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Abstract. This paper describes the current technical state of Parsian
small size soccer robots team for participating in RoboCup 2010 compe-
titions. The robots’ hardware as well as the developed software tools will
be discussed in detail. It also introduces some new ideas for improving
hardware and software of a small size soccer robots team.

1 Introduction

“Parsian” SSL team is a research project, started in 2005, coordinated by Elec-
trical Engineering Department of Amirkabir University of Technology. Parsian
has been active in field of small size soccer robots since then. Our SSL team has
been qualified for RoboCup competitions since 2006 and participated in 2008
and 2009 competitions.

Fig. 1. Our Robots



Fig. 2. The robot’s mechanical design

After RoboCup 2008 competitions we started a total redesign both in robots’
hardware and software. Currently we are working to improve our robot’s mechan-
ical and electrical systems as well as developing new control/AT algorithms and
software utilities.

In this paper we first introduce our robots’ hardware. Our mechanical design
will be discussed In section 2.1 and our electrical design will be covered in section
2.2. Our vision system will be discussed briefly in section 3. Section 4 explains
our software framework including high level planning algorithm, low level control
algorithms and our new 3D simulator.

2 The Robot Hardware

2.1 Mechanical Design

In this section we introduce our new mechanical design which we have been
working on since early 2009. Our new design was used in Robocup 2009 for
the first time, however it suffered from some minor issues. Currently we are
working to improve the design as well as optimizing it. Our new design (Figure
2) has been developed using various CAD/CAM and real-time simulation tools.
Most of our robot’s mechanical parts are produced using computer numerical
controlled machine tools to increase precision. Our robot’s physical properties
are as follows:

Robot Diameter 180 mm
Robot Height 149 mm
Ball Coverage 19 %
Max Linear Velocity 2.8 m/s
Weight 3.6 kg



Fig. 3. (a) The driving system in details (b) The dribbling system

Driving System Our robot is a four wheel omni directional robot. Each wheel
is driven by a Maxon EC45 flat 30 watts motor attached to a Maxon GS45 1:4.7
gear head. The wheel itself is a 68mm diameter omni wheel with 20 sub-wheels.
The wheel is made of aluminum. A digital tachometer is attached to each motor
to provide speed feedback. Figure 3(a) shows the driving system in detail.

One of the problems we faced in our initial design of the robots was that the
robots were unable to move left or right in a straight line even in low speeds.
After simulation and analysis, the high friction between the sub-wheels and the
ground found to be the reason. The problem solved by increasing the number
and diameter of sub-wheels.

The Main Structure The robot’s main structure is made of aluminum alloy
7075 T6 to keep the robot light and robust. To reinforce sensitive parts like
dribbling system’s holders, we used CK45 steel. As our driving mechanism is a
long structure, it was a design challenge to place four driving system and kicking
devices on the chassis and also not exceeding valid dimensions. We accomplished
this task by optimizing the dimensions of the kicking solenoids and motor hold-
ers. We also designed a coupling system to connect the wheels to the motors
directly. To prevent short circuit between electrical components and to reduce
erosions, all parts are harden anodized.

Direct/Chip Kick We optimized our direct kicking system this year to con-
sume less space without loosing its efficiency. A cylindrical solenoid surrounding
a plunger builds up the whole kicking system. The plunger itself consists of a
magnetic bar, a paramagnetic bar and the plunger head. The magnetic and the
paramagnetic bars are both 10mm rods which are thread fastened. The bars’ size
and weight are optimized to transfer maximum energy to the ball. The challenge
we faced here was the shape of the plunger head which lacked sufficient strength
during power transmission to the ball. We are still working to reach the optimal
shape.



The chip kicking system is similar to direct kicking except that it uses a flat
solenoid with polyamide core. A special mechanism designed to transduce the
linear motion to rotational motion. This system can throw the ball up to 60cm
height and 5-6m long.

Dribbling and Suspension System In our current design we use Maxon
A-Max22 DC motors (6 Watts) with GP22 1:3.8 gear heads for spinning the
ball. With help of two external gears with ratio of 2.5:1 the spinner can reach
the speed of 4500 RPM. The mentioned actuator is not powerful enough for a
successful ball manipulation, so we are currently working on a new design to
use Maxon EC16 motors (15 Watts). In order to effectively receive passes and
intercept moving balls we designed a special kind of suspension system for the
dribbling device. The whole system is depicted in figure 3(b).

2.2 Electrical Design

The electrical system consists of two electronic boards (the main board the kick
module), infrared ball detectors, capacitors and batteries.

| LCD Interface | | RS232 Interface

Y )

XBee .
Module

Setting Buttons

Main Controller
(AVR)

Ball Detector

Kick
Module

A

il

Power Monitor

!

