
ER-Force 2011 Extended Team Description

Florian Bauer, Michael Bleier, Michael Eischer,
Stefan Friedrich, Adrian Hauck, Philipp Nordhus

Robotic Activities Erlangen e.V.
Pattern Recognition Lab, Department of Computer Science

University of Erlangen-Nuremberg
Martensstr. 3, 91058 Erlangen, Germany

info@robotics-erlangen.de

http://www.er-force.de/

Abstract. This paper presents an overview description of ER-Force, the
RoboCup Small Size League team from Erlangen, Germany. The current
hard- and software design of the robots and the motion control system
are described. An insight in the software framework and strategy archi-
tecture is provided. Furthermore, upcoming changes and improvements
are outlined.

1 Introduction

This paper describes the German RoboCup Small Size team ER-Force from the
University of Erlangen-Nuremberg. The team was founded in fall 2006 by stu-
dents from various engineering disciplines, such as computer science, mechatron-
ics and electrical engineering. It is still an interdisciplinary project with around
twenty members. In 2007 we founded a non-profit association called “Robotic
Activities Erlangen e.V.”. This association is engaged in many robot-related ac-
tivities including the support of two Robotics groups at local high schools. The
team participates at the international competitions of RoboCup since 2009.

The following sections provide an overview of our current Small Size League
team. In Section 2 the hardware and firmware architecture of the robots is de-
scribed. We discuss the hardware of our 2010 system and outline the new de-
velopments that will improve our 2011 system, e.g. the modular design that we
are going to use as it turned out to be very complicated changing components
that are located in the lower part of the robots. The motion controller used is
described in Section 3. In Section 4 we examine the software architecture. The
different submodules such as a simulator and pathfinding are shown as well as a
short overview of the radio communication protocol. The techniques applied for
filtering and tracking of the position data provided by SSL-Vision are presented
in Section 5. The strategy module and decision algorithms implemented in our
system are described in Section 6. Besides we are going to present on RoboCup
2011 a new SSL-RefBox, that is specified in Section 7. It will provide a more
clearly arranged user interface and will also work under lower screen resolution,
what had often been a problem.



2 Hardware

In the following section we will describe some parts of our hardware in detail.
We employ six robots that are identical in construction. Each robot features
a omni-directional drive with a solenoid kicker system. Fig. 1 shows our robot
design from 2010.

Fig. 1. ER-Force robot design from 2010.

2.1 Modular Design

Firstly, we want to present the design pattern used for this year’s robots. When
planning the new hardware of the robots for RoboCup 2011 in Istanbul, we
persistently pursued the approach of a modular design. A modular system is
characterized by the following features:

1. The system is partitioned into several discrete, scalable and reusable
functional blocks. Every block fulfills some specific functionality and that
independently from other blocks.

2. The interface between a set of blocks is well defined. The relationships of
two blocks can be mechanical, electrical, logical, ...

3. International industry standards are used for key interfaces where pos-
sible.



Compared to our previous construction style, strict modularity offers some
decisive advantages:

• Hardware partitioning eases team-work in development and construction
• If only a part of the robot has to be modified (because of malfunction,

improvement, or other reasons), the rest of the system will stay un-
touched.

• Cost reduction because of the avoidance of non-standard interfaces and
the reusability of decent parts

Talking in terms of our robots, modularity means:

1. The mechanical skeletal structure of the robot accommodates 4 drive units,
the kicker device and the main controller.

2. Every drive unit consists of a mechanical framework fitting into the skeletal
structure, the brushless DC motor itself, encoders to determine the wheel
movement and an electronic device that controls the motor. This contrasts
significantly to our old robot design – now, all components needed to drive
one of the wheels are combined into a single, reusable and discrete unit.

3. The kicker unit is located in the center of the robot and points to the front
side in order to kick the ball.

4. All boards on the robots communicate via a consistent bus system. As we
gained positive experiences with the CAN (Controller Area Network) bus
in the last year, we are favoring CAN as communication line between the
boards.

