encoders with up to 200Hz. The
global position comes in at 60Hz from the main computer. The Kalman-Filter
operates on global coordinates. The control output is fed into a non-linear trans-
formation stage which maps them to local wheel speeds. In return the sensor
data is also converted back to global values. To remove the dependency and
non-linearity of the X and Y components on the rotation rate, we plan to locally
turn our coordinate system on the bot, and thus have three independent state
variables.

A simple velocity based control is already implemented and yields a processor
usage of approx. 1%. Together with the other tasks the main processor is over
90% idle. The media processor is idle 99% of the time. Additionally STmicro-
electronics provides a DSP library for the Cortex-M4 that includes operations
for matrix calculations. These operations are already optimized for the �oating-
point unit and the available DSP instructions. Overall there should be su�cient
computing power to do an on-board sensor fusion and control. The estimated
state and velocity will also be transmitted back to the main computer, to let the
AI know where our robots are.



3 Software

The central software, called Sumatra, has proven to be a stable and reliable
component with much potential in extensibility. Last year, we focused on basic
functionality and reliability to ensure that we are able to play games �uently.
This year, we want to extend and optimize certain sub components. We focus
on the play strategies of our AI and an enhanced precision with the new robots.

The architecture of Sumatra has not changed compared to last year and can
be looked up in the TDP from last year[8]. We are still using a play-role concept
where each robot has one role at a time and a play coordinates a set of roles.
There are usually at least three plays running at a time for attack, defense and
support. Plays will change very frequently. One challenge for RoboCup 2013 is
to decide which plays are appropriate in which situation. We developed a play
�nder with a learning algorithm to learn from certain situations and optimizing
the selection of plays. It was initiated in a project of the lecture knowledge based
systems[9,10].

3.1 Play Finder

The play �nder is a sub module within Sumatra that decides about the set of
plays for the current situation (see �gure 4 for overview of information �ow).
The former implementation had hard coded decisions that were primarily based
on the referee messages. Depending on the referee message and the number of
bots, a static set of plays was selected. As there were only few plays available
in Sumatra, this had no critical in�uence to the competition, but it was hard to
maintain if new plays had to be integrated.

Therefore a new abstraction layer for the play �nding is introduced, so that
the play �nder can easily be exchanged. To ensure correct behavior on referee
commands, there is a default static play �nder which is used by all implemen-
tations. This is still static because there are not as many plays as for standard
situations, from which a play �nder can choose. If a concrete play �nder wants to
use a di�erent behavior in a standard situation it can implement theses methods.

A play �nder has to implement a method for choosing plays in free game
phases. This is the most important part of a play �nder, as this is the main
logic.

3.2 Learning agent

The new play �nding algorithm will be designed as a learning agent. That is the
opposite of the old play �nder �BasicPlayFinder�, which encodes reactions for
common situations. Since a game consists of two teams, each with 6 bots and one
ball, there are many possible situations that have to be evaluated. This cannot
be done in a general or encoded way. A play �nder should also be extensible by
more input variables, like the velocity of the ball/bot and the orientation on the
�eld. For our own bots internal data (e.g. state of the kicker module) should be
regarded. According to all these variables every situation is a new situation. This



Fig. 4: Information �ow in the central software Sumatra

leads to the point that the agent always has to handle an unknown situation,
therefore it can only use probabilistic behavior, which means that the agent
learns and compares current situations against its experience. With a comparing
approach of the experience a wider range of new situations can be handled,
because it is possible to integrate dynamically learned rules for accepting the
comparison. The learning agent improves its decisions with every executed play.

Design of a learning component The play �nder will be designed as a learning
play �nder to �nd the next plays to execute. Each situation consists of a several
attributes. The agent will have access to the information that was received and
processed for internal usage from SSLVision (named world frame). Additional
information is available for our own bots. The attributes that will a�ect learn-
ing are the states of the current plays, especially of the o�ensive play. Other
performance measures showed not to be as e�ective as the state, because they
are all in�uenced by a delay until the information is available (e.g. the referee
signals and goal counter). Thus the play �nder can not match this information
to a particular play which caused the signal. In contrast, the state of a play is
determined by the play itself, it has its own performance measures and will end
with failed or succeeded.

Type of learning feedback The learning agent will use supervised learning to
build up its knowledge. This concept will help the agent to sort its decisions.
Since the situations have to be compared against the current one and the best
match is chosen, the agent has to know whether this selected situation and its
results was successful or not. Therefore it will save the current situation with
the selected plays (the decision) together with the results of the play.

3.3 Learning Play Finder algorithm

Idea overview The basic process of the play �nder is depicted in �gure 5. The
play �nder gets the current �eld state as input. From the knowledge base all
history states can be received. One history state contains a situation of the �eld,
a play chosen in in that situation and whether it was successful or failed. Based



on this input data, probabilities will be determined for all possible combinations
of plays. The set of plays with the highest score will be chosen. Furthermore, it
can be regarded if the score increased in the near past, which is an indication
that the actual situation is not yet reached but it will be reached in the near
future. The play is then executed and reports its result back to the Play Finder.
This information will be saved in the history together with the �eld situation.

