
Study report
of the course Information Technology

at the Baden-Wuerttemberg Cooperative State University Mannheim

Subject
Robust On-Board Image Recognition for Autonomous Robot-Ball

Interaction

Rebekka Litzelmann and Michael Ratzel
20.06.2020

Processing period: 14.10.2019 - 20.06.2020
Student id, course: 6079589 6614999, TINF17ITIN
Supervisor: Prof. Dr. Jochem Poller
Signature of supervisor

Declaration

We hereby assure you that we have written our study report on the

Subject

Robust On-Board Image Recognition for Autonomous Robot-Ball Inter-
action

independently and that we have not used any other sources and aids than those
indicated.

We also assure you that the electronic version submitted is the same as the printed
version.∗

∗ if both versions are required.

Mannheim, 20.06.2020

Mannheim, 20.06.2020

Abstract

In the Small Size League (SSL) soccer competition of the Robot World Cup
(RoboCup), the TIGERs Mannheim team uses an image recognition system that
recognises the ball directly with cameras on the robots. This reduces the reliance on
the league-internal vision system. Based on a previous work, this study report aims at
centralising the configuration system and enhancing the detected ball position using
undistortion and backprojection. The centralisation avoids deviating configuration
states in the multi-robot environment. The former configuration system is modified
and extended to the robots’ Firmware by introducing a new concept. An undistortion
model with few parameters is successfully generated and trained. It combines high
performance and accuracy. Additionally, the detected ball position is projected back
into the three-dimensional space, which contributes to a more effective control of the
robot.
The results of this study report reflect an improvement in the overall robustness of the
image recognition, although the new system has yet to prove itself in a competitive
tournament environment like RoboCup.

- III -

Zusammenfassung

In der Roboterfußballweltmeisterschaft der Small Size League des RoboCup kommt
beim Team der TIGERs Mannheim ein Bilderkennungssystem zum Einsatz, das den
Ball direkt mit Kameras auf den Robotern erkennt. Dadurch wird die Abhängig-
keit von dem ligainternen Bildverarbeitungssystem reduziert. Aufbauend auf einer
vorangegangenen Projektarbeit zielt dieser Studienbericht darauf ab, das Konfigura-
tionssystem zu zentralisieren und die erkannte Ballposition durch Entzerrung und
Rückprojektion zu verbessern.
Die Zentralisierung vermeidet abweichende Konfigurationszustände in der Multi-
Roboter-Umgebung. Das frühere Konfigurationssystem wird modifiziert und durch
die Einführung eines neuen Konzepts auf die Roboter-Firmware ausgedehnt. Ein
Entzerrungsmodell mit wenigen Parametern wird erfolgreich erzeugt und trainiert. Es
kombiniert hohe Leistung und Genauigkeit. Zusätzlich wird die erfasste Ballposition
zurück in den dreidimensionalen Raum projiziert, was zu einer effektiveren Steuerung
des Roboters beiträgt.
Die Ergebnisse der Projektarbeit spiegeln eine Verbesserung der allgemeinen Ro-
bustheit des Bilderkennungssystems wider, wobei das neue System sich erst noch in
einem wettbewerbsorientierten Turnierumfeld wie dem RoboCup bewähren muss.

- IV -

Contents

List of Figures VII

List of Tables IX

Listings X

Acronyms XI

1. Introduction 1
1.1. RoboCup . 1
1.2. Small Size League . 2
1.3. TIGERs Mannheim . 3
1.4. Aim of this work . 4

2. Current Hardware and Software Architecture 5
2.1. TIGERs Robots . 5
2.2. Raspberry Pi and Raspberry Pi Camera Module 6
2.3. Base Station . 8
2.4. Sumatra . 8
2.5. Firmware . 10
2.6. Balldetector: The Image Recognition Software 11

