
RoboCup 2022 SSL Champion
TIGERs Mannheim - Ball-Centric Dynamic

Pass-and-Score Patterns

Mark Geiger, Nicolai Ommer, Andre Ryll

Department of Information Technology
Baden-Württemberg Cooperative State University,

Coblitzallee 1-9, 68163 Mannheim, Germany
info@tigers-mannheim.de

https://tigers-mannheim.de

Abstract. In 2022, TIGERs Mannheim won the RoboCup Small Size
League competition with individual success in the division A tournament,
the blackout technical challenge and the dribbling technical challenge.
The paper starts with an outline of the robot’s dribbling hardware and
ball catching computations, followed by a high level summary of the AI
used in the tournament. Given 62 scored goals and no conceded goals at
RoboCup 2022, the focus is on describing the used attack and support
behaviors and how they are selected. The paper concludes with a statistic
of the tournament backing the efficiency of our employed strategies.

1 Robot Dribbling Hardware and Ball Interaction

As in all other RoboCup soccer leagues ball handing and control is a key factor
to success. It has gained more importance recently as our offensive employs an
increasing number of actions to steal the ball from opponents, to move with the
ball, or to protect it from opponents (see Section 2). Section 1.1 gives an overview
of the robot hardware which is in direct contact with the ball and recent updates
applied to it. Section 1.2 describes how to approach the ball to actually make
use of the hardware.

1.1 Dribbling Device

In the SSL a golf ball is used, which is the most rigid game ball of all leagues.
Hence, the ball itself provides only very little damping during reception and
dribbling. It also has a low friction coefficient, complicating ball control even
further.

Consequently, damping and a high friction coefficient must be provided by
the robots controlling the ball. This is done by a unit which is called the dribbling
device. It is depicted in Fig. 1 for our v2022 robot generation.

We decided to use a design with two degrees of freedom, as we did in our v2016
robots [1]. We combined the v2016 2-DoF dribbler with ZJUNlict’s additional

https://tigers-mannheim.de


2

dampers [2]. The top damper is mainly used to absorb impact energy of incoming
passes. As soon as the ball is actively controlled the exerted backspin on the ball
can push the whole dribbler upwards on the sideward sliders. The additional
load is absorbed by flexible elements and the motor is current and temperature
controlled to prevent overstress. If the dribbler drops during the dribbling process
(either due to a skirmish or an uneven ground) it is damped via the small bottom
dampers. All dampers are 3D printed from a flexible TPE material with a 70A
shore hardness. The damping properties of the top damper can be adjusted by
changing its shape (mainly by varying the branch thickness).

Fig. 1: Dribbling device with highlighted damping elements.

Compared to the version used in the 2021 hardware challenges some addi-
tional improvements were made [3]. The material of the dribbling bar has been
changed to a soft silicone, which is much less abrasive than the previously used
polyurethane. Due to the complex shape of the dribbling bar it is molded by
using two 3D-printed half shells as a mold and pouring in the liquid silicone
from the top. Furthermore, the gear modulus has been changed from 0.5 to 0.7
as the small gears tended to break under heavy load.

With the updated dribbling device, we achieve excellent damping properties
and can stop an incoming pass directly at the robot. This was tested with another
robot kicking the ball so that it reaches the dribbling device with 5 m/s. The
rebound was assessed visually and no separation of the ball from the dribbling
device could be identified. To retain ball control the dribbler can run at up to
25000 rpm. Depending on carpet friction it consumes between 2 A and 8 A of
current. A higher current corresponds to a better grip of the ball. This current
is also reported back to our central AI which uses it to asses if a difficult move
with the ball can be executed. A detailed description of our v2020 hardware can
be found in [4,5].



3

1.2 Catching a rolling ball

When a ball is rolling on the field, the robots have to stop or catch the ball. We
use two different approaches to catch such a ball. If it is possible to intercept
the ball by moving onto the ball travel line just in time, we try to intercept.
Otherwise, we try to approach the ball from behind and stop it with the dribbler.