This architecture will help us to repair our robots quickly if needed in the contest.
Until now, if a robot was damaged, we had not only to locate the problem on
the robot, but to disassemble the robot completely in order to repair the faulty
item. In our new design, we simply have to replace the corresponding module by
a new one of the same kind. As a consequence, the robot will be operational again
in less time and we can afterwards focus on repairing the module unhurriedly.
Furthermore, we don’t need a complete robot as replacement but only some
modules as backup. Cost savings and an increase in system reliability are obvious.

2.2 Drive and Kicker

This year we have upgraded our driving system to four brushless DC motors
(Maxon EC 45 flat) with four omni-directional wheels. The new motors have
more power and a higher efficiency than the old brushed motors, which will
result in a higher maximum speed. Fig. 2 shows the three wheel drive of our
2010 design.

We currently employ a solenoid kicker, which consists of a high voltage ca-
pacitor with a capacity of 4900 µF and a solenoid with a resistance of 1.5Ω. The
capacitor is charged by a step-up charging circuit to a voltage of up to 200 V.
To activate the kicker a Power MOS-FET is used to drive the high current and
voltage load. The current system is capable of shooting the ball at a speed of up



to 8 m/s. A chip-kicking device using the same capacitor but a second solenoid
was developed in 2009 and is still in use. We are currently redesigning the the
kicker mechanics with a larger solenoid to make the mechanism even more robust
and to increase the maximum ball speed.

The dribbler system in our robots from 2010 is placed above the kicking
device. It consists of a rubber coated bar driven by a small DC motor (Maxon
A-max 19). This bar was designed to exert backspin on the ball and keeping
it in position. This dribbler design proved to be insufficient, as it is almost
impossible to receive passes with a stationary mounted dribbler. Therefore, we
are constructing a passively damped dribbler bar which slows the ball down
when it hits the robot. This should facilitate passing the ball at high speed.

Fig. 2. Drive system of ER-Force robots from 2010.

2.3 Electronics

In the development of the robot electronics we continue the modular design
pattern. We decided to divide the electronics in to various boards in order to
reduce the amount of necessary connectors and cables, simplify development,
and make the system more robust in terms of electromagnetic compatibility.
A main board runs the motion control and radio communication, and provides
an USB interfaces for debugging purposes and programming of the embedded
systems. Each motor is equipped with a drive board that runs torque and speed
control for each BLDC motor. The kicker board uses a step-up converter to
charge a capacitor to a voltage of up to 200 V and drives the solenoids. This is



one of the most demanding parts of the electronics since during a shot a peak
current of more than 100 A flows through the solenoid. Each board features
a ARM Cortex-M3 microcontroller, which is connected to the CAN bus. We
employ the CAN bus for data communication between the main board, kicker
and motor boards, as well as for uploading the software to the microcontrollers.
For communication with the strategy software running on the PC we use different
types of radio transceivers, such as the NRF24L01 (2.4 GHz ISM band) or the
RFM12 (434 MHz and 868 MHz ISM band). In our 2010 implementation the
communication was only one-way from the computer to the robots. This will be
improved in our new design by integrating status packages sent from the robots
to the strategy computer.

3 Motion control

To allow smooth motion of the robots the positions generated by the strategy
need to be processed by a motion controller. The position controller (see Fig. 3)
gets the current position of the robot pmeasured from the vision system, compares
it to the desired position psetpoint and calculates the postion error eposition:

eposition = psetpoint − pmeasured . (1)

This is used to calculates a setpoint for the velocity of each robot:

vsetpoint =

vx,setpointvy,setpoint
ωsetpoint

 = Kpeposition(t)+Ki

∫ t
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Fig. 3. Complete controller structure.

Each velocity setpoint is then transmitted to the according robot. The veloc-
ity needs to be controlled by the control software running on the microcontrollers
of robots.
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Fig. 4. The state controller implemented on the robots.