3. Improved Configuration System 12
3.1. Previous Balldetector Configuration System 12

3.1.1. YAML File Structure . 12
3.1.2. Software Workflow . 14

3.2. Motivation . 15
3.3. Concept . 17

3.3.1. Sumatra . 18
3.3.2. Robot Console . 19
3.3.3. Ball Detector . 19

3.4. Implementation . 20
3.4.1. Firmware . 20

- V -

Contents

3.4.2. Ball Detector . 24
3.4.3. Tests . 25

3.5. Results . 26
3.6. Discussion . 29

4. Cross-Compilation 30

5. Camera Model 31
5.1. Transformation Into Camera Space 31
5.2. Projection onto the image plane . 32
5.3. Transformation Within the Image Plane 33
5.4. Distortion Model . 33

6. TIGERs Camera Calibrator 35
6.1. Pattern Detection Notebook . 35
6.2. Camera Calibration Notebook . 36
6.3. Distortion Inversion Notebook . 36
6.4. TIGERs Camera Calibrator in Use 37

6.4.1. Detection . 37
6.4.2. Calibration . 38
6.4.3. Distortion Inversion . 44

7. Back-Projection 46

8. Future Work 49

9. Conclusion 51

Bibliography 52

- VI -

List of Figures

1.1. RoboCup Soccer SSL Division A Game 2
1.2. TIGERs robot in generation 2019 at RoboCup 2019 in Sydney,

Australia . 4

2.1. 2019 generation of the TIGERs robot 6
2.2. Raspberry Pi 3 and the Raspberry Pi Camera Module [12] 7
2.3. The TIGERs Base Station . 8
2.4. Sumatra - simulation interface . 9
2.5. The robot’s view and a ball detected 11
2.6. Data flow diagram of the previous configuration system 11

3.1. Workflow diagram of the start of the application 14
3.2. Workflow diagram of the DetectionManager 15
3.3. Data flow diagram of the improved configuration system 17
3.4. Two options to change the configuration values 18
3.5. Option to change camera parameters from Sumatra 27
3.6. Option to change camera parameters via the Robot Console 28

6.1. Successful detection of a chessboard pattern 37
6.2. Comparison between the considered image sections 38
6.3. Criteria 1: rectangular distorted shape 39
6.4. Criteria 2: no singularity in radial distortion 40
6.5. Criteria 3: mostly monotonic radial distortion 40
6.6. Criteria 4: sharp and wide border around undistorted shape 41

B.1. Distortion model with k1, k2 . 59
B.2. Distortion model with k1, k2, k3 . 60
B.3. Distortion model with k1, k2, k3, k4, k5 61
B.4. Distortion model with k1, k2, k3, k4, k5, k6 62
B.5. Distortion model with k1, k2, k4 . 63
B.6. Distortion model with k1, k2, k4, k5 64
B.7. Distortion model with k1, k2 and p1, p2 65
B.8. Distortion model with k1, k2, k3 and p1, p2 66

- VII -

List of Figures

B.9. Distortion model with k1, k2, k3, k4, k5 and p1, p2 67
B.10. Distortion model with k1, k2, k3, k4, k5, k6 and p1, p2 68
B.11. Distortion model with k1, k2, k4 and p1, p2 69
B.12. Distortion model with k1, k2, k4, k5 and p1, p2 70
B.13. Distortion model with k1, k2 and s1, s2, s3, s4 71
B.14. Distortion model with k1, k2, k3 and s1, s2, s3, s4 72
B.15. Distortion model with k1, k2, k3, k4, k5 and s1, s2, s3, s4 73
B.16. Distortion model with k1, k2, k3, k4, k5, k6 and s1, s2, s3, s4 74
B.17. Distortion model with k1, k2, k4 and s1, s2, s3, s4 75
B.18. Distortion model with k1, k2, k4, k5 and s1, s2, s3, s4 76
B.19. Distortion model with k1, k2 and p1, p2 and s1, s2, s3, s4 77
B.20. Distortion model with k1, k2, k3 and p1, p2 and s1, s2, s3, s4 78
B.21. Distortion model with k1, k2, k3, k4, k5 and p1, p2 and s1, s2, s3, s4 . . 79
B.22. Distortion model with k1, k2, k3, k4, k5, k6 and p1, p2 and s1, s2, s3, s4 80
B.23. Distortion model with k1, k2, k4 and p1, p2 and s1, s2, s3, s4 81
B.24. Distortion model with k1, k2, k4, k5 and p1, p2 and s1, s2, s3, s4 82