Intercepting the ball The approach of intercepting the ball is based on a method
from CMDragons [6]. It samples multiple points along the ball travel line. A
robot trajectory is then planned to each point and the resulting travel time is
associated with the respective point. Then, we calculate the time that the ball
needs to reach each point by using our internal ball model [7]. This gives us the
slack time that a given point has. A negative slack time means that the robot
reaches the position before the ball. Plotting the slack times results in the graph
shown in Fig. 2. In most situations in which a ball is rolling towards the robot,
there are two time slots (interception corridors) where the robot can actually
catch the ball. Usually one small time window to catch the ball close to the
robots current position and one large time window far in future, when the ball
is getting so slow that the robot can overtake the ball again.

Fig. 2: Ball interception calculation.

The robot will try to move towards the first reachable interception corridor
(negative slack time) that meets some requirements (corridor width > 0.2 s and
min slack-time < -0.2 s). The selected corridor begins at a given ball travel time
(x-axis), which we can use to feed the ball model to calculate a target position
where to actually catch the ball. This will be done for each robot on the field.
The robot that can catch the ball most rapidly will be selected as the primary
offensive robot. If it is uncertain that the primary robot is able to catch the ball,
then multiple robots may try to intercept the ball.



4

Approach and stop ball The fallback, when intercepting the ball is not feasible
is to approach the ball from behind by moving onto the ball travel line and then
approaching the ball until it hits the spinning dribbler. As soon as the ball is on
the dribbler, the robot brakes as quickly as possible without loosing the ball. If
tuned well, this is quite an effective approach to quickly gain back ball control.

2 Offensive Strategies

This section introduces the basic foundation of the offensive decision making.
One key aspect of the offensive strategy are the OffensiveActionMoves. An Of-
fensiveActionMove represents a specific action a robot can execute. An Offen-
siveActionMove can be a simple pass, a kick on the opponents goal, or a special
behavior in close engagements with robots from the opponent team. Currently,
we have ten OffensiveActionMoves. There are three methods that each Offen-
siveActionMove has to implement. The method isActionViable determines the
viability of an ActionMove. The viability can either be TRUE, PARTIALLY or
FALSE. The method activateAction controls the actual execution of the move.
The method calcViabilityScore will determine a score between 0 and 1 for the
current situation. This score should be connected to the likelihood, that this
action can be executed successfully. The viability and its score are calculated
in a unique way for each OffensiveActionMove. For example, the viability of a
GOAL_SHOT is determined mainly by the open angle through which the ball
can enter the opponent’s goal. The viability of a PASS is mainly determined by
the pass target rating (see section 3.2). The different scores are made comparable
by additional weights set by hand, based on an educated guess. In addition, a
self-learning algorithm is used that takes into account the successes and failures
of past strategies to fine-tune these weights during a match. This algorithm was
first presented in our 2018 TDP[1].

Algorithm 1 shows how the best OffensiveActionMove out of one given Of-
fensiveActionMoveSet is determined. It is important to note that the Offensive-
ActionsMoves inside a given set have a specific ordering, which represents the
priority. The OffensiveActionMove in the first position of the set has the highest
priority. An OffensiveActionMove will be activated if its viability returns TRUE
and it has a higher priority than all other OffensiveActionMoves that return
a TRUE viability. Actions that return the viability FALSE will be ignored in
any further processing. All actions that are PARTIALLY viable are sorted by
their viabilityScore and if there is no action that has a TRUE viability, then the
action with the highest viabilityScore will be activated. In case all actions have
a FALSE viability then a default strategy will be executed.



5

Algorithm 1 Pseudocode - Find the best OffensiveActionMove

for (var action : actionsSet) {
var viability = action.isActionViable();
if (viability == TRUE) {
// activate first move that got declared as viable
return action.activateAction();

} else if (viability == PARTIALLY)
partiallyMoves.add(action);

}

partiallyMoves.sort(); // sort by viabilityScore
if (!partiallyMoves.isEmpty()) {
// choose best partially viable move to be activated
return partiallyMoves[0].activateAction();

}
return defaultMove.activateAction()

The separation into viable and partially viable actions, combined with pri-
orities leads to a very stable and easily modifiable/extendable algorithm for the
offensive strategy. For example, the OffensiveActionMove that controls direct
kicks on the opponent goal will return a TRUE viability if there is a high chance
to score a goal. If there is a extremely low chance to score a goal it will re-
turn FALSE. Otherwise, if the hit chance is reasonable but not really high, it
will return PARTIALLY. Additionally, this action has a high priority. Thus, the
robot will surely shoot on the goal if there is a good opportunity to score a goal.
However, if the viability is PARTIALLY the action will be compared with the
other actions and based on the viabilityScores the robot will decide whether it
should shoot on the goal or execute another action, e.g. a pass to another robot.

