
Tigers Mannheim
(Team Interacting and Game Evolving Robots)

Team Description for RoboCup 2012

Malte Mauelshagen, Daniel Waigand, Christian Koenig, Steinbrecher Oliver,
Georg Leuschel, Nico Scherer, Manuel Schroeer,Frieder Berthold, Dion Hornig,

Marian Franke, Marius Barthel, Britta Weber

Department of Information Technology, Department of Mechanical Engineering
Baden-Wuerttemberg Cooperative State University,

Coblitzallee 1-9, 68163 Mannheim, Germany
management@tigers-mannheim.de
http://www.tigers-mannheim.de

Abstract. This paper presents a brief technical overview of the main
systems of Tigers Mannheim, a Small Size League (SSL) Team intend-
ing to participate in RoboCup 2012 in Mexico City. First there is a
description of our hardware system followed by our software modules.
Furthermore an outlook displays the upcoming goals of our team.

1 Introduction

Tigers (Team Interacting and Game Evolving Robots) Mannheim is a team of
students of the Cooperative State University Baden-Wuerttemberg Mannheim.
Last year we had a good start at the Robocup 2011 in Istanbul and were able
to proof the robustness of our system.
Due to the fact that we decided to publish all our available source code and
documentation of our system after RoboCup 2012, this paper should give an
overview of our system only. Everyone who is interested in special parts of our
soft- or hardware may freely download it from our website after the tournament.
We believe that the most benefit is given to the community when all parts of
our system can be accessed by everyone who is interested in.
This paper is divided into three sections. New changes of the hardware are
explained first. Next, an overview of our main control software is given while a
few parts will be described more detailed. At last there is an outlook on what
we will be able to finish until RoboCup 2012 and also on some long term goals
for the next years.

2 Tigers Mannheim

2 Hardware

2.1 Mechanical System

Drive The omnidirectional drive of the robot consists of four wheels with twenty
transverse rollers (assembly of aluminum rim and a nitrile rubber tyre) that are
driven by one Maxon 30W EC-drive each. Torque is converted by steel gear-
wheels with a gear ratio of about 3.33. Thus the drive is optimized for high
acceleration (top speed is reached in less than one second even if acceleration
starts while the robot stands still) and little residual heat build-up inside the
motors. Nevertheless, the robot achieves a top speed of approximately 3 m/s
when driving forward.

Kicking Device Due to the ambition of continuous improvement we develop a
new kicking device which works with a crank gear. An electro motor starts the
crank. A crankshaft relays the kick to the ram. This ram is guided by tracks
whereby a certain movement is assured.

Fig. 1. New kicker approach

The new construction is supposed to be completed in 2012 and might be assem-
bled in the bots for the Robocup in Mexico City (2012) when tests have shown
the robustness of the new approach.

TDP Robocup 2012 3

Case The outer case of the robot is made of a combination of metal panels and
leather. This elastic material assures even with high impacts no damage in the
housing and is still able to save the electronic parts inside the bot. Leather is
a completely new idea and a good opportunity as a substitute for all kinds of
plastic materials.

– External diameter:180,00 mm
– Height: 148,00 mm
– Maximum ball coverage: 15,29

3 Software

3.1 Overview

An important decision we made at the beginning of our project was to write all
software, not running on the robot, using the JAVA programming language. Due
to the simple structure and its compatibility, it is easier to work with within a
big development team. At the moment there are no major performance losses or
other disadvantages compared to C++, referred to the SSL environment.

Fig. 2. Sumatra Architecture and its connection to the periphery

Our software system consists mainly of two programs: the simulator Tigers Cage
Simulator and the main control software Sumatra. The simulator has been pro-
grammed for testing our Artificial Intelligence (AI) in a virtual environment.

4 Tigers Mannheim

This part is described in section 3.2 in more detail.
Sumatra interacts directly with the SSL environment. The software is responsi-
ble for getting the current image-data from SSL-vision, reacting to the newest
referee instructions, calculating the best strategy for the next interactions for
the robots and sending the resulting commands to the robots. Of course, Suma-
tra can also interact with our Simulator, so no real environment is needed. In
Figure 2 there is an overview concerning the SSL environment and the internal
structure of Sumatra.

