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Abstract. In this paper we present an overview of CMDragons 2011,
Carnegie Mellon’s entry for the RoboCup Small Size League. Our team
builds upon the research and success of RoboCup entries in previous
years.

1 Introduction

Our RoboCup Small Size League entry, CMDragons 2011, builds upon the on-
going research used to create the previous CMDragons teams (1997-2003,2006-
2010) and CMRoboDragons joint team (2004, 2005). Our team entry consists
of five omni-directional robots controlled by an offboard computer. Sensing is
provided by two overhead mounted cameras linked to the offboard computer.
The software then sends driving commands to the individual robots. This pa-
per describes the robot hardware and the offboard control software required to
implement a robot soccer team.

2 System Overview

Our team consists of seven homogeneous robot agents, with five being used in
a game at any point in time. In Figure 1, an example robot is shown with and
without a protective plastic cover. The hardware is mostly the same as used
in RoboCup 2006-2009. We believe that our hardware is still highly compet-
itive and allows our team to perform close to optimal within the tolerances
of the rules. One noticable hardware improvement for 2010 however, was a new
dribbler-mount assembly, better protecting the robot’s infrared sensors and drib-
bler motor. Besides this hardware improvement, we focus most of our efforts on
improving the software to fully utilize the robots’ capabilities instead.

2.1 Robot Hardware

Each robot is omni-directional, with four custom-built wheels driven by 30 watt
brushless motors, each featuring a reflective quadrature encoder. The kicker is
a large diameter custom wound solenoid attached directly to a kicking plate.
It is capable of propelling the ball at speeds up to 15m/s, and is fully variable
so that controlled passes can also be carried out. The CMDragons robot also
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Fig. 1. A CMDragons robot shown with and without protective cover.

has a chip-kicking device, implemented by a custom-made flat solenoid located
under the main kicker, which strikes an angled wedge visible at the front bottom
of the robot. It is capable of propelling the ball up to 4.5m before it hits the
ground. Both kickers are driven by a bank of three capacitors charged to 200V .
Ball catching and handling is performed by a motorized rubber-coated dribbling
bar which is mounted on an hinged damper for improved pass reception. A more
detailed description of the robot’s design and electronics can be found in [1].

Our robot is designed for full rules compliance at all times. The robot fits
within the maximum dimensions specified in the official rules, with a maximum
diameter of 178mm and a height of 143mm. The dribbler holds up to 19% of the
ball when receiving a pass, and somewhat less when the ball is at rest or during
normal dribbling. The chip kicking device has a very short travel distance, and at
no point in its travel can it overlap more than 20% of the ball due to the location
of the dribbling bar. While technically able to perform kicks of up to 15m/s, the
main kicker has been hard-coded to never exceed kick-speeds of 10m/s for full
rule compliance.



3

Fig. 2. The general architecture of the CMDragons offboard control software.

2.2 Software

The software architecture for our offboard control system is shown in Figure 2. It
follows the same overall structure as has been used in the previous year, outlined
in [2, 1]. The major organizational components of the system are a server program
which performs vision and manages communication with the robots, and two
client programs which connect to the server via UDP sockets. The first client
is a soccer program, which implements the soccer playing strategy and robot
navigation and control, and the second client is a graphical interface program
for monitoring and controlling the system.

The server program consists of vision input, tracker, radio, and a multi-
client server. The vision input is supplied via ethernet from the RoboCup SSL
shared vision system SSL-Vision [3]. Some of the integration details are described
in section 3 of this paper. Tracking is achieved using a probabilistic method
based on Extended Kalman-Bucy filters to obtain filtered estimates of ball and
robot positions. Additionally, the filters provide velocity estimates for all tracked
objects. Further details on tracking are provided in [4]. Final commands are
communicated by the server program using a RS232 radio link.

The soccer program is based on the STP framework [4]. A world model
interprets the incoming tracking state to extract useful high level features (such
as ball possession information), and act as a running database of the last several
seconds of overall state history. This allows the remainder of the soccer system
to access current state, and query recent past state as well as predictions of
future state through the Kalman filter. The highest level of our soccer behavior
system is a strategy layer that selects among a set of plays [5, 6]. Below this we
use a tree of tactics to implement the various roles (attacker, goalie, defender),
which in turn build on sub-tactics known as skills [4]. One primitive skill used
by almost all behaviors is the navigation module, which uses the RRT-based



4

ERRT randomized path planner [7–9] combined with a dynamics-aware safety
method to ensure safe navigation when desired [10]. It is an extension of the
Dynamic Window method [11, 12]. The robot motion control uses trapezoidal
velocity profiles (bang-bang acceleration) as described in [13, 4]. Additionally, our
system features a detailed physics-based simulator based on rigid-body dynamics
as described in [2]. One focus of our work this year is on modelling opponent
behaviours from logged game data, as described in Section 4.

3 Vision Hardware and Software

CMDragons 2011 operates using SSL-Vision as its vision system [3]. In our lab,
we use two Firewire 800 cameras (AVT Stingray F-46C) which provide a 780×580
progressive video stream at 60Hz. SSL-Vision is released as open source and
is therefore available to all teams. In order to use SSL-Vision, the “Vision”
component in Figure 2 represents a network client that receives packets from the
SSL-Vision system. These packets will contain the locations and orientations of
all the robots, as well as the location of the ball. However, data fusion of the two
cameras and motion tracking will continue to be performed within our system,
as SSL-Vision does not currently support such functionality.

