
RoboTurk 2011 Team Description

Kadir Firat Uyanik1, Mumin Yildirim1, Salih Can Camdere2, Meric Sariisik1,
Sertac Olgunsoylu3

1Department of Electrical and Electronics Engineering
2Department of Mechanical Engineering
3Department of Computer Engineering

Middle East Technical University (METU)
06531 Ankara, Turkey

kadir@ceng.metu.edu.tr

{kadir,mumin,salih,meric,sertac}@teamroboturk.com

Abstract. This paper briefly explains the current development status
of the recently reformed RoboCup Small-Size League(SSL) robot team,
RoboTurk. RoboTurk SSL robot soccer system is designed under the
RoboCup 2011 SSL rules so as to participate in RoboCup competition
being held for the first time in Turkey. This year we have made crucial
changes in the 2009’s design, and in fact, all the hardware and software
modules are redesigned. Most of the effort spent on the mechanical struc-
ture of the robot, motor driver board, main control board, and ROS [1]
based software architecture with the close-to-real simulation environment
in Webots[2].



2 RoboTurk 2011 Team Description

1 Introduction

RoboTurk RoboCup SSL robot soccer system is a project that’s been studied
by the members of IEEE METU Student Branch Robotics and Automation So-
ciety since 2008. However, being undergraduate students as well as dynamically
changing society members slowed down the course of development considerably.
After more than one year of development gap, this year we gathered a new team
for the sake of hosting the RoboCup competition in our home country, and re-
designed most of the modules less than a few months.

We can divide the current system into two main parts, one is the sensori-
motor unit of the system namely ssl robots and the other is central decision
making unit, called ssl game planner assuming that the 2-D pose of the propo-
nent and opponent robots and the position of the ball are provided with respect
to the field reference frame (viz. global information) as well as the game state is
already available specifying the allowed formations of the robots under the rules
of robocup ssl (i.e. referee signals).

The major improvements we have done so far can shortly be listed as follows:

– Mechanical design; we have decreased the weight of the chassis from 1.9kg to
1.4kg by the factor of almost 25% with the new design based on the Skuba[5],
and BSmart[6] teams’ designs. Many improvements have been done on the
wheels themselves and the wheel assemblies.

– Motor control board design; we have replaced the earlier control circuit
which happened to be unreliable from time to time, especially during sudden
changes in the acceleration.

– Main control board design; we have replaced the previous master-slave PIC-
microcontroller based mainboard with the Gumstix computer-on-module
centered mainboard.

– Software design; we have started developing a robocup-ssl stack on ROS. In
this design, we also started adding ROS support to the ssl vision [3].

– Simulation environment design; we designed close to real ssl simulation en-
vironment on Webots, which enables us to simulate dynamics, frictions, col-
lisions, and many other physical properties/events.

In the following section we state the details about the current development
stage of the two main units, ssl robots, and ssl game planner. We complete with
the planned extensions until the RoboCup’11 competition.

2 SSL Robots

In RoboCup SSL, there are five robots per team in a normal game. Each SSL
robot can be investigated by considering its mechanical hardware, electronics
hardware, and on-board software components.



RoboTurk 2011 Team Description 3

Fig. 1. Left is the latest design that is being manufactured, right is the first prototype
developed this year.

2.1 Mechanical Hardware

The mechanical hardware consists of the chassis, motors, kicking and dribbler
mechanisms, and the omni-wheels.

Chassis is limited to the size of 18cm in diameter and 15cm in height. Previous
design was more than 1900 grams; however, as a result of our latest improve-
ments, we reduced it to 1419 grams excluding circuit boards, as it is shown in
figure 2.

Fig. 2. New robot base. Fig. 3. Latest omniwheel design.

Omni-wheels are the the common choice for holonomic drive systems which
enables the robot to move in all directions. In the earlier design, we used Korny-
lak Omni-wheels which didn’t provide sufficiently smooth motion. Hence, this



4 RoboTurk 2011 Team Description

year we designed our custom omni-wheels. New design have a diameter of 1.968
inches and 15 rollers with rubber gaskets in order to increase grip 3. Omni-wheels
are placed symmetrically 120 degrees apart in the front and 90 degrees at the
back.

Motors Each omni-wheel is driven by a 30 Watt Maxon EC45 Flat back shaft
extended brushless DC (bldc) motor with E4P encoders.

Dribbler is actuated by Maxon EC-16 40 Watt bldc motor. The material on
the dribbler cylinder is chosen to be silicon rubber.

2.2 Electronics Hardware

Electronics hardware of each ssl robot consists of five main parts:

Main Controller Board houses the Gumstix COM as well as the slave con-
troller PIC 18F4550.

Gumstix Overo Fire COM is a computer-on-module with TI OMAP3530
running at 720 MHz. It comes with many features namely, Wi-Fi, Bluetooth,
DSP, PWM generator, I2C- SPI-RS232-USB interface, 256 MB flash memory
with microSD slot for extra memory.