The simplest way to control an omni-directional drive-system is to control
each wheel individually with a simple PID controller. Since 2010 our new ap-
proach for the motion control is to use a state controller, which takes the ro-
tational speed of all wheels into account. It then controls the velocity of the
robot as outlined in Fig. 5. The three state variables are the velocities of the
robot in x and y direction and the angular speed. The used coordinate system is
shown in Fig. 5. The actual controller implemented in our system is a PI state
controller. Currently we cannot measure the velocity of the robot directly but
we measure the rotational speed of each wheel and transform it into velocities.
The problem with this approach is that the wheels can slip and the velocity is
measured wrongly. A new idea to improve the velocity estimate is to use laser
motion sensors which are capable to measure the velocity of the robot directly.
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Fig. 5. Velocities used for motion control.



Fig. 6. UI of our framework

4 Software Architecture

Our Software framework (see Fig. 6) uses a single application consisting of mul-
tiple modules. Most of the modules are written in C++ using the Qt Toolkit.
The framework currently has these modules:

• Tracking: Tracking is described in detail in section 5.

• Simulator: Our simulator is based on the Open Dynamics Engine. It tries to
simulate the behavior of our real robots as best as possible. While it is far
from being perfect, it works good enough for testing our strategies.

• Strategy: This module allows the whole strategy to be implemented in LUA
[1] scripts. A simple C++ ↔ LUA interface allows the scripts to access the
result of the tracking as well as passing commands to the robots. Script
files can be automatically reloaded when changed even during a (test) game,
so that changes can be immediately tested. To show debug and status in-
formation in the UI, the scripts can use a log window and a TreeView to
dump LUA tables. It is also possible to define configuration variables, which
can be changed in the UI. To optimize the runtime performance, we use a
just-in-time compiler for LUA.

• Pathfinding: A utility for our strategy to generate ideal way points. This
module was part of the strategy written in LUA, but was optimized in C++
for performance reasons.

• Logging: A flexible logging mechanism that dumps all incoming data from
the vision and referee system. These logs can be replayed later and allows
extended debugging and game analysis. We plan to extend the logger with



debug and status information from our strategy to be able to exactly repro-
duce any bugs which occur in a game.

• GUI: A Qt based user interface which shows all information of the framework
in a single window.

• Radio: Responsible for communicating with our robots.

Logging, simulation and a script based strategy form compose a quite pow-
erful tool, which allows rapid testing and debugging without the need for time
consuming recompilations and without requiring to have ten working robots for
every test run.

4.1 Radio Communication

We are using a two way communication to our robots. In each iterative step our
strategy module (described in Section 6) updates the destination positions for the
robots. The relative movement speed (in robot-local coordinates) is calculated,
and sent via USB to a radio sender module. To simplify the communication we
have implemented a small C library which can be used in the C++ strategy
application as well as on the radio transceiver itself. It focuses on three aspects:

• Same source code on strategy computer and robots

• Small packet sizes to keep latency low

• Forward compatibility to be able to use robots without reprogramming them
after a protocol extension

The feedback channel is used to report battery level, light barrier state, and
other system information from the robots to the control computer for visualiza-
tion.

5 Tracking

In previous years each team had to setup its own camera system and implement
their own segmentation software to acquire positions and orientations of the
objects in the field. Since RoboCup 2010 Singapore, however, the vision in the
Small-Size League is centralized. Position and orientation data is sent to both
teams by a single computer running the SSL-Vision software [2]. Given that
SSL-Vision only detects objects without performing any filtering or tracking,
this information can be unreliable.



5.1 Vision Problems

Common problems include:

• Changes in lighting
• Camera flashes
• Multiple balls, e.g. by misdetection of pink markers
• Ball occluded by a robot

To cope with these problems a multiple target tracking algorithm has been
implemented in the ER-Force software framework. It provides multi-sensor fu-
sion from the two camera images, tracking over misdetections, and filtering to
compensate for image noise.

5.2 Data Association

A central process in Multiple Target Tracking is data association. At each track-
ing time step k there are M measurements from SSL-Vision yj

k which have to be
associated to N targets xi

k. The number of targets N is variable and can change
between iterations by births and deaths. A birth occurs whenever a measurement
could not be matched to an existing target. In this case the number of targets is
increased by one (N → N + 1) and a new target is created and initialized from
the measurement. When a target has not been associated with a measurement
for a given period of time, the target dies. The number of targets is decreased
by one (N → N − 1) and the target is removed.