C.1. Test setup . 83

- VIII -

List of Tables

3.1. Test Cases . 26

6.1. Comparison of the different calibrated distortion models 42
6.2. Calibration results . 43
6.3. Final cost function value of the inverted distortion models 45

7.1. Comparison of the axis between bot and camera space 46

C.1. Balldetector test measurements in m 84

- IX -

Listings

3.1. YAML file structure . 13
3.2. previous balldetector camera configuration YAML file 20
3.3. new balldetector camera configuration structure in C 21
3.4. AWB parameters for the Raspberry Pi Camera Module 21
3.5. Implementation of setting the camera’s saturation from the Robot

Console . 22
3.6. Data Structure Declaration and Definition of ConfigFileDesc 23
3.7. Config: Thhe superordinate data structure 24
3.8. Method updateConfig() for the camera parameters 25

A.1. Data structures for the balldetector configurations in the header file
"Commands.h" . 56

- X -

Acronyms

AI Artificial Intelligence

CNN Convolutional Neural Network

COM Communication Port

CPU Central Processing Unit

FOV Field Of View

GUI Graphical User Interface

MMAL Multimedia Abstraction Layer

OpenCV Open Source Computer Vision Library

RMSE Root-mean-square Error

SSL Small Size League

TIGERs Team Interacting And Game Evolving Robots

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

YAML YAML

- XI -

1. Introduction

The work presented here has been created in the context of a project organised
and maintained by students of the Cooperative State University Mannheim. In the
project, which is called Team Interacting and Game Evolving Robots (TIGERs),
students mainly develop and program robots to participate in the Small Size League
(SSL) of RoboCup, a world championship in robot soccer.
The following chapters are an introduction to these topics and provide a general
overview necessary for this thesis’ conclusions.

1.1. RoboCup

The Robot World Cup Initiative, chiefly referred to as RoboCup, was established in
the 1990s as the next big long term challenge in robotics and Artificial Intelligence
(AI). Leading scientists declared the following "ultimate goal":

By the middle of the 21st century, a team of fully autonomous humanoid
robot soccer players shall win a soccer game, complying with the official
rules of FIFA, against the winner of the most recent World Cup [24].

With soccer as the motivation to push research in robotics and AI, the first inter-
national RoboCup was held in 1997 in Nagoya, Japan. Over 40 teams participated
in different leagues [2]. RoboCup has grown into a well-established institution in
robotics and promotes the development of advanced technologies in robotics ever
since. Worldcup competitions and conferences are held annually, with the "dream"
mentioned above as constant companion.

- 1 -

1.2. Small Size League

In the highly dynamic games usually not all environmental information is available,
state information must be gathered by utilizing sensor data [24].

The RoboCup covers several leagues that range from humanoid robot soccer and
simulated soccer to non-humanoid robot soccer, and also others like logistics, @Work,
@Home and disaster rescue.

1.2. Small Size League

One of the non-humanoid leagues in RoboCup Soccer is the SSL. This league is one
of the oldest soccer leagues at RoboCup and is divided into two divisions. Figure 1.1
shows a snapshot of a game in the SSL division A.

Figure 1.1.: RoboCup Soccer SSL Division A Game

In a game in division A, eleven robots per team play on the 12m x 9m carpeted field.
Located above the playing field, a league-internal vision system is used by each team
to receive information about the position of the robots, the position of the ball and
field lines as well as the colours of the robots to identify the team. The identification
is made possible by colour patterns on top of the robots, where either blue or yellow
defines the team colour [29]. The data from the vision system is sent to each team’s

- 2 -

1.3. TIGERs Mannheim

private computer system next to the playing field, which processes the position data
and sensor data of its own robots. Each team develops its own AI to send commands
to the robots via wireless communication and control their behaviour.
During the ten minutes of regular playing time, the teams aim to score more goals
than the opposing team [29].

The rules for Division B are similar, with minor adjustments such as the number of
robots on the field and the field size.

