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Abstract. This paper details the 2010 design of UBC’s Small Size League team,
to be entered at Robocup 2010 in Singapore. The focus this year was mainly on
addressing the mechanical and electrical weaknesses in the robot from last year,
and building on the existing artificial intelligence to implement new behaviours
and features.

1 Mechanical Design

The maximum dimensions for this year’s robot can be found below in Table 1.

Table 1: Maximum Robot Dimensions

148 mm Maximum Height
178 mm Maximum Diameter

19% Maximum Ball Coverage

1.1 Drivetrain

The robots designed this year consist of 4 omni-directional wheels. The two front
wheels are separated with an angle of 114 degrees while the back wheels are 90 de-
grees apart. This configuration is based on a simulation model which allows the robot
to move faster in the lateral direction while still obtaining sufficient forward velocity.

This year’s motors have also changed from four Mabuchi brushed DC motors to
30 watt Maxon brushless motors due to size constraints and higher performance pa-
rameters. The drivetrain uses a gear ratio of 2:7 to increase torque from the motor. An
external encoder is used to measure the speed of the wheel instead of build in hall
sensors, to obtain higher resolution.

The wheels used this year are modified from the set of wheels manufactured by
an Iranian company to fit into our mechanical design. They are 45mm in diameter and
mostly composed of aluminum. O-rings are used for each of the rollers to obtain better
traction between the wheel and the field surface.



Fig. 1: 2010 Drivetrain Design

1.2 Kicking System

In 2009, our robots’ kicking systems did not kick the ball with satisfactory speed, aver-
aging between 1.5 and 2 m/s. The driving solenoids were charged directly by the main
15 volt battery at low current, with a simple kicking mechanism that included much
friction.

For the 2010 robots, the kicking system was redesigned, but with the same principle
of operation (using solenoids to power the kicker). The new system includes a kicker as
well as a fixed angle chipper, which use different solenoids but the same power source.
Measures were made to increase the number of ampere turns, reduce the friction of
the system, and maximize the stroke length of the solenoid. The kicker and chipper
system use off-the-shelf solenoids with plans to develop custom wound solenoids to
save space. The kicking system is able to kick at a speed of 8 m/s currently with further
improvements being made, and the chipping system is still undergoing testing.

Both systems are driven using capacitors that are charged to high voltages (250
V) using a boost converter circuit. Using this boost converter circuit, the capacitors
are able to quickly charge so that rapid kicking can be achieved. The boost converter
system operates as a stand alone system whose function is controlled by the main logic
circuit board, but is optically isolated to provide protection from the high voltages. The
solenoids are connected to the capacitors through power mosfets so that variable speed
kicking can be achieved through pulse width modulation. This also allows the distance
the ball is chipped to be varied at game time.



1.3 Dribbling System

The 2010 dribbler design aims to improve on every facet of its performance over the
2009 design. To do so, our research pointed to the need for a damping mechanism be-
yond a soft roller material, and also a higher performance motor to improve on backspin
and torque. This year’s design uses a MAXON EC-16 brushless DC motor to provide
a nominal 8000rpm on the roller. Our test has shown that this motor is able to sustain
stationary dribbling as well as provide sufficient back spin to achieve reverse passing
techniques if desired.

A new polyurethane roller is used to increase the grip of the dribbling system on
the ball and also to improve on the damping capabilities. Several durometer hardness
parameters were tested for polyurethane and our results support A25 shore polyurethane
material to be the most suitable candidate. Furthermore, a hinged dribbler design is
being used in conjunction with damping foam to facilitate pass reception. Continual
testing on the performance of the dribbler is necessary to further determine the required
material to properly dampen the dribbler for pass reception.

In the meantime, the mechanical system is designed with modularity in mind to
allow for future tuning.