MoveInCircle Skill A Skill is a set of basic robot commands to fullfil a special
purpose, for example move to a destination or turn around the ball. They are
necessary to improve the robot handling within the AI.
The MoveInCircle Skill enables the robot to move on a circular trajectory. Gen-
erally, commanding a move is again as simple as sending a TigerMotorMove-
Command. The Command takes a vector as parameter. The direction of the
vector determines the direction of the move, the length corresponds to the ve-
locity.
The difficulty here is, that with the basic TigerMotorMove only straight moves
are possible. Curved trajectories need to be approximated with a reasonable
amount of straight parts. This is done on Skill level. Since the aiming capability
requires only circular movements, the development of a generic “move-on-curve”
ability which might be based upon splines, was delayed.
The Skill uses the following algorithm to approximate a circular trajectory. The
goal is in each cycle to calculate a point on the circle (B′) towards the robot (B)
shall move. The circle is defined by the center (C) and the radius (|cb|), which
are both input parameters. See Figure 3 for an overview.

v
O

C

b

cb

c
 'cb

'bb

α

B
B‘

Fig. 3. How to move on a circular trajectory

TDP Robocup 2012 5

Another important input parameter is the target angle from which the arc the
bot shall travel is calculated. α defines the current robot position (in reference
to the center and the x-axis) whereas the target position is defined by β. (See
figure 4)

v
C

'cb

α
β

cb

B

B‘

Fig. 4. robot and target position

The arc can now be calculated with

arc = β − α (1)

A positive value indicates a counter-clockwise movement and vice versa. The
robot will always automatically take the shorter distance.

The next point on the circle the bot shall move to is now calculated with a
scaling and rotation of the vector cb. The vector is scaled to the constant passed
in aiming distance to ensure that the robot keeps that distance. The new vector
is calculated as follows (Figure 3):

cb′ = Rα · cb (2)

where

Rz, α =

(
cosα − sinα
sinα cosα

)
(3)

The rotation angle α determines the smoothness of the approximation. Of course
it is also dependent on the radius, but since the skill is currently used just for

6 Tigers Mannheim

aiming purpose, the angle is adapted to that scenario. The default value which
accomplished good results is π/18 = 10 deg. If the arc is smaller than that default
step size, the rotation is performed with α = arc.

Now everything is known to calculate the new move vector:

bb′ = cb′ − cb (4)

Now, that vector is still in global coordinates and needs to be transformed. The
final move vector (m) that gets commanded to the robot is obtained from a
simple rotation:

m′ = Rβ ∗mβ =
π

2
− α (5)

The final operation that needs to take place before the move vector can be
transferred to the robot is the application of the desired velocity. Velocity is rep-
resented by the length of the move vector. Thus a simple scaling of the vector
applies the velocity.
The velocity is a linear function of the length of the arc the bot shall travel,
where the slope is determined by the maximum allowed velocity and the dis-
tance it takes to decelerate. Both parameters are variable and dependent on the
environment (eg. friction).

3.2 Module: Artificial Intelligence

Our AI uses still the same approach then in the year 2011. For a better under-
standing of the following play description important terms are explained. The
internally used data structures are the Play, Role and Condition. A Play defines
what the overall-plan for the next seconds is, e.g. an indirect shot. It contains
a set of Roles, not necessarily a Role for every robot, since there can be more
than one Play active at a time. A Role is a specific task within a Play and is
mapped to our robots 1:1. For example there are two Roles, one that passes and
one that shoots. A Role is defined by its Conditions. Such a Condition may be
a LookAt condition, meaning that the owner of the Role has to aim at a specific
point, or Destination condition, defining a destination for the owner. Each Role
tries to fulfill its set of Conditions as good as possible.

Defense play with 1 robot Due to the official conditions of a Small Size
League participation, a qualification video must be shown. This video shall prove

TDP Robocup 2012 7

that the team’s robots are able to take part in an active game. The first require-
ment is as follows:

a) One or more robots competing against an active goalkeeper.

To accomplish this requirement, a KeeperSoloPlay with an associate KeeperSolo-
Role was programmed. According to the official rules, no field player is allowed
to move in the goal area. To prevent interference with other robots, the goal-
keeper’s movement shall be limited to this area.
A first idea of positioning the goalkeeper was a circle around the goal’s central
point. The radius was set to the distance between the goal line and the for-
ward border of the goal area. Possible target points are thereby defined by the
resulting semicircle.