The SSL is the only league in RoboCup Soccer that uses a shared vision and a hybrid
centralized/distributed robot control system [27].

1.3. TIGERs Mannheim

TIGERs Mannheim is the robot soccer team of the Cooperative State University
Mannheim. The acronym stands for Team Interacting and Game Evolving Robots.
The team, which was founded in 2009 by students of information technology, partici-
pates in the RoboCup SSL since 2011 annually. By 2014, the team achieved being in
the Top 8, the European championship was won in 2016 and the the team celebrated
its biggest success in 2018 by being placed 3rd in the worldwide competition and
being awarded multiple awards, the Excellence Award for the overall performance
and representation of the RoboCup goals being one worth mentioning especially.
Other honours include the award for the best Team Description Paper, the Open
Source Award and the Technical Challenges. One of the team’s robots in the recent
generation 2019 can be seen in Figure 1.2.

- 3 -

1.4. Aim of this work

Figure 1.2.: TIGERs robot in generation 2019 at RoboCup 2019 in Sydney, Australia

1.4. Aim of this work

This work focuses on using the Raspberry Pi Camera Module V1 used on the TIGERs
robots. A basic approach to detect the ball with this camera was implemented in a
previous work. The aim is to refine this software to increase the robustness of the
solution. Therefore, typical problems like diverging configurations on multiple bots or
distortion errors of the detection itself are tackled. Furthermore, the implementation
of a ball backprojection solution is part of this work. It aims to use a three dimensional
position and increase the control possibilities.

- 4 -

2. Current Hardware and Software
Architecture

The project of centralising the configuration system for the image recognition system
focuses on an improvement of the configuration system for the TIGERs ball detection
software and therefore is a pure software work. However, many components are
touched by the ball detection configurations, so the basics of the hardware as well as
the relevant software parts are provided in this chapter.
Current hardware involves the robot in the generation of 2019 with all of its com-
ponents, including a Raspberry Pi and the Raspberry Pi Camera Module and the
TIGERs Base Station. The software components contain the central AI, the ball
detection software and the robot’s Firmware.

2.1. TIGERs Robots

The architectural design of the TIGERs robots in the generation v2019 is shown in
Figure 2.1. All of the design and mechanics have been engineered by the team itself
and are highly specialized to meet the requirements for robot soccer in the SSL.

Four omnidirectional wheels, a combined kicking and chip-kicking unit as well as a
dribble unit are the main parts for the robot to be able to play soccer. A camera
located in the front is one of many sensors, which include motor feedback, the infrared
barrier of the dribbling unit and a gyroscope [25].
The sensor inputs, including the one for the camera, are connected to the robot’s

- 5 -

2.2. Raspberry Pi and Raspberry Pi Camera Module

mainboard, where the robot is controlled from. The processing is based around one
main microcontroller, this main processor is an STM32H743 [25].

Figure 2.1.: 2019 generation of the TIGERs robot

The on-board front camera provides "local vision information" [32] which is processed
on a Raspberry Pi integrated in the robot’s design and connected to the mainboard
via Universal Asynchronous Receiver/Transmitter (UART).

2.2. Raspberry Pi and Raspberry Pi Camera Module

Raspberry Pi is a "low-cost" [23], single-board Linux computer often used in education
[23] and private automation projects as well as Internet-of-Things-applications. The
Raspberry Pi 3 A+ contains a single chip system with an ARM-Microprocessor and
interfaces for Universal Serial Bus (USB), ethernet, a camera module and a general
purpose input/output pin, two of which offer UART functionality [32].

As mentioned above, the robot in its version 2019 has a Raspberry Pi 3 A+ mounted
onto it. This single-board computer has the first generation of the Raspberry Pi
Camera Module with a wide angle lense connected to it [32]. The camera module
was released in 2013 [14] and is specialized for use on Raspberry Pi computers [32].

- 6 -

2.2. Raspberry Pi and Raspberry Pi Camera Module

It is connected to the Raspberry Pi via a flex cable which inserts into the connector
situated between the Ethernet and HDMI ports [34], see Figure 2.2.