Fig. 2: Dribbler



2 Electronics

2.1 Logic

Our redesign of robots from 2009 to 2010 includes a completely new electrical subsys-
tem, designed from scratch in concert with the mechanical changes. In 2009, a Wiring
board (a close relative of the Arduino line of boards) containing an AVR microcon-
troller was used for all on-board control tasks. In 2010, we have replaced this with a
Xilinx XC3S50A FPGA, allowing the task of reading optical encoders on the drive
shafts to be brought on-board rather than being performed by auxiliary hardware. Since
the XC3S50A does not have any analogue-to-digital converters on board, a Microchip
PIC18F4550 is included on the board to take analogue readings and transmit them to
the FPGA by SPI. The PIC18F4550 is also attached to the radio communication hard-
ware and the Flash memory that holds the FPGA’s configuration, allowing new FPGA
bitstreams to be sent wirelessly to the robot even if the bitstream already present on
the robot is malfunctioning and cannot communicate wirelessly (uploading a complete
bitstream from the host computer to a robot takes around fifteen seconds).

2.2 Motor Control

In 2009, the drive motors were brushed-type DC motors and were driven by prebuilt
H-bridge modules plugged into the main circuit board, and the dribbler motor was also
a brushed DC motor but, being unidirectional, was powered by a single MOSFET on
the main circuit board. In 2010, we have replaced all five motors with brushless DC
motors from Maxon Motor. To control these motors, we are using the MC33035 motor
controller chip. Five MC33035s and associated phase-driver MOSFETs are collected
on a “motor controller board”, which receives direction and power information from
the main board and sends fault and speed information back to the main board over a
ribbon cable.

2.3 Power

In 2009, the robot was powered with two separate batteries, a 15V battery for the motors
and a separate 11V battery for the logic, stepped down with a 7805 linear regulator. In
2010, the 11V battery has been removed and all robot hardware is powered by the
15V battery. To resolve thermal issues around stepping 15V down to 5V, the 7805 was
replaced with a 78ST105 switching regulator. 3.3V and 1.2V rails needed by the logic
are then generated by low-dropout linear regulators.

In 2009, the kicker solenoid was powered directly from the 15V battery through a
MOSFET located on a separate circuit board. In 2010, the kicker (and new chipper)
solenoids will be powered from a capacitor charged to a high voltage by an LT3751
charger chip, and this circuit will be on the same board as the logic components (FPGA,
PIC18F4550, Flash memory, XBee, and so on). Use of the LT3751 was attempted in
2009, but no working circuit was produced.



2.4 Communication

For communication with the host computer, XBee 802.15.4 communication modules
from Digi International were used in 2009, and as no problems were encountered around
communication, the same modules are being used in 2010. However, in 2010, the baud
rate of the serial lines on the XBee modules has been raised from 56kbps to 250kbps
(with an unintuitive increase in reliability, since the modules are not actually capable
of producing a bit clock of exactly 57600Hz but can create one of 250000Hz); also,
some of the auxiliary remotely-controllable digital output lines are being used to com-
municate with the PIC18F4550 (during normal operation, the PIC18F4550 ignores the
serial lines to and from the XBee and allows the FPGA to perform all communication)
in order to signal an entry to bootloader mode, where new FPGA bitstreams can be up-
loaded. Once we have a full fleet’s worth of circuit boards assembled, we are planning
to re-evaluate our choice of communication protocol for better performance: in 2009,
we simply sent each robot a unicast radio packet at a regular frequency containing the
relevant fields; for 2010, we are considering instead using a broadcast packet for bulk
data transfer and allocating each robot a semi-permanent “slot” in the packet’s payload
area, thus amortizing the cost of a clear-channel assessment, radio preamble, and 802.15
packet header across the number of robots on the field (unicast packets would still be
used for time-insensitive tasks such as bootloading, discovering robots, and allocating
slots).

3 Control

The control system for the 2010 class of robots will be substantially similar to our
previous year’s robots, with some notable exceptions with regards to wheel slip and
the overall positional control system. The changes in this year’s robot are designed
to address deficiencies last year. The most notable two of these, were the inability to
accelerate at any real rate without losing control, and the inability to travel in the lateral
direction. This system is broken down into two major control loops, the first, which
controls the individual wheel speeds and exists on board each robot and, the second,
which provide AI level positioning control for each of the robots.