Fig. 5. positioning of the keeper

As shown in picture 5, the point of intersection of the line goal’s central point
(m) - ball position (b) and the semicircle sets the defense position T of the
goalkeeper, calculated as follows:

8 Tigers Mannheim

T = m +
r

|b−m|
∗ (b−m) (6)

In addition to this, the robot’s front is supposed to always be directed to the
ball’s position. In doing so, catched balls are easier to control. All angles beneath
the x-axis are negativ, while above positive. Therefor, all angles lie between [
−π ; π]. Regarding picture 5, the angle of orientation is −φ here.
Two skills are belonging to the KeeperSoloRole: A MoveToXY-skill with cor-
responding target position parameter and a Rotate-skill with orientation angle.
The pathfinding and the parallel processing of the skills are taken care of by the
skill system, the high-level programmer need not to mind that.

Defense play with 3 robots One defensive play to keep our goal clean is the
KeeperPlus2DefenderPlay. It controls the keeper and two field players to block
our goal. Thereby the keeper role is used as a master to correctly synchronize the
three robots. The defender roles only keep track of the keeper and position the
defenders accordingly. The keeper role of KeeperSoloPlay could be used but for
organisational reasons, a new keeper role is used. Additionally, new approaches
for a central defending goalkeeper can be implemented. Instead of using the line
between central goal point and the ball position, the angle bisector between the
left goalpost-to-ball-line and right goalpost-to-ball-line is considered. This im-
plementation allows a more effective positioning for the keeper, especially from
side attacks. For easy computations of the angle a simple geometric attribute of
a triangle is used:

When the bisector of an angle divides the opposite side, the proportions of these
parts are accordingly to the lengths of their adjoining sides. Thus equation 7 is
true for 8.

a1

a2
=
s1

s2
(7)

s1 =
a1

a1 + a2
∗ stotal (8)

The intersection S of the bisector angle w with the goal line is the new origin for
the positioning of the goal keeper. The directional vector of the bisector angle
with an adjusted length is used to get the desired point T . To get the positions
for the two defenders, the keeper’s position is used as the starting point. For both
defenders the vectors moved towards the ball and then orthogonal to the bisector
angle, once to the left and once to the right. The length should be implemented
dynamically to adapt to the current game.

TDP Robocup 2012 9

Fig. 6. Positioning of the keeper with two defenders

Defense play with 2 robots The analysis of the gameplay of other teams
shows that goals are often a result of a takeover from the opposing team by
long range shots. Due to the high ball-speed one keeper often has no time left
to block the ballway. As a countermeasure, one defense player should stay with
the keeper while the other robots are attacking.
In this case the keeper should not try to block centrally, but substitute the
other defense player. Like in the play before, the player positions will be de-
fined through an angle bisector (W). The positions of the bots are asymmetrical
because keeper and defense bot must be on different sides of the goal line. To
obtain high flexibility, the side at which a bot stays will be defined at runtime.
Therefore the play checks through the worldframe which bot is more on the left
side and chooses the side accordingly.

3.3 Tactical field assessment using grid analysis

We are doing a tactical analysis of the whole field to determine the positions of
all bots and to mark good and bad positions on the field to pass or to move a bot
to. Therefore the whole field is divided into several rectangles. Each rectangle
is evaluated by its own, the quantity of rows and columns can be configured
in a separate xml-file. Each rectangle gets a value to estimate whether it is a

10 Tigers Mannheim

good point to pass the ball or move the bot to or not. Thus a few algorithms to
evaluate the rectangles have been tested and are now delineated in 3.4.
The AI module prefers moves and/or passes via positions that our own bots can
easily reach. To avoid ball interceptions, enemy bots should not to be in close
range to avoid interceptions of the intended moves. The tactical analysis of the
field shall help to choose a play or a tactic and to accomplish this play.

Rectangle quality The rating of the rectangles is determined by the distance
from their center to our own bot or to an enemy bot. Low values represent a
good rectangle for our team (own bot is closer to a rectangle than an enemy bot)
while a high value shows the opponent. There the rectangle is even occupied by
an enemy bot or it can reach the rectangle faster than our bots could do. To rate
the rectangles, a few algorithms have been implemented, tested and compared.
They are described below.