Figure 2.2.: Raspberry Pi 3 and the Raspberry Pi Camera Module [12]

With a native resolution of 2592 x 1944, the 5MP sensor can also operate in different
modes. The mode used is Mode 4, which applies a resolution of 1296 x 972, the
aspect ratio 4:3, frame rates from 1-42fps, full field of view (FOV) and 2x2 binning
[14].

Communication Raspberry Pi and Mainboard Communication between the main-
board and the Raspberry Pi takes place via a UART interface. This standard serial
communication protocol only uses two wires to transmit data between devices [1],
which is useful in a rather small robot where not a lot of space is desired for wiring.
UART also is a "well documented and widely used method" [1]. The limited data
frame size of 9 bits [4] is not a problem for the communication between the Raspberry
Pi and the mainboard, as small packages are sent 60 times per second. The packages
sent from the mainboard to the Raspberry Pi only contain a shutdown command
in the previous version of the balldetector, while the package in the opposite
direction contains information about so-called ball candidates, more about this
package of information in Section 2.6.

- 7 -

2.3. Base Station

2.3. Base Station

Another hardware component in the setup used for improving the configuration
system of the balldetector is the Base Station, as seen in Figure 2.3. This device
is used for communication between Sumatra, the main AI of the TIGERs, and
their robots. Via a self-contained protocol and with a frequency range of 2.300 -
2.555GHz data is sent wirelessly to the robots, while the Base Station is connected
to a computer or laptop via ethernet (100MBit/s) [30]. Commands like positions
where the robots should move to are sent from Sumatra to the robots using the Base
Station. This makes gameplay possible in the SSL without humans interfering on
the field or on any device. The robots only are controlled by the team’s AI.

Figure 2.3.: The TIGERs Base Station

2.4. Sumatra

Sumatra is the central software of the TIGERs robot soccer team and is written in
the programming language Java. It consists of several modules with different tasks,
such as calculating the best moves or processing incoming information from external

- 8 -

2.4. Sumatra

sources. One of the external information sources is the robot. Other inputs, for
example, include data from the SSL vision system (see Section 1.2). Relevant for
the project of developing an improved configuration system for the balldetector is
the connection to the robot, via the Base Station (see Section 2.3) as well as the
simulation part of Sumatra. This simulation part consists of a graphical interface
where a game can be simulated, different debugging options and options to set values
for the algorithms or for the robot are given. The layout graphical interface is
depicted in Figure 2.4.

Figure 2.4.: Sumatra - simulation interface

All robots connected to Sumatra via the Base Station are shown on the left side
of the simulated field, see Figure 2.4. On the right side, a tab "Bot Center" shows
all robot-related information and holds the option to change the configurable values
for the robot. For changing these configurations, a robot is to be selected ("Choose
Bot").

- 9 -

2.5. Firmware

In the tab "Config" several subtabs show the different robot-related configurations,
for example for the motors that drive the omnidirectional wheels.

2.5. Firmware

Firmware generally is a "software program or set of instructions programmed on a
hardware device." [13] The TIGERs robots need this collection of data and code for
communicating with other computer hardware on the robot itself. This includes
converting analog sensor signals to digital data or managing communication protocols
[10], in the context of the TIGERs robots this may be controlling the motors for
the wheels or, more importantly in the case of this report, the Raspberry Pi and its
camera module.

The Firmware software itself is written in the high-level programming language
C, which in the fast growing market of embedded systems and microcontroller
programming has become quite common [19]. The operating system ChibiOS is
used [25], which separates different functions into tasks. These tasks are executed
independently and priorities can be assigned to influence the scheduling of the
respective tasks. In the Firmware, every aspect of the robot is represented by its
own task.

In the context of this study report the TIGERs Firmware in its version main2019 for
the mainboard is used. The existing ExtTask for communication with external robot
exponents like the Raspberry Pi is the most important task for the implementation
of an improved balldetector configuration system. The command line interface of
the Robot Console are to be extended by the implementation as well.