2.1 Offensive Dribbling

Another offensive action that the robot may choose is the so called DribbleKick,
which is one of the dribbling actions the robot can do. Figure 3a shows a typical
scenario of a ball located in front of the opponent goal. In this case the robot
chooses to do a DribbleKick. The robot approaches the ball and tries to bring it
onto its dribbler. The strength of the dribble contact can be estimated from the
power drawn by the dribble motor (see Section 1.1). The robot will wait until
the ball has a strong contact and also checks if it is possible to score a goal from
another position on a curve around the opponents penalty area. Multiple points
on the curve are sampled and evaluated for their chance to score a goal (white
= high chance to score, gray = low chance to score). The robot will drive along
the curve towards the best point, while keeping the ball on the dribbler. As soon
as the target is not blocked anymore the robot will kick the ball as shown in Fig.
3b.



6

(a) Attacker approaching ball (b) Evaluation of scoring
chances

Fig. 3: Execution of a DribbleKick

The entire sample-curve can move closer or further away from the opponent
goal, depending on the behavior of the defending robots. In general the robot will
try to avoid coming to close to opponent robots. The robot must also adhere to
the maximum dribble distances allowed. Therefore, it does not sample positions
farther away than the maximum allowable dribble distance (1 m) to avoid dribble
rule violations. The robot tries to move laterally and shoot the ball while it is still
in the acceleration phase. Since the opposing robot only reacts to the measured
position of our robot, it will always have a disadvantage due to overall system
latency. As the robot tries to shoot during acceleration it may not be possible to
change movement anymore if a dribbling violation is imminent. In such a case,
the robot will simply shoot the ball to avoid a violation, even if there is no good
chance to score a goal.

The calculations are done on every AI frame. Meaning that there is no plan
that the robot follows. Each frame the destination or the kick target can change.
This is important, because we need to react fast to the opponents movement and
re-evaluate our strategy constantly. In order not to lose the ball while dribbling,
the robot balances its orientation so that the rotational force of the ball points
in the direction of our robot. When a dribbling robot changes its orientation,
the force vector of the rotating ball also changes. However, it lags behind the
robots movement. If the orientation or the direction of movement is changed
too quickly, ball control may be lost. The robot will give priority to ball control
during the movement. However, if the robot sees that it could score a goal, it
will quickly align itself towards the target and shoot. For the final shot, the
robot will take into account its current velocity to calculate the final alignment
towards the target to make an accurate shot.



7

2.2 Defensive Dribbling

Our AI distinguishes between defensive and offensive dribbling. Defensive drib-
bling is concerned with getting the ball and protecting it from the opponent
robots while always adhering to the dribbling rule constraints. Our attacking
robot will remain in the defensive dribbling state until a good enough offensive
strategy has been found.

Figure 4 shows a common situation. The ball is located in front of the translu-
cent robot and an opponent robot is about to attack us. Our robot has ball
control, but no offensive action with a good enough viability score. Thus, the
robot will enter the defensive dribbling mode. The robot will then try to protect
the ball from the opponent robots. Multiple points within the allowed dribbling
radius are sampled and evaluated. The robot will then dribble the ball towards
the position that is rated to be the safest from opponent robots. At the same
time the robot will try to turn the ball away from the opponent robots.

Fig. 4: Defensive dribbling calculations.

3 Support Strategies

Robots which are not assigned to any attacking or defending role become sup-
porting robots. They are supposed to run free, look for good positions on the
field from where they can safely receive a pass and ideally also have a good
chance to score a goal. Section 3.1 gives an overview of the high-level behaviors
a supporting robot may get assigned. They define where a robot should go. Sec-
tion 3.2 outlines where our robots may receive passes and forms the connection
between support and attack strategies.