5.3 Estimation

The association process for robots is entirely based on the robot’s id and position.
Whenever a robot measurement is within a certain radius of a previously known
robot target with the same id, that target is updated by the measured position.

pk = pk−1 + vk · t (3)

To remove any outliers from the measurement the sample median filter [3] is
applied. The last R velocity estimations are sorted and only the median value
wk is considered for further processing.

wk = u′ R+1
2

(4)

The result from the median filter can still change very rapidly between two
frames. These changes can severely interrupt the control loop in the strategy.
Therefore a mean filter is applied, to smooth the velocity.

vk =
1

S + 1

(
wk +ΣS

s=1vk−s
)

(5)



If a robot is not detected at the current time step, its velocity is assumed to
be identical to the previous step (vk = vk−1) while its position pk is updated
only by this velocity as shown in equation 3.

The estimation of the ball speed and velocity is currently identical to that of
the robots. An incorporation of the friction of the ball is planned until RoboCup
2011 to improve the estimation of an intercept position.

6 Strategy

6.1 Overview

Beside the improvements in other sections we are currently redesigning the
strategical behavior of the ER-Force robots. In order to make better use of
all available players on the field we created a strategy consisting of multiple
layers. Each layer uses a consistent interface allowing us to easily add further
tasks. The low-level-tasks like passing, shooting on goal or defending provide
some basic skills that can be used by higher-level-tasks. A single task can handle
multiple robots allowing them to play together. The advantages are various: any
improvement must be edited only once in these tasks instead of various times
in the higher-level-tasks; these are kept slender and well arranged. Due to the
division in layers the low-level-tasks can even reuse each other. To shoot a goal
for example the task relies on a generic shoot task that is also using further
low-level-tasks. Thus any improvements in the shoot task are also present when
shooting a goal. In order to provide powerful passing it is now explicitly mod-
eled as a task, allowing the higher-level-tasks to have two robots work directly
together. Additionally, by providing these highly reusable tasks it is easy to copy
strategic moves from other sports like soccer.

A complex build-up of the game after acquiring the ball is possible in dif-
ferent alternatives in behavior of the players. The artificial intelligence decides
itself, which variation seems to be best depending on the current position of
our own and the opponent’s robots or even on the success of an earlier try of
this move. This estimation must be kept, even if another move emerged to be
more hopeful. Only in the case of complete inefficacy another move has to be
tried. This procedure avoids a permanent switching between different complex
moves on assuring at the same time that a change of strategy is preferred to an
unnecessary loss of ball. The analysis of the chance of success of a specific move
requires much research and testing and is a long term project. To handle referee
commands specialized behaviors are used which immediately take priority over
the active behavior. As moves are dynamically chosen we are able to train the
team by adding a new move. This allows us to use weaknesses of other teams
which can be found on analyzing the opponent’s behavior. It can be done by a
human before a game or during breaks or by the strategry using the observer
(see section 6.3).



6.2 Low-level tasks

Each low-level task handles a specific behavior. Available roles are

• Move to: provides move function for other tasks

• Move to ball: catches the ball

• Move with ball: handles dribbling

• Keeper: defends the goal

• Defender: helps the keeper to protect the goal

• Marker: marks a robot to intercept passes

• Assistant: searches for a free space for passing (see Fig. 7)

• Shoot: handles shooting

• Shoot goal: shoots at the goal

• Pass: controls two robots and plays a pass

• Penalty-taker: specialized shoot task for penalties

• Penalty keeper: keeper optimized for penalties

Fig. 7. Visualization of the assistant searching for a free spot for a pass. The red
and blue areas show positions from where the robot can receive both the ball
and shot at the goal.