The wheel speeds are each controlled independently receiving set points from the AI
off field. Each wheel controller receives speed feedback from optical encoders mounted
on the motors, and provides a single control output which is then sent via PWM to
the corresponding motor controller. The controller itself will be tuned using Q design
and will implement an arbitrary 2nd order system as opposed to a rigid PID controller
which is restricted to a single form and may not provide the desired control action. The
new wheels in 2010 should allow for more torque before wheel slip occurs thus allow-
ing the controller performance to be tuned higher. This improvement should provide a
more idealized response model from the overall robot. Additionally, the computations
described in [1] are performed to ensure that the wheel torque never rises above the slip
condition, and to ensure that the force vector produced by the four wheels lies within
the subspace that will produce robot motion thus minimizing unnecessary current draw.

The AI level of control will differ significantly from 2009. Last year, a simple 2nd
order controller was used to perform the overall positional control of the robots. Receiv-



ing the absolute position and orientation of each robot from the vision system this was
compared to the desired robot position, a set point provided by the strategies portion
of the AI, to provide an error signal to a simple linear controller. This year, however,
we acknowledge that the velocity profile of the robot is not circular and therefore the
control system is nonlinear. As such, a new non-linear controller will be placed into the
AI in order to control the final position of the robot. This controller may be based on
a fuzzy logic system, or similar scheme developed in parallel, with the decision to be
made based on final robot performance under these systems. The set points produced
by this controller will be rotated onto the robots coordinate frame, and then transformed
into motor set points to be sent out over the wireless communication link.

In conclusion, the overall structure of the system will remain consistent with last
year’s robots; however, improvements have been made to address last year’s weak-
nesses. Updates to the force vector control should allow for prevent wheel slip thus
improving controllability. Likewise up dates to the positional controller should ensure
that reasonable set points are always being provided to the robots thus preventing wind-
up and saturation issues in the robot.

4 Software
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Fig. 3: Software Components

We are using the same high level design for the AI as we used in 2009. However,
we decided to reimplement much of the software from scratch in order to improve upon



Fig. 4: Simulator

code organization and implementation details. The different software components are
visualized in figure 3. The arrows represent the flow of execution and the grey boxes
represent software modules. The software can be run in either a simulation mode or a
mode for normal play. The image recognition module performs processing on the data
output by ssl-vision and updates the positions of the ball and robots accordingly. The
artificial intelligence module outputs the desired actions of the robots. These actions
include destination positions, orientation, dribbler velocity, and kicker power. The robot
controller module converts desired orientation and position into desired velocities. In
addition to the components in figure 3, our software contains additional features such
as a 2D visualizer to examine the current state of the game and a graphical user interface
to control various configuration options (figure 4).

We used a simulator to allow development on the AI to occur without requiring
the use of physical robots. The simulator receives input from the robot controller and
directly updates the positions of the ball and robots on the field. The simulator uses
the open source ODE physics engine. The simulator can be run in either real-time or
fast mode. The real-time mode is useful for watching behaviours while the fast mode
is useful for quickly recording statistics of various benchmarks or game performance.
For example, the fast mode can be useful for quickly testing whether a change in the
AI resulted in an increase in the scoring performance (when matched up against a dif-
ferent strategy). In addition, we have added functionality to allow refbox signals to be
generated automatically so that a game can be simulated without human interaction.
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Fig. 5: AI layers

The design of the AI is based on hierarchical control. Designing the AI with a hi-
erarchy of different levels of abstraction offers many advantages over other methods of
implementation. Each level of the hierarchy can be designed to focus on accomplishing
a particular role with the assumption that the other layers that it interacts with accom-
plish their roles as well. For example, the layer in charge of controlling the global
team strategy can assign lower level behaviours to robots without knowledge of how
the behaviours are actually implemented. This hierarchy offers a clear advantage over
other task oriented approaches by modularizing the different levels of abstraction. Im-
plementing these independent modules is much simpler than tackling an entire task at
once because each module represents a small part of the global problem. Another ad-
vantage of using a hierarchy is that from a software engineering perspective it makes
the system more extensible and easier to understand. For example, instead of having to
completely rewrite the code in order to create a new strategy, only a single layer at the
top of the hierarchy would need to be modified. The different layers of the AI are visu-
alized in figure 5. The arrows represent the flow of execution. The top layers perform
higher level team organization while the bottom layers perform lower level behaviours
specific to a player.
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