8

3.1 Supporting Robots

Given the fast-paced nature of the Small Size League, planning too far in the
future is not advisable. Situations change within fractions of a second. So instead
of finding good positions globally on the field, we focus on optimizing current
robot positions first, while still observing the global supporter distribution. With
the increasing number of robots in the league (2012-2017: 6, 2018-2019: 8, 2021-
2022: 11) more and more robots take over the supporting roles. During a free
kick in the opponent half, we may use up to 9 supporters, while 5 years ago, it
were 4 at most.

Over the previous years, we developed different supporting behaviors. Each
supporter is assigned a behavior. There can be limits on the number of robots
having a certain behavior and behaviors may be disabled based on situation,
tactics or game state. For each robot, the viability and a score between 0 and
1 of each behavior is determined and the best rated behavior is assigned. The
viability algorithm is similar to the one described in Section 2. The following
sections describe some of the most important behaviors.

Direct Goal Redirector Find a position from where a goal can be scored, optimiz-
ing for the redirect angle, namely the angle between the current ball position, the
desired supporter position and the goal center. A small redirect angle is better,
because receiving it is more reliable and precise.

Fake Pass Receiver If a supporter is near an ongoing or planned pass, it pretends
to receive this pass by standing close to the passing line, but without actually
receiving the ball. Opponents will need to figure out which is the right receiver
or need to defend all potential receivers. This behavior could often be observed
quite clearly in matches1.

Penalty Area Attacker Position the robot as close as possible to the opponent
penalty area to prepare it for a goal kick. Passing through the penalty area and
scoring from that position will leave the defense few chances to block the goal
kick.

Repulsive Attacker Bring the supporter to a good attacking position without
interfering with other supporters using a force field with several force emitters.
For example field boundaries, other robots and a general trend towards the
opponent goal. The desired position is determined by following the forces in
the field a fixed number of iterations. Figure 5 shows such a force field fully
visualized for the team playing towards the left goal. In the own half, forces are
directly towards the opponent half, while in the opponent half, forces are directly
towards the middle of the left or right side of the opponent half and away from
opponents and the ball.

1 https://youtu.be/W8Z_2a2Ieak?t=80



9

Fig. 5: Repulsive force field for Repulsive Attacker behavior

Repulsive Pass Receiver Based on the same repulsive principal as the Repulsive
Attacker behavior, a position with a certain distance to the ball that is not
covered by opponents is targeted.

3.2 Pass Targets

Pass targets are potential positions where the ball can be received and are cal-
culated for each friendly robot on the field, except for the keeper. Multiple pass
targets exist for each robot. Each one having a rating which is based on its pass-
ability, chance to score a goal from the pass targets location and the chance of an
opponent intercepting the ball on its way to the pass target. The pass targets are
calculated in a circle around the robot, where the circle is additionally shifted
in the current motion path of the robot. The radius of the generation cirlce is
determined by the current velocity of the robot. A fixed number of unfiltered tar-
gets is generated in each frame. The list of targets is then filtered to ensure that
all targets can be reached in time by the designated robot until the scheduled
pass arrives. Different times are taken into account: The time until the attacking
robot is able to shoot the ball, the travel time of the ball and the time needed
for the pass receiving robot to reach its passing target. The best pass targets



10

from the past are reused to efficiently optimize the targets over time. Figure 6a
shows the calculated pass targets for a single robot.

(a) Pass targets generated for a single
robot.

(b) Pass targets generated for a single
robot.

Fig. 6: Illustration of pass target generation and selection.

Once an offensive robot gets close to the ball, it will choose the currently
calculated offensive action. In case of a pass, the offensive strategy will take over
the robot with the best rated pass target as the pass receiver shortly before the
pass is executed. This allows a tighter and more stable coordination between the
robots. Figure 6b shows a typical pass situation generated by our AI. Robot 2
plans to pass the ball to robot 3. Rather than passing to the robot’s position,
it passes to a pass target near robot 3. Since we use trajectories to control our
robot movement, we can calculate the time at which robot 2 needs to kick the
ball. Furthermore, we can use the initial ball velocity and our ball model [7] to
calculate the time at which the ball needs to reach the pass target. Also, we can
calculate the time robot 3 needs to reach his pass target. By combining these
numbers we can synchronize the time in which the ball and robot 3 will reach
the pass target.