CPLD

BLDC Sequence
Motor Generator Hall Sensors &

Driver Encoder

Quadrature Decoder

Fig. 4. The electrical system’s diagram

The main board performs the BLDC! motor driving and control and handles
wireless communication. The kick module is for charging the capacitors and
discharging them into kicking device’s solenoids. Each robot is powered by three

! Brushless DC



2-Cell high power 2000mAH Lithium Polymer batteries. The electrical system’s
diagram is shown in figure 4.

Wireless Communication The command packets sent by the remote host PC
is received by Digi’s XBee OEM RF Module. The XBee modules are designed
to meet IEEE 802.15.4 (ZigBee) standard. They consume very low power and
operate within the 2.4 GHZ frequency band. This module is fast and easy to
configure. It can communicate at baud rates up to 115200bps.

The received command packets are 30 bytes long byte streams. The packet
contains the desired velocity for each motor, the kick/chip desired speed and
permission and spinner activation command. The XBee module operates in half
duplex mode. Once in a second this module sends back some data such as bat-
teries’ and motors’ status back to remote host PC.

Motor Driver The BLDC driver unit consists of a XC95144CPLD as a main
controller and four power driver stage. The CPLD receives the hall sensors feed-
back and generates the proper control sequence for each motor. Six FDS4410
N-Channel Power MOSFETSs driven by IR2130 three phase drivers form the
power driver stage for each motor.

PID Speed Control The CPLD unit also counts the quadrature encoder sig-
nals and calculates each motor speed. This data is sent to the board’s main
processing unit which is an ATMEGA2560 micro-controller. The desired veloc-
ity command received from the XBee module and the current motor speed are fed
into a soft PID controller to generate the control commands for each motor.The
resulting commands are sent back to the CPLD unit.

Kick Module Our kick module has been under active development since last
year. The current design is based on a DC-DC Boost Convertor circuit. It can
charge two 2200uF 100V capacitors (connected in parallels) up to 195 volts in
5.5 seconds. To discharge the stored energy a MOSFET high power switch with
a RCD snubber is used.

3 Vision System

Our vision hardware consists of two AVT Marlin F046C cameras which can
capture images with resolution of 780x580 pixels at speed of 45fps. We use these
cameras in YUV color space mode with ROI enabled. For a wider view of the
field we use 4.5mm wide lenses. Images captured from cameras are transmitted
through firewire cables to IEEE1394 PCl-cards and then fed into to the SSL
shared vision system’s software (SSL-Vision) [1] for processing.



4 Planner

An overview of our planner is demonstrated in figure 5. As shown, the second
thread or the decision making thread is executed independently from the World
Model update thread, this is mostly because the vision packets from each cam-
era are not received simultaneously. Using the information abstracted in World
Model, the execution starts from the coach layer and hierarchically goes down to
low level skills. At the end of each cycle a packet containing robots’ commands
is transmitted through wireless communication.
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Fig. 5. Overview of our AI architecture

The planner framework is written in C++ using Qt framework[2]. This soft-
ware runs on an Ubuntu Linux based PC (Figure 7(a)). Through the rest of this
section, we will describe some of researches and achievements implemented in
our planning and control layer.



4.1 High Level Planning

At the beginning of each planning cycle, the coach layer chooses one of the
predefined tactics based on current game state and referee’s signal. This tactic
is then broken down into some Roles which will be then assigned to agents. Our
approach is mostly motivated by STP framework [3].

Choosing a tactic (i.e heavy defend, 3 agent attack, ... ) is based on its success
rate. Each tactic’s success rate is evaluated using its success/failure after several
executions during the match. One method that can help us optimize selection
weights is “Threshoded Reward” Markov Decision Process (MDP) [4], which we
are currently working to implement it into our framework.

4.2 Motion Planning

A precise, fast and robust robot motion is a task that greatly affects the per-
formance of the whole team. A proper motion planner depends on these three
steps:

— An accurate estimation of position and velocity
— A safe path to move along
— A trajectory planner which considers robot dynamics

In our motion planner, these three steps respectively are correspondent to
Kalman filter, ERRT path planing and Bang Bang trajectory generator.

Kalman Filter As mentioned, in the designed motion planner a Kalman fil-
ter is utilized as the main part of the motion profile predictor, which estimates
the position, velocity and acceleration of the robots and the ball, utilizing some
noisy, delayed measurements. In order to enhance the estimation of our team
robots’ state vector we developed a new motion predictor. The pre-assigned ve-
locity commands (which were generated by the trajectory planner in the previous
sample time) are employed as additional measurements. This improvement leads
to considerable enhancement in the motion predictor.