Overo Fire is responsible for every action running within the robot. Gumstix
runs the following tasks:

– Reception of commands and data from the AI computer via Wi-Fi

– Counting process of encoder pulses and running PID over brushless DC
motors by generating PWM

– Gathering all sensor information on robot

– Passing some of the commands to slave controller via UART

All input and output signals of Gumstix are distributed on this board. There
are 1.8V-5V logic level converters for PWM output of Gumstix. Following inputs
gather on this board:

– 4x 2 Channel quadrature encoder digital inputs

– 5x Ball position sensor digital inputs

The board has the following outputs:

– 5x direction output

– 5x brake output

– 6x PWM output

– 1x Sensor Board output



RoboTurk 2011 Team Description 5

PIC18F4550 works as an auxiliary low level controller besides Gumstix.
PIC18F4550 works as port multiplexer for brake and direction inputs of L6235
BLDC driver modules, as well as controlling the ball sensor board, control-
ling and measuring the kicker capacitor voltage, controlling the kicker solenoid,
while isolating such power consuming areas from the Gumstix. Gumstix and
PIC18F4550 use UART at 115200 bps to communicate. PIC receives the data
by using RS-232 activity interrupt.

Motor Controller Board comprises L6235 as the main component, which is an
all-in-one brushless DC motor driver. It has hall sensor input form the brushless
motors, Maxon EC45 flat, and logic decoder for determining the direction of
the motor and power MOSFETs to drive the motor. Also, it has digital input
pins for motor direction, brake and speed. Each module has one L6235N IC and
responsible for one brushless DC motor. One PWM, one brake and one direction
input are hooked up to the each module. Modules are supplied with 5V for digital
part and 14.8 V for actuator part. Modules are designed in a way that they can
be mounted successively. 5 modules exist in each robot: 4 modules for EC45s, 1
module for EC16 dribbler motor.

L6235 BLDC module is also the part where the encoders are connected.
Therefore, encoder inputs also come from this board. The reason to connect
encoders to motor board is that each motor input and encoder outputs would
be taken from the same connector; therefore, each connector represents a motor
with its whole control.

Fig. 4. Bldc motor controller circuit 3D schematic.

Kicker Controller Board Kicking control circuit contains a DC-DC booster to
charge a capacitor, and a capacitor discharging circuit for main kicking solenoid.
It supplies a feedback for voltage stabilization at 200 Volts. The controller of this
booster is the PIC18F4550 whose duty is to supply PWM for booster toroid and
maintain a stable capacitor voltage. A 200 V, 2000uF capacitor is charged by DC-
DC booster up tp 200 V in less than 4 seconds. A simple voltage division method
and ADC conversion is used to determine the capacitor voltage. The capacitor is
discharged on a tubular push type solenoid S-20-100-H which has approximately



6 RoboTurk 2011 Team Description

3500 turns @ 25 awg . A power transistor is responsible for switching of the
discharge. The kicking action is started by Gumstix command to PIC via RS232
and PIC184550 activates the switching MOSFET. As a result the ball can be
shot with the speed of 6.5 m/sec.

2.3 On-board Software

Onboard software runs on each robot so as to make the robot behave according
to the game plan provided by SSL Game Planner. Onboard software is com-
posed of two main components namely, kernel level software and application
level software.

Kernel Level Software includes kernel modules and low level I/O devices
that run as part of the Linux kernel. As GNU/Linux distribution Ubuntu 10.10
is chosen since it is compatible with ROS, which application level software is
based upon. Ubuntu runs on the Gumstix Overo Fire with Summit expansion
board.

Kernel level software fills the gap between the application level software and
the hardware such as DC motors, microcontrollers, etc. As depicted in the figure
5, four lines of PWM output are generated on Gumstix by using PWM gen-
eration module to drive bldc motors connected the four wheels. The generated
PWM output is controlled by Application Level Software with using ROS con-
trol toolbox 1 to apply closed-loop control. Besides, it acquires the four 2-channel
signals which are generated by the encoders to indicate speed and direction val-
ues of the motor.

In addition to the information related to dribbler and kicker, ball sensor data
is also transmitted and received via UART with RS-232 protocol.

Application Level Software is a ROS node in the ROS network. These
nodes represent the SSL Robots in this network. Communication between SSL
Robots and SSL Game Planner is achieved by the message-passing mechanism
of the ROS. All required data and commands needed to be performed are sent
through publisher/subscriber mechanism. In this two-ended architecture, SSL
Game Planner and SSL Robot mutually subscribe to each other.