6.3 Observer

Parallel to the role assignment and execution, an observer analyzes the match
by gathering game play statistics. These include general referee information, ball
specific information and player specific information:

• Referee information

◦ Number of goals per team

◦ Number of direct/indirect free kicks per team

◦ Number of penalty kicks per team

• Ball specific information

◦ Ball’s average position and variance

◦ Ball’s average speed

• Player specific information

◦ Each player’s average position and its variance

◦ Average position of all robots of a team

◦ Number of shots

◦ Number of shots towards a goal

◦ Number of successful ball interceptions and ball passes

For this purpose, it is necessary to interpret the opponent players’ behavior.
Therefore, the observer recognizes events such as kicking the ball, grabbing the
ball, passing the ball or intercepting the ball. For all of these events some condi-
tions are specified to recognize them. For example the following conditions have
to be fulfilled for the event kicking the ball (player P) in a time interval [t−1, t]:

• The ball has been in a specified orbital region around P (the radius is de-
pending on the ball’s velocity).

• The ball’s moving direction has been changed significantly.

• The ball’s speed has been increased.

6.4 Enhancements

The observer provides statistical information on the game flow. Using this in-
formation in medium level functions and high level functions (for defining the
robots’ behavior) leads to remarkable improvements. The analysis of the game
refers to both the opponents activity and the overall situation. The role assign-
ment and skills can take these aspects into account for planning tactical moves
of the own robots. Besides this, the system is able to react to damages of our own
robots, e.g. by swapping the roles of a robot having a broken chip-kick device
with another robot.



7 Referee Box

One of the most important tools for refereeing a Small Size League game is
the referee box. It is used to translate the commands of the main referee into
machine readable information. However, the software that is currently used in
the Small Size League has some drawbacks. The interface does not scale very well
on low resolution screens. It is difficult to keep track of yellow cards and it is not
possible to revoke commands easily. Since the protocol was designed primarily
for serial communication, it was optimized for size and does not provide all the
information that is available in the referee box. For example, the teams have
to count their timeouts themselves. As a lot of teams have not implemented
a visualization for the referee commands, they need to ask one of the referees,
which is quite difficult during a game.

Therefore, we decided to rewrite the referee box software. We decided to im-
plement the graphical user interface using the Qt framework. An alternative to
the official referee box protocol is implemented using Google’s protocol buffers.
The new referee box is fully compatible to the currently used software and pro-
tocol, but provides some extensions to make the job of refereeing a game easier.
We will also provide an example receiver and classes, such that the new proto-
col can be easily adopted. The software is mainly developed using GNU/Linux,
but it works also on the Windows and Mac OS platform. A first demo will be
released shortly after the publication of this paper.

7.1 Graphical User Interface

The new referee box was designed to allow easy access to all important functions
with either mouse or keyboard. The layout was restructured in order to be able to
access the most common commands with as little mouse movement as possible.
A notification area was added to remind the referee assistant if robots may re-
enter the field of play or the time is nearly over. Support for tracking multiple
yellow, or red cards was implemented. Fig. 8 shows the current version of the
graphical user interface of the referee box.

7.2 Referee Assistance System

The games in the Small Size League tend to be very fast and most teams are
able to shoot the ball at a high speed. Today it is already a tough job to referee a
game. It is hard to tell which robot was the last to touch the ball, and if the ball
actually entered the goal or hit the goal post. Therefore, we added support for
SSL-Vision to the referee box. We plan to add support for plugins, which allows
the community to easily extend the referee box. Using the SSL-Vision data we
can track if a ball actually entered the goal or visualize rule infringements, such
as multiple defenders, or non-rule compliant robot interchanges.



Fig. 8. Referee box software.

8 Conclusion

The current hardware design we presented in this paper is very similar to the
one we used last year at RoboCup 2010, as most components proved to be very
reliable. However, we are also planning to improve some parts as the kicker and
the drive and we want to test a lot of new concepts like a two-way communication
link. Major improvements, however, are present in the software of our system.

The strategy software was greatly improved, as we are integrating roles that
involve multiple players. This was done to allow better robot interaction. More-
over, we did a lot of work on the role assignment algorithms. By analyzing the
robots behavior and collecting statistical game data it is possible to react in
a much more precise way to the opponent. We also implemented an improved
tracking algorithm for robots and ball positions.

As we presented a lot of improvements we are eager to test them at RoboCup
2011 in Istanbul.
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