Path Planing Finding a safe trajectory (free of obstacles) is the first step of
leading a robot to the desired position. After implementing some conventional
path planning algorithms we found out that most of them are not applicable
in field of robot soccer. That is mostly because of the high robots’ speed and
sudden velocity change. We found that Execution extended Rapidly-exploring
Random Trees (ERRT) algorithm has a better performance compared to other
path planners in such conditions [5][6].

This year we improved the ERRT algorithm to perform a better search in
the configuration space and bringing more dynamics into account.

To perform a better search in the configuration space, the step-size (length of
tree’s branches) varies proportionally to the distance between the current state



(node in tree) and the goal state. While generating the path, the more the nodes
are farther from the goal, the bigger the step size would be. As a result the tree
narrows toward the goal state.

To bring more dynamics into the algorithm, the algorithm adds a series of
dummy obstacles in the moving obstacle’s motion direction which causes the tree
not to cross the obstacle’s motion direction. The size of dummy obstacles and
the intra-distances between them varies dynamically with the absolute velocity
of the obstacle. Figure 6 illustrates these modifications.

Fig. 6. ERRT Algorithm, considering dynamics

Trajectory Generator The target specified for the robot by the path planner
section is then fed into a conventional bang-bang trajectory generator. This
planner tries to achieve the most applicable speed and decelerate the robot in
the appropriate time to reach the target in an optimized time. In addition to
above, in the employed trajectory planner, a nonlinear speed controller inside a
boundary around the target is implemented, to reduce and damp the undesired
robots oscillations. The duty of the aforementioned bang-bang trajectory planner
is to generate the desired velocity of the robots, afterward a PD-controller is
employed in order to minimize the navigation error.

Curve Tracking Curve Tracking is a new skill we implemented this year to
make the robot move on a pre-specified curve by keeping its velocity vector
tangent to the curve. The curve is defined by two mathematical functions, x(t)
and y(¢) which specify a point’s coordinations on the curve for a given ¢ value.
As an example z(t) =t , y(t) = t? represents a parabola equation y = z? .



In this skill, robot is forced to keep a specified angle with the curve’s tangent
direction (¢). Moving along the curve, robot should take an angular velocity
proportional to its tangential velocity in order to keep its heading direction
close to ¢.

In this approach, A one dimensional bang bang trajectory generator is em-
ployed on the curved path instead of it’s default path (straight line). Therefore
the curve’s length is needed. This length is calculated using equation 1.

L= / \/1+7(t)2dt (1)

In above equation, r(t) is the vector function which represents the curve.
r’(t) and 7"/ (t) represent the first and second derivations of r(t) respectively.
r(t) = x(t)e +y(t)s (2)
The output of the 1D trajectory generator is the robot tangent velocity (v).
The angular velocity is calculated then from equation 3.

W= — 3

. 3)

In above equation, R is the radius of local circle fitted to the curve. The
radius of this circle is calculated using equation 4.

__ reP
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t is calculated in a way that equation 2 represents the nearest point on the
curve to the robot’s current position. A proportional controller is used to keep
the robot’s position on the curve and adjust its direction if needed. Our curve
tracker supports any analytical function such as polynomials, circles, ellipses,
and cubic splines.

4.3 3D Simulator

This year we designed a brand new 3D dynamic simulator for the field of
RoboCup SSL. This simulator (named “grSim”) has many features which re-
duces the differences between the real dynamic world and the simulated world.

grSim has several new features in comparison with our old simulator [7].
Opposed to the old one where the robots were modeled as solid boxes, grSim
models robots similar to their real physical shape, each robot consists of four
velocity controlled wheels and a kicker. The torques generated by the controllers,
are applied to the wheels and cause the robots to moves.

Similar to real world, there is a friction between the wheels and the ground
surface. Two kinds of friction coefficients are defined for each wheel, tangent and
normal.. By choosing the normal coefficient much lower than the tangent one,
the wheel behaves like a real omni directional wheel. In this way, there’s no need



Fig. 7. (a) A screenshot of our Al-framework (b) Our simulator at the same time

to include sub-wheels in the wheel’s physical model, which decreases the model
complexity and increases the simulation performance.

Some of grSim’s features are listed below.

— A rich graphical user interface that eases robots and ball manipulation

— SSL-Vision compatible localization data output with custom Gaussian noise
and delay

— Realtime configuration using VarTypes[8] library (Physical properties, Net-
work configurations, etc)

— Flexible input layer using XML Based protocol definition

grSim (like our Al framework) is written in C++ using Qt framework and is
currently under active development. We believe that grSim can help other SSL
teams with its rich features. Our plan is to release grSim to public in near future.
Figure 7(b) shows a screenshot of the simulator.
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