SSL Robots are subscribed to the robot command messages which are pub-
lished approximately at 60 Hz frequency by SSL Game Planner in order to make
robot actuate according to the game plan. Robot command message contains
following data fields within:

– Translational speed (in m/s)
– Translational direction (in radian)
– Rotational speed
– Rotational direction (CCW or CW)

1 control-toolbox is a ROS package including various controller modules. More infor-
mation can be found at http://www.ros.org/wiki/control_toolbox

http://www.ros.org/wiki/control_toolbox


RoboTurk 2011 Team Description 7

Fig. 5. Gumstix computer-on-module and I/O signals.

– Dribbler speed (rpm)
– Kicker speed
– Local state request

On the other end, SSL Game Planner is subscribed to the local state messages
which are published by SSL Robots in order to acquire local state information
of the robots. Local state message contains following data fields within:

– Ball possession
– Battery level
– Temperature level

SSL Robots updates its local state information regularly acquiring related
data from its hardware. If the ball possession condition is changed, then the
message indicating this will be published in order to notify SSL Game Planner.
Besides, if the robot command message includes a local state request then it will
also published to indicate current state of the robot.

3 SSL Game Planner

SSL game planner unit can be investigated from two perspectives, software ar-
chitecture. and planning methods.

3.1 Software Architecture

This year, we designed our system by heavily using ROS graph concepts to estab-
lish communication between the processes which are the nodes in ROS network.
Thanks to the message-based communication architecture, we can easily replace



8 RoboTurk 2011 Team Description

the real robots with the simulated robots and ssl-vision with the sim-vision
(simulated vision) or the ssl-referee-box with the sim-refree (simulated refree)
by making no change in the source code whatsoever.

Current architecture is shown in the figure 8. Most of the nodes are currently
under development and some of them are stub at the moment (viz. ssl refree,
ssl sim refree and most importantly ssl game planner).

This graph probably is going to be more simplified during a real game as it
is shown in the figure 6

Fig. 6. This figure obtained via the ROS rxgraph command which shows currently
running nodes in elliptical shapes and the topic messages in squared shapes. If an
arrow is going out from a node, it means that particular node publishes data to the
corresponding topic, and it is otherwise -subscribed to a topic- if an arrow in pointing
to the node.

We are also working on adding ROS support for the ssl-vision mostly devel-
oped by Zickler et.al[3] and became the standard vision system for the RoboCUP
SSL.

We are using Webots simulation environment for developing path planning
algorithms and state estimation filters as they are explained in the next section.
Since Webots is a commercial simulator and we are using trial version -soon
going to be expired-, we are considering to move our simulated robot design to
the Gazebo by using URDF and Xacro language, depending on our financial



RoboTurk 2011 Team Description 9

Fig. 7. ROS graph of the current system obtained by the ROS rxgraph command.
Most of the nodes are currently stub-like. The nodes corresponding to the simulation
environment are -most of the time- expected to be mutually excusive with the non-sim
nodes (the nodes corresponding to the real environment). This figure best viewed in
the soft-copy of the document which enables reader to zoom in the figure and clearly
see the names of the nodes.

status. This alternative seems to be reasonable since ROS fully supports Gazebo
simulator, and it is already included in several ROS distributions.

3.2 Planning Methods

We reached to the stage where ssl-robots can realize the commands given by
ssl-game-planner without colliding to the statical obstacles, following the path
close to the optimal/shortest path. In order to accomplish this ability, ssl-robots
should be able to project the velocity commands to each of the wheels that is
where Motion Control module plays the role.

Obstacle avoidance is satisfied with the well-known artificial potential fields
method. We have improved the method based on the object-grouping method
proposed in [4], which is explained in detail in the following sections.

Motion Control: Current robot design has an assymmetrically distributed
four-omni-wheel base. Wheel angles are, from the vertical line where robot points
upward are 53◦ in the front and 45◦ at the back. Motor velocities can be obtained
by using the following equation, where :

v1
v2
v3
v4

 =


sin(α) −cos(α) −r
sin(β) cos(β) −r
−sin(β) cos(β) −r
−sin(α) −cos(α) −r


vxvy
ω





10 RoboTurk 2011 Team Description

Fig. 8. Simulated ssl environment in Webots. Robots have exactly the same number of
rollers in the omniwheels, and they can kick the ball as well as dribble although these
behaviors haven’t been developed yet.

In simulation, motors are currently controlled with PID controller, yet it
is not added to the actual robots since there are no encoders mounted to the
motors, yet.

Path planning: In the traditional artificial potential fields, every obstacle is
handled seperately, which prevents observing the overall picture of the environ-
ment. In this approach, visibility and proximity of the obstacles are also taken
into consideration. For instance, the obtacles which are close enough to each
other are considered as one obstacle(virtual) by grouping. Besides the obstacles
which are not visible to the agent -because of the other obstacles between them-
are not considered as obstacles which decreases the oscillations.

