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Abstract. This paper describes the current development status of the
RoboCup Small-Size League robot team NEUIslanders. NEUIslanders SSL
robot soccer system is designed under the RoboCup 2013 SSL rules so as to
participate in RoboCup 2013. This year we have made major changes to our
2012 design, all hardware modules have been redesigned.

1 Introduction

NEUIslanders is an interdisciplinary team of students at the Near East Uni-
versity. The team is currently seeking qualification for RoboCup 2013. Since
last year, it has made significant developments of its team of autonomous
soccer playing robots. This paper will outline the progress in implementation
of the current model of robots.

Our,(NEUIslanders) robot system consists of two major components: the
robot hardware and control the software. The software makes strategic de-
cisions for the robot team by using information about the object positions
from the vision system.

In Hardware section, we give the details of the mechanical parts our
robots. The basic mechanical components of the robots are described in
detail.
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In Software section, we give implementation details of our control soft-
ware. These include the software for decision making system, path finding
and motion control, finally Conclusions are given in the last Section.

2 Hardware

The mechanical designs and parts of our robots are changed 100% this year.
Last year we used three wheeled design due to lack of Maxon motors. This
year we are using four wheels. All of our mechanical parts are manufactured
in high precision CNC machines. The robot diameter is 175 mm and height
of 150 mm.

2.1 Chassis

We manufactured our chassis from plexiglass last year. Since we did not
have any experience we thought the plexiglass chassis will be rigid enough
to play the games. This year we are using 3mm thick 7075 aluminum for
the chassis. Wheel orientation is dramatically effecting the robots speed and
acceleration. After calculations we gure out that 45 degrees at the rear and
33 degrees at the front wheels with respect to the horizontal axis is the best
orientation that ts our robots.

2.2 Omni-Wheels

To improve our performance we have been working hard on our omni wheel
design. For the last 2 years we tried five different omni wheel models with
different diameters. We reduced our wheel diameter from 62mm to 50 mm
this year. The wheel is manufactured from 7075 aluminum.

This year our wheel design consists of three parts. Wheel hub has an
inner canal for the ring to add rollers which are 10 mm in diameter. The are
15 rollers on our omni wheel. The wheel cover is just to cover the inner part
of the wheel. Also last year we used external gear to couple with the pinion
gear on the motors. This year we are using internal gears which are placed
on the back side of the wheel with 72 teeth on them. The pinion which is
going to couple with this inner gear has 20 teeth on them. Both of the gears
are manufactured from brass. This year our gear ratio is also improved from
5:1 to 3.6:1, that’s why our robots are moving faster than the last year.
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Figure 1: Omni-Wheels

2.3 Mid-plate

The mid-plate is important for the general rigidity of the robot. Last year
mid plate is very thin 1 mm thick plexiglass. This year two L shaped 3 mm
thick 6062 aluminum connecting motor mounts each other and the electron-
ical parts are mounted on them.

2.4 Motor Mounts

We used 6062 u-shaped aluminum motor mounts and mounted the motors
inside the u for the last two years. This year we are making a radical change
in our motor mount and our motor mount is I shaped. We are using 3 mm
7075 aluminum for the motor mount and our calculations shows us that the
bending moment is higher. Also to take the center of gravity lower 10% of
the motor is going through a hole in chassis. Also the drive shaft housing
was brass last year, this year we are using a ball bearing placed right in the
aluminum motor mount.

2.5 Kicker

Last year we only had a one kicker which can only chip kick the ball. This
year we are using 2 kickers. Chip kicker has a custom made flat solenoid,
a steel plunger placed in the solenoid and like last years design the plunger
hits a swing which has 45 degrees on the bottom. The other kicker has a

3



round solenoid. The kicker is made of 5 different parts. An e clip placed
on the back to limit the kicker made from aluminum. In the middle only a
very small part is made from steel which is inside the solenoid. The front is
consists of 2 different parts. First an aluminum part is connected to the steel
rod. The front part is manufactured from a flat part 7075 aluminum and it
has a little curvature to center the ball for kicking directly to the target.

3 Software

The control system of the team has 4 major modules which includes, world
tracking module, decision making module, path finding and local obstacle
avoidance module and control interface.

Tracking module is responsible for keeping track of the current state of
the game, besides what vision server sends us, we also keep track of certain
other things such as robot speeds, robot headings, ball speeds and ball head-
ings. These parameters are alter used by the implementations of various
behaviours.

Decision making (DM) module is a behavioural control algorithm that
has a tree structure. Nodes of a behaviour tree operate using certain be-
havioural rules, allowing us to easily design complex parallel behaviours. Its
implementation details are given in section Behaviour Trees.