Fig. 5: Overview of the learning Play Finder

Building up the knowledge base The knowledge base is �lled during a game.
Whenever a play is chosen and executed the result is saved in the knowledge
base afterwards. Of course, at the beginning the knowledge base is empty, so
it cannot be used for choosing a play. To have a starting point the plays are
chosen randomly �rst. If no situation from the knowledge base matches to the
current state the plays are chosen randomly. On this way, the play �nder keeps on
learning. If there is an unknown situation the play �nder will try something and
afterwards it is more intelligent because it knows the outcome of the combination
from this situation and the chosen plays. The knowledge base will be persisted
to a database.

Process to choose the plays The implemented play choosing algorithm is trig-
gered for every new world frame. First, it has to be checked if new plays have
to be chosen. Otherwise, the play �nder does nothing. Reasons for the force of a
new decision are: A play has �nished, a referee command occurs, a timer has �n-
ished or when a user request occurs (for testing purposes, not possible in match
mode).

When a new decision is forced the o�ensive play is chosen �rst. This is the
play which cares for the ball. If we have the ball a shooting play or another



o�ensive play is chosen. If we are not in ball possession a play is chosen to get
the ball. Next, the defensive play is chosen. This play has the task to protect the
goal. It contains the role for the keeper. Last, the other bots get support plays.
Figure 6 shows the described method in an overview.

Fig. 6: Selection of plays with di�erent types

The methods to �nd an o�ensive, defensive or support play are the same.
The only di�erence is the set of the considered plays. This method does a pre-
selection of the plays �rst. This means that every play is asked if it can be used
in the current situation. For example, a shooting play would deny this if the
enemy has the ball.

Next, the current �eld stored in the world frame is compared with the suc-
cessful situations of the preselected plays. These situations are saved in the
knowledge base. It is searched for the �eld with the highest similarity to the
current �eld. This indicates that the according play worked quite well in a sit-
uation like this. Next, it is checked if the current situation has a high match in
a failed situation of this play, too. This has two reasons: Perhaps exactly this
situation was already chosen once. For example, if the current �eld was matched
to 90% with a successful situation of a play it sounds like a good play to choose.
However, if there is a 99% match for the same play but in this situation the play
failed it does not sound so well anymore. In this case we already tried this play
in nearly exactly this situation and it failed. Also it is not su�cient to rely only
on the successful executions of the plays. The major part of the plays fail and
there are not so many games. So there will not be a huge amount of successful
executions for each play. It is necessary to get information from the failed ex-
ecutions, too. If there was no high match among the failed situations the play
can be chosen.

Comparing �eld situations A �eld situation is a combination of bots from two
teams and the ball. In order to choose plays according to a similar �eld situa-
tion, those must be comparable. This chapter will outline the approach that is
implemented.



The overall problem when comparing those �elds is, that it must be very
e�cient as lots of �elds have to be compared. Furthermore, �eld situations should
be as unique as possible to avoid accidental mismatches. Also it is not enough
to say if two �eld situations are equal or not, but factor of how equal they are
is required to also choose �eld situations that are similar, but not equal, to the
current situation.

Field raster Sumatra already contains a module that is able to analyze a �eld
raster that represents occupation of teams on the complete �eld[11]. It will span
a dynamic raster over the �eld and allows a value of 0-100 for each cell, where
0 represents full occupation of the one team and 100 full occupation of the
opponent team. A value of 50 indicates equal or no occupation.

Looping over the raster and comparing di�erences between two �eld situa-
tions is quite fast and can be optimized by modifying the size of the raster, so
that performance should not be a great issue with this implementation. Further-
more, the raster will already be calculated in each frame, so that the information
is available without any further computation.

The �eld is compared cell by cell. This means, we start with the upper left
cell on both �eld situations and calculate the di�erence. The di�erences for all
cells will be summed up. The similarity factor is received by the sum divided by
hundred times the number of cells, namely the maximum possible di�erence.

The occupation on the �eld is one of the most important indicators for a
similar �eld situation, so the raster will deliver quite a good data source. How-
ever, special play patterns may not be detected. Also, there is the small chance
of two rather di�erent situations are found to be similar, as matches might be
ambiguous. This is, because it will not make a great di�erence, on which abso-
lute positions the bots will be located on the �eld as at the end, all di�erences
will be summed up.

As this approach is a good starting point, it was chosen for �nal implemen-
tation with the idea of extendability of the raster in later releases.

Further considerations for the future The comparison of �eld situations is a
fundamental part of the overall project. A lot of optimization and alternative
implementations can be done. So from the beginning, we decided to build every-
thing very modular. It is possible to place alternative implementations into the
code without modifying any existing code. For now, however, there is a working
and e�cient implementation that will last for the �rst version of this learning
play �nder.
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