First, a linkability metric, say LINKDIST, should be defined which specifies
when to link obstacles. According to LINKDIST obstacles are linked to each
other starting from the nearest obstacle in the path. While linking, obstacles are
checked if they are visible to the agent. If an obstacle is not visible, it is simply
discarded.

An obstacle is considered only once during linking process. That is, linked
obstacles form a linked list data-structure.

After linking, linked obstacles are merged to form a single obstacle which has
a proper radius so as to include all of the obstacles. The result of this process is
virtual obstacles which are used to apply repulsive forces on the robot.

With this method, we get rid of the local minima and oscillations problems
that are commonly encountered potential field based methods.



RoboTurk 2011 Team Description 11

Algorithm 1 Obstacle Programming

while preObstacleList.size() > 0 do
closestObstacle⇐ getClosestObstacle()
if isV isible(closestObstacle) = TRUE then

tempObstacle⇐ closestObstacle
repeat

if isLinkable(tempObstacle, preObstacleList[i]) = TRUE then
linkObstacles(tempObstacle, preObstacleList[i])
tempObstacle⇐ tempObstacls− > Neighbor

end if
until preObstacleList.size() = 0

end if
virtualObstacle⇐ closestObstacle
groupObstacles(virtualObstacle)
postList.pushback(virtualObstacle)

end while

Fig. 9. Closest obstacle and its neighbor
obstacle are linked to each other and nwe
virtual obstacle makes obstacle C invisible
to the robot (adapted from[4])

Fig. 10. Obstacle 3, 4 and 5 are linked
to each other.They form a virtual obstacle
(adapted from [4])

Game Planning: Our system is not able to perform higher level behaviors for
the time being. We have successfully implemented ball tracking behavior for the
real robots, but without encoders mounted on the wheels, robots are not able
to respond to the precise rotational actions. Due to this situation, ball-related
behaviors are not developed yet.

However, we are planning to stick to the commonly used hybrid delibera-
tive/reactive control architecture and divide the planning problem into different
stages such as strategy, roles and skills, as it is explained in [7].

4 Conclusion and Future Work

In this document, we have shown the current development stage of the Robo-
Turk SSL robot soccer system. We have emphasized the major changes in the



12 RoboTurk 2011 Team Description

mechanical design, motor control board, and software architecture. New robot
design will enable the system to react quickly to the changes in the game state,
as well as perform more efficient than the robot design we have developed in
2009.

With the very young and motivated team members (Mumin, Salih and Meric
second and first year, Sertac fourth year undergraduate students, and Kadir
being first year MS student) we are planning to attend RoboCup’11 Turkey for
the first time.

Acknowledgments. Many thanks to the METU EEE department for providing
us with a laboratory to work on a RoboCUP project, and to the IEEE METU
Student Branch for their endless moral support. We also very grateful for their
support in the construction of the prototype robots, to Sariisik Makina. Lastly,
it wouldn’t be possible without the financial support of OAIB.

References

1. Quigley M., Conley K., Gerkey B., Faust J., Foote T. B., Leibs J., Wheeler R.,
and Ng A. Y. (2009). Ros: an open-source robot operating system. n International
Conference on Robotics and Automation, ser. Open-Source Software workshop.

2. Michel, O. Webots: Professional Mobile Robot Simulation, International Journal of
Advanced Robotic Systems, Vol. 1, Num. 1, pages 39-42, 2004

3. S. Zickler, T. Laue, O. Birbach, M. Wongphati, and M. Veloso: SSL-Vision: The
Shared Vision System for the RoboCup Small Size League. RoboCup 2009: Robot
Soccer World Cup XIII. Pg:425–436

4. B. Zhang,W.Chen, M. Fei, An optimized method for path planning based on arti-
ficial potential field, Sixth International Conference on Intelligent Systems Design
and Applications (ISDA’06) Volume 3 (2006)

5. Wasuntapichaikul P, Srisabye J, Sukvichai K. Skuba 2010 Team Description. 2010.
6. Laue T, Fritsch S, Huhn K, et al. B-Smart Team Description for RoboCup 2010.
7. Gurzoni, J. A., Martins, M. F., Tonidandel, F., & Bianchi, R. a C. (2011). On

the construction of a RoboCup small size league team. Journal of the Brazilian
Computer Society, 17(1), 69-82.

http://sariisikmakina.com
http://www.makinetanitimgrubu.com.tr/tr

	RoboTurk 2011 Team Description
	Introduction
	SSL Robots
	Mechanical Hardware
	Chassis
	Omni-wheels
	Motors
	Dribbler

	Electronics Hardware
	Main Controller Board
	Motor Controller Board
	Kicker Controller Board

	On-board Software
	Kernel Level Software
	Application Level Software


	SSL Game Planner
	Software Architecture
	Planning Methods
	Motion Control:
	Path planning:
	Game Planning:


	Conclusion and Future Work