- 10 -

2.6. Balldetector: The Image Recognition Software

2.6. Balldetector: The Image Recognition Software

A previous work based on the TIGERs project has introduced a software component
that uses the camera on the robots to detect the standard orange ball used as the
robot soccer ball in the SSL. Figure 2.5 shows the robot’s view with a ball detected.
Moreover, the balldetector, as this software is referred to, contributes to the robot
intercepting the ball. This manoeuvre is very helpful in a game of robot soccer,
where precise ball handling and passes are the key to an optimal game and was part
of the SSLs technical challenge at the RoboCup 2019 [8].

Figure 2.5.: The robot’s view and a ball detected

The software, which is written in the programming language C++, analyses the
incoming video stream from the Raspberry Pi Camera Module for round orange
spheres. A value "confidence" is calculated and represents at which percentage this
sphere can be considered an orange golf ball. The processing is perfomed on the
Raspberry Pi, which then sends up to ten "ball candidates" and their confidence value
to the robot’s Firmware via UART [32]. The further handling of this information
and interception of the ball is covered by the Firmware and the central AI Sumatra.
The general data flow is illustrated in Figure 2.6.

Figure 2.6.: Data flow diagram of the previous configuration system

- 11 -

3. Improved Configuration System

This chapter is dedicated to the improvement of the existing configuration system for
the ball detection software. The architecture of the previous system is outlined, the
new concept introduced and its implementation as well as the results are presented.

3.1. Previous Balldetector Configuration System

The configurations for the ball detection software were previously handled using
YAML files. YAML is a "human-friendly, cross language, Unicode based data
serialization languages” [17].

These files contained the configuration in written form and were included in the ball
detection software project. Changing a configuration value required making changes
to the file and resulted in the software restarting[32]. Several files were defined in the
previous version of the balldetector, such as a default and a debug configuration
file. New files could be defined for additional predefined configuration settings and
had to be added in with the other defined files.

3.1.1. YAML File Structure

Three main sections can be defined for the files’ structure: debug, camera, and
detector. The file in Listing 3.1 shows the values for the default configuration. The
first section debug includes configurations for debugging the software. stdOut, for
example, stores a boolean value which defines if output is shown via the command
line on the Raspberry Pi. The other values in this section define whether and how

- 12 -

3.1. Previous Balldetector Configuration System

the camera’s frames and information about detected balls are shown to the user.
This is the case when the Raspberry Pi is connected via SSH, for example.
The values in the section camera characterise how the camera module is initialised.
All of the camera configurations are specified by the Raspberry Pi Foundation [14].
Lastly, the detector section stored a value for the balldetector method, which
either can be scanLines or cmVisionScanLines. Configuration values for the two in
turn are set in the respective subsections.

For the values exposureMode (Listing 3.1 l.12), awbMode (l.13) and imageEffect
(l.21), as well as for the detector method (l.25), linesDirection (l.30), lineDistribution
(l.31) and maskBase (l.37) multiple options are available. For the camera-related
configurations, these options are specified by Multimedia Abstraction Layer (MMAL),
a C library for use with taking videos from the Raspberry Pi [3].

Listing 3.1: YAML file structure
1 debug :
2 stdOut : false
3 show: false
4 sendInterval : 1
5 resolution : 720
6 balls : true
7 channel : "uv"
8 lines : true
9 camera :

10 iso: 400
11 shutter_speed : 10000
12 exposureMode :
13 awbMode :
14 awb_gains_b : 2.0
15 awb_gains_r : 1.0
16 brightness : 50
17 saturation : 100
18 sharpness : 0
19 contrast : 0
20 exposureCompensation : 0
21 imageEffect :
22 hflip : true
23 vflip : true
24 detector :
25 method : scanLines // cmVisionScanLines
26 scanLines :
27 firstLineAt : 1

- 13 -

3.1. Previous Balldetector Configuration System

28 lastLineAt : 90
29 numLines : 60
30 linesDirection : "up" //"down"
31 lineDistribution : " quadratic " //" linear " "log"
32 edgeDetectionThreshold : 35
33 minConfidence : 20
34 minDistBetwBalls : 15
35 shadowFactor : 0.6
36 cmVisionScanLines :
