
A summary over the AI system
as of: 15.11.2014

There is also a presentation that you should have a look at:
https://tigers-mannheim.de/owncloud/index.php/apps/files
/ajax/download.php?dir=%2Fpublic%2FDocuments%2Fsonstiges&
files=TIGERS%20-%20Informatik%2BSumatra%20-%20Tigers%20WE%202014.pdf

The big picture

The good old architecture figure:

AI flow

Modules

KI – Tigers Mannheim https://tigers-mannheim.de/trac/wiki/KI

1 von 4 18.07.15 19:02



The AI is divided into several sub-modules as can be seen in the slide above.

If you want to have a look into the code for specific modules, try using Ctrl+Shift+T to find classes, like Metis and
Athena or APlay, ARole,ASkill, ACalculator and so on. The enum EPlay, ERole, ESkillName, ECalculator are also useful,
because they contain references to all implementations.

Metis

Pre-calculation of useful information and decisions. Basically all real AI calculations are done here.

Don't fear calculating more than is needed. The idea is also, when calculating everything in each frame, we get less
performance peaks and the Java JIT can optimize your code early.

Structure

Metis consists of a list of Calculators that are processed one by one. They are defined in ECalculators. The order in the
enum specifies the order of execution. When you need to add a new Calculator, create a class and put it near the
others. Then add an entry into the enum and specify your class. Everything else is done for you.

Communication

Calculators get as input a BaseAiFrame, which consists of the WorldFrame, referee message and the previous full
AIInfoFrame. They can put any results into the given TacticalField. This will also contain data from Calculators that run
before. Before accessing such data, make sure your Calculator really runs after the one that produces the data.

Athena

Athena is responsible for executing Plays and Roles and for Role-assignment.

Plays

Initially, Plays were like a fixed strategy with multiple robots, like doing an indirect shot or a pass. It turned out, that
this does not work that well for us, because switching between Plays was too slow.

At the moment, there are basically only for concrete plays used during a match: OffensePlay, SupportPlay,
DefensePlay and KeeperPlay. Their task is to manage multiple roles. For example, if the SupportPlay gets two roles
assigned, it can create two SupportRoles. The roles will have robots assigned, but the play is free to switch the bots
among its roles.

Plays are also used for testing, if multiple roles need coordination.

Finally, there are new plays now that deal with penalty-situations, so that the other plays do not have to deal with
this.

Roles

A role is assigned to a single robot an executes a high level strategy. Ideally, it is not really complex, because it only
executes what Metis has calculated.

To make it easier to switch between different states in a role, all roles are managed with a state machine. States are
defined as sub-classes. StateIds and Events are defined using arbitrary enums. Transitions are defined in the
constructor. They can be triggered with nextState(Event-enum). A transition is not triggered directly, but only on an
update of the state machine which is triggered before any role updates. Special care must be taken when generating
multiple transitions within one frame (try to avoid it). The following figure shows the complete update cycle:

KI – Tigers Mannheim https://tigers-mannheim.de/trac/wiki/KI

2 von 4 18.07.15 19:02



To give you an idea of how states and a state machine can be useful, here is what the KeeperRole does atm:

The primary goal of a role is to choose the right skill to be executed. The skill can be set with setNewSkill. You should
call this on each state change in doEntryActions().

RoleAssigner

The RoleAssigner and its predecessors have a long history.

Initially, we had a PlayFinder that decides which plays to execute next, followed by a RoleAssigner that maps robots to
the roles of the plays based on distance.

The PlayFinder became much more complex when we tried to learn a good set of plays automatically, but after 2013
we decided to restructure the AI to be faster and more responsive. This change included removing the original concept
of plays and no PlayFinder was needed anymore...

Instead, we got a new RoleFinder. Its task was to decide which bot gets which role. The OffenseRole had the highest
priority, and roles were switched quickly when the ball moved. The disadvantage of this RoleFinder was its complexity
and some duplicate algorithms.

The next version of the RoleFinder is quite simple again and delegates most decisions. The idea is: Ask each play:
How many roles do like? How many could you deal with at most? How many roles do you need at least? And do you
have one or more preferred bots? The answers are collected in a Metis Calculator that simply collects the answers
from the respective Calculators.

The RoleAssigner will now go through the answers, starting with the play with the highest priority and tries to match
the answers. It will do so in each frame, so any changes will usually applied instantly.

KI – Tigers Mannheim https://tigers-mannheim.de/trac/wiki/KI

3 von 4 18.07.15 19:02



Last modified on Jul 14, 2015, 5:31:40 PM

Ares

Ares is responsible for skills and pathplanning. It basically executes what Metis and Athena decided.

Skills

A skill defines the movement and behavior of a bot. Each bot can run one skill at a time. A skill can generate a set of
bot-commands in each iteration. Common commands are one the one hand a velocity or destination command for
movement and on the other hand a command for the kicker and dribbler devices.

You usually won't deal with the commands directly. The class AMoveSkill already helps you with the movement
commands and with getDevices() you get good helper functions for kicker and dribbler.

A quite new structure tries to increase flexibility and readability of different implementations within skills for driving.
Have a look at the following figure:

Sisyphus

Sisyphus stands for the never ending task of calculating a good path through all the bots on the field. As there are
many fast moving obstacles, calculating a path is quite challenging.

Our path planning implementation is based on ERRT (Extended Rapidly Exploring Random Tree).

The figure above shows that it is possible to also switch to another path finder implementation.

The Pathplanning is executed periodically in its own thread. This is very useful for ERRT, because it is known for its
performance peaks that occur due to its random component.

SkillSystem

The SkillSystem manages all the SkillExecuter threads that are created for each bot. Skills are executed independently
of the AI.

Attachments (8)

TIGERS - Informatik+Sumatra - Tigers WE 2014.png (153.5 KB) - added by NicolaiO 8 months ago.
sumatraArchitecture_20131013.png (151.1 KB) - added by NicolaiO 8 months ago.
Sumatra-Ares-2014.png (114.4 KB) - added by NicolaiO 8 months ago.
RoleUpdateCycle.dia (2.3 KB) - added by NicolaiO 8 months ago.
RoleUpdateCycle.png (87.5 KB) - added by NicolaiO 8 months ago.
StateMachine_Keeper.dia (1.8 KB) - added by NicolaiO 8 months ago.
StateMachine_Keeper.png (38.3 KB) - added by NicolaiO 8 months ago.
Sumatra-Ares-2014.dia (4.6 KB) - added by NicolaiO 8 months ago.

Download all attachments as: .zip

KI – Tigers Mannheim https://tigers-mannheim.de/trac/wiki/KI

4 von 4 18.07.15 19:02