4 Conclusion

At RoboCup 2022, TIGERs Mannheim played 10 official matches during the
group and elimination phase of the division A tournament and scored 62 goals
in total, while not conceding any goal throughout the tournament. Every second
attempted goal shot was successful and two thirds of passes between TIGERs
robots succeeded on average. These numbers support the focus and strength of
the team: A fast paced and dynamic attack strategy.



11

The numbers were extracted from the official log files 2 using the TIGERs
log analyzer from the technical challenge 2019 3 and the leagues match statistics
4. Table 1 shows the full set of gathered statistics. Only shots with a duration
of at least 300 ms were considered. The ball possession specifies the amount of
time that the team uniquely possessed the ball relative to the time that either
team uniquely possessed the ball. So a value larger than 50% means that this
team possessed the ball more often than the other team.

Table 1: Tournament statistics from RoboCup 2022 (Division A)

Team Goals
scored

Goal
shots

Goal shot
success

Ball
possession Passes Pass

success
TIGERs Mannheim 62 113 54.9% 63.2% 648 66.6%

ER-Force 13 95 13.7% 59.3% 619 53.3%
RoboTeam Twente 3 28 10.7% 37.6% 255 34.9%

KIKS 1 29 3.4% 52.1% 268 34.3%
RoboDragons 1 127 0.8% 35.5% 270 29.3%

The number of goals scored indicates a good positioning by the supporters
and also a reliable and precise execution of kicks by the actual robots on the
goal. The outstanding goal shot success ratio underlines very well the offensive
action selection based on viabilities. Our robots do not blindly force kick towards
the opponent goal on every opportunity but carefully decide if this action would
have a chance to score at all. Alternative actions like the defensive dribbling
ensure a high ball possession rate in case no other reasonable offensive strategy
is available. The high number of passes and the pass success ratio show that our
supporters are in good positions to receive passes and the offense often selects a
passing action to get in a good position to score.

5 Publication

Our team publishes all their resources, including software, electronics/schemat-
ics and mechanical drawings, after each RoboCup. They can be found on our
website5. The website also contains several publications with reference to the
RoboCup, though some are only available in German.

2 https://ssl.robocup.org/game-logs/
3 https://ssl.robocup.org/robocup-2019-technical-challenges/
4 https://ssl.robocup.org/match-statistics/
5 Open source / hardware: https://tigers-mannheim.de/publications

https://tigers-mannheim.de/publications


12

References

1. A. Ryll, M. Geiger, C. Carstensen, and N. Ommer. TIGERs Mannheim - Extended
Team Description for RoboCup 2018, 2018.

2. Z. Huang, L. Chen, J. Li, Y. Wang, Z. Chen, L. Wen, J. Gu, P. Hu, and R. Xiong.
ZJUNlict Extended Team Description Paper forRoboCup 2019, 2019.

3. N. Ommer, A. Ryll, and M. Geiger. TIGERs Mannheim - Extended Team Descrip-
tion for RoboCup 2022, 2022.

4. A. Ryll and S. Jut. TIGERs Mannheim - Extended Team Description for RoboCup
2020, 2020.

5. A. Ryll, N. Ommer, and M. Geiger. RoboCup 2021 SSL ChampionTIGERs
Mannheim - A Decade of Open-SourceRobot Evolution. In R. Alami, J. Biswas,
M. Cakmak, and O. Obst, editors, RoboCup 2021: Robot World Cup XXIV, 2022.

6. J. Biswas, J. P. Mendoza, D. Zhu, and M. Klee, S. Veloso. CMDragons 2014 Ex-
tended Team Description, 2014.

7. A. Ryll et al. TIGERs Mannheim - Extended Team Description for RoboCup 2015,
2015.