Once a decision is made to move a robot, path finding module is used to
find quick and feasible solutions in rapidly changing dynamic environment,
using a combination of RRT planner [1] and local obstacle avoidance [4]
ant calculates robot velocities that will guide them through their paths. Its
implementation details are given in section Path Finding.

Finally calculated velocities are sent to the robots using the control in-
terface which either sends commands to the robots via the wireless link or
sends commands to grSim via UDP.

3.1 Behaviour Trees

Our software architecture relies heavily on behaviour trees. [3] [2] Behavior
trees combines a number of AI techniques such as Hierarchical State Ma-
chines, Scheduling, Planning, and Action Execution. Their strength comes
from the fact that it is very easy to see logic, they are fast to execute and
easy to maintain. which makes them suitable for representing complex and
parallel behaviors.

Behavior trees allow us to piece together reusable blocks of code which
can be as simple as looking up a variable in game state to sending a motor
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Figure 2: Software Architecture

command, then the behavior tree is used to control the flow and execution
of these blocks of code.

As its name implies a behavior tree is a tree structure, made up of three
types of nodes, action, decorator and composite. Composite and decorator
nodes are used to control the flow within the three and action nodes are
where we execute code (such as calculating a new path or sending a velocity
command to a robot) they return success or failure and their return value is
then used to decide where to navigate next in the tree.

Selector and sequence nodes (composites) are workhorse internal nodes.
Selector node will try to execute its first child, if it returns success it will
also return success if it fails it will try executing its next child until one of
its children returns success or it runs out of children at which point it will
return failure. This property allows us to choose which behavior to run next.

On the other hand a sequence represents a series of behaviors that we
need to accomplish. A sequence will try to execute all its children from left
to right, if all of its children succeeds sequence will also succeed, if one of its
children fails sequence will stop and return failure.

Finally decorators are nodes with a single child, it modifies the behavior
of the branch in some way such as creating loops in the tree or modifing the
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return value of its children.

Figure 3: Move To Behaviour

Our design uses a hierarchy from higher level behaviours to lower level
behaviours to the lowest level actions. Each level of hierarchy is designed to
focus on accomplishing a particular role. Robots are controlled by composing
lower level behaviours into more complex higher level behaviours.

Currently our low level behaviours include,

• Move to

• Move to ball

• Defend Goal

• Defender

• Shoot & Shoot Goal

• Pass
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• Assistant

Figure 3 shows one of our lower level behaviours move-to which is re-
sponsible for providing move function for other behaviours.

By combining multiple trees we create more complex behaviours, such
as the one shown in 4, which is one of our defensive trees that plays three
robots.

Figure 4: Defensive Game

3.2 Path Finding

In order to get our robots from a to b without colliding with other robots
move-to relies on two techniques, first it will look for a path using a RRT
planner [1] in the case of a path is not found we switch to local obstacle
avoidance [4], which gives the robot the ability to maneuver on the field by
dodging around obstacles. It works by drawing a line from the robot towards
its heading proportional to its speed. Then we check if any any of the robots
on the field intersects with this line, closest robot that intersects with this
line is considered a threat, in order to maneuver around the obstacle two
velocities are calculated one that steers it around the obstacle and another
that applies a breaking force.
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3.3 Motion Control

Robot’s drive system is made up of four omni-wheels mounted at angles,
which allows movement in any direction, at any angle, without rotating
beforehand. For an omni-wheel robot to translate at a certain angle, each
motor needs to go at a certain speed with relation to the others. This is
obtained using the following equation [5], (All the angles of the motor axis
are measured relative to the x direction in the coordinate system of the robot.
Each rotating the robot in counter counterclockwise direction.)

[
v1 v2 v3 v4

]T
=


−sinθ1 cosθ1 1
−sinθ2 cosθ2 1
.. .. ..

−sinθn cosθn 1

× [vx vy RW

]T

Here Vx, Vy, and Rw is the intended direction of travel of the robot
calculated by the DM and V1 V2 V3 and V4 are the individual motor speeds.
Within the software all speeds calculated are in meters

secs , finally individual
motor speeds are converted to rads

secs using the following formula,

ω =
2× v
d

(2)

where,

• ω → angular speed ( rad
sec )

• v → linear speed ( meter
sec )

• d → wheel diameter (meter)

And sent to the robots every 1
60 of a second through the wireless link.

4 Conclusion

In this document, we have shown the current development stage of the
NEUIslanders SSL robot soccer system. We have emphasized the major
changes in our mechanical design and software architecture. Our new design
will enable the system to react quickly to the changes in the game state, as
well as perform more efficiently than the design we have developed in 2012.
The strategy system is currently still under heavy improvements.
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