SSL-Vision has the capability to report multiple balls on the field. We use this
feature to selectively track balls on the field, which has proven to be especially
useful while sharing the field with other teams during testing and setup time
during RoboCup. The ball tracker selects the ball detection reported by SSL-
Vision which is closest to the next frame prediction of the tracker. Additionally,
the ball tracker can be selectively reset to track the ball closest to the center of
the field, which is how we define “our” ball during

4 Modeling Opponent Behavior

Based on our experience in the SSL, we first conjecture that each team has a
finite set of pre-defined plays and within a game, depending on the world state,
they commit to the execution of a single play. The team description reports of
several years from previous years also support our hypothesis. Secondly, we note
our extensive logging architecture where for an individual game, we record the
position and orientation of every robot in the game, the position of the ball and
the game state depending on the referee calls (free kick, goal kick and etc.).

In this section, we introduce an architecture that exploits the comprehensive
amount of log data regarding the game play of a team to model its behavior. The
key idea is to represent the spatiotemporal behavior of a robot as an instance
of a geometric trajectory path (Figure 3) and to categorize sets of trajectories
into different clusters. Below, we will first briefly discuss several challenges with
this approach and then, discuss how this idea can be utilized to make online
predictions of future world states and take pre-emptive actions.

The first question is how to define the beginning and end of a trajectory.
We define a time period, an episode, which starts with the referee rewarding
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Fig. 3. The behavior of a team throughout an episode where blue and black robots
position for a pass and the ball (in red) is passed to the black one. Note that the
actuator robot is not shown.

the possession of the ball to a team and ends with the collision between a robot
and the ball after its initial actuation. An episode lasts about 3s in average. The
second question is how to quantify the similarity of sets of trajectories between
different episodes. We utilize the geometric Hausdorff distance to measure the
similarity of individual trajectories. To quantify the similarity between sets of
trajectories, we first find a matching between the individual trajectories of the
two sets and compute the sum of the distances of the most similar trajectories.
In Figure 4, we provide the results of applying hierarchical clustering on the
similarity values between the 29 episodes recorded in a game play in SSL 2010.

Fig. 4. A sample clustering of sets of robot trajectories into behavior patterns. The red
boxes represent the clusters obtained by hierarchical clustering. The trajectory sets in
the same cluster are instances of the same behavior pattern.

Lastly we discuss how opponent modeling can be used to make predictions
within the game. Assume we have a set of clusters where each cluster is made of
sets of trajectory patterns and the beginning of a new episode is detected, and
a new pattern is being observed. We compute the distance between a cluster
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and a new, partial pattern by computing the distance between each pattern in
the cluster and the new pattern and taking a mean. To compute the distance
between a complete pattern and a partial pattern, we shorten the complete
pattern so that the duration of the pattern is the same as the duration of the
partial pattern. Our experiments on the real data from 4 teams in SSL 2010
games, we can correctly classify %70 of behavior patterns by observing %30 of
any input trajectory set. In summary, by using opponent modeling and online
detection, we seek to provide tools for a more adaptive game play.

5 The Attacker Control System

The CMDragons robots perform motion profiling off-board, on the central com-
puter. This raises three problems, namely:

System latency: Latency in the control loop introduces a phase delay between
the expected and actual motion profiling. This however is minimized by
forward-predicting the observed world state and computing the motion pro-
file on this future state.

Hesitation: Precise motion control can lead to pauses while changing target
locations due to switching of motion profiles.

Underperformance: The robot’s motion profile is computed using expected
robot acceleration and top speeds, although the true values might differ,
and in certain cases the robot might actually be capable of exceeding the
expected values.

To counter the effect of these problems, we implemented an “Attacker Control
System”. The Attacker Control System has two main features:

1. The motion profile parameters (acceleration and velocity limits) are separate
for AI calculations and for execution. Specifically, the parameters used for
AI calculations are more conservative than the true robot parameters, while
the execution parameters marginally exceed the true parameters.

2. Intercept and target locations are explicitly modified by a proportional-
derivative (PD) controller

The PD controller is implemented as follows. Let the target location of the
attacker, as computed by the AI be denoted by ld. Let the current robot location
be denoted by lr. The modified target location l̃d is given by,

l̃d = ld + kp(ld − lr) + kd
d(lr)
dt

(1)

The proportional and derivative gains kp, kd are hand-tuned, and two separate
sets are used during the accleration and the deceleration stages. The modified
target location l̃d is then used for motion profiling using the execution motion
profile parameters.
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Competition Result

US Open 2003 1st
RoboCup 2003 4th
RoboCup 2004 4th 1

RoboCup 2005 4th 1

US Open 2006 1st
RoboCup 2006 1st
China Open 2006 1st
RoboCup 2007 1st
US Open 2008 1st
RoboCup 2008 2nd
RoboCup 2009 Eliminated during quarter-final
RoboCup 2010 2nd

Table 1. Results of RoboCup small-size competitions for CMDragons from 2003-08

6 Conclusion

This paper gave a brief overview of CMDragons 2011, covering both the robot
hardware and the software architecture of the offboard control system. The hard-
ware has built on the collective experience of our team and continues to advance
in ability. The software uses our proven system architecture with continued im-
provements to the individual modules. The CMDragons software system has
been used in four national and eight international RoboCup competitions, and
the competition results since 2003 are listed in Table 1. We believe that the
RoboCup Small Size League is and will continue to be an excellent domain to
drive research on high-performance real-time autonomous robotics.
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