3.4 Rating the rectangles

Fig. 7. Gaussian Fieldraster

Bot position, moving direction
and speed A simple approach
is to iterate over all bots and
check if they are currently in-
side the rectangle. For each bot
found in the rectangle the rat-
ing is adjusted. The rating in-
creases for each enemy bot in
the rectangle and diminishes for
each own bot. This approach can
be modified to pay attention to
the moving vector and speed of
the bots. Considering fast speed
and direction changes of the bots
the ratings provided by this algo-
rithm are not significant. Therefore
other algorithms have been devel-
oped.

TDP Robocup 2012 11

Gaussian distribution This algorithm iterates over every bot and calculates
the distance between the center of the rectangle and a bot, like the one mentioned
in 3.4. The main difference lies in the following fact: The distance of a bot to
the center of the rectangle is divided by the longer side of the rectangle to get
a scaled value. If this scaled value exceeds a certain determined value, the bot
is considered to be unimportant for the current reviewed rectangle, it is too far
away to have an impact. Otherwise a Gaussian distribution for N(0,2) is being
created. Attention should be paid to the especially therefore scaled value, which
is needed because the result of this operation approaches zero for larger values.
To obtain even better values, the result is multiplied with a special factor, the
TigerFactor. The TigerFactor stresses out areas that are occupied by own bots
with no enemy bots in range and the other way round. The TigerFactor gets the
value 5 at the beginning and is reduced by every enemy bot found in a radius
around the rectangle. If an enemy bot is next to a certain rectangle, the value of
the TigerFactor for this rectangle is set to 1. This implies that all fields next to
an enemy bot have a bad rating. A result of this calculation is shown in figure
7.

Fig. 8. Fieldraster using bot distances

Bot distances This approach deter-
mines the own and the enemy bots
with the smallest distance to a rectan-
gle. The difference between these two
distances, scaled per dividing the dis-
tance by the longer side of the rect-
angle (refer to chapter 3.4) and mul-
tiplied with a correction factor is be-
ing added to an initial value of a rect-
angle rating. Free ways for own bots
can be identified with this algorithm
in contrast to the algorithm described
in chapter 3.4. This approach provides
a more consistent view of the field and
gives best results for our team. See fig-
ure 8 for an illustration of this algo-
rithm.

12 Tigers Mannheim

Realtime considerations The tactical field assessment can create a lot of
workloads for the AI system. To maintain good results from the tactical field
assessment, there is no need to update all rectangles in every AI loop. The loop
frequency of the AI system is usually a lot higher than notable changes on the
field occur, so it does not make a huge difference if a rectangle gets updated every
third or fourth AI loop. Anyway, rating calculation did not create a notable delay
in our system.

4 Prospect

Our qualification video features the system at the version of January 2012. After
the tournament in Mexico all available documentations and source codes will be
published on our website, so that other teams can take advantage of our work.
Due to the fact that a lot of members of our current team will graduate this
year, a new team (which already exists) will take over this project. Besides the
usual SSL work, they also will take a look on an autonomous referee robot and
an automated camera calibration of the SSL Vision for the SSL.

References

1. Robocup Small Size League Homepage, http://small-size.informatik.uni-
bremen.de/robocup2012:qualification

2. Waigand, D., Berthold, G.: Cooperative shoot and pass behaviour of mobile robots
in the context of the TIGERS-Mannheim SSL Robocup-project (2011) http://tigers-
mannheim.de/index.php/en/download/category/5-studys-en

3. Koenig, C., et al.: Articial Intelligence - Overall Documentation(2011) http://tigers-
mannheim.de/index.php/en/download/category/5-studys-en

4. Mauelshagen, M.: Entwicklung und Implementierung defensiver Spielstrategien
fuer das RoboCup-Projekt des Teams Tigers Mannheim(2011) http://tigers-
mannheim.de/index.php/en/download/category/5-studys-en

5. Steinbrecher, O., Birkenkampf, P.: Taktische Spielfeldanalyse im
Robocup mittels Rasterung des Spielfelds (2012) http://tigers-
mannheim.de/index.php/en/download/category/5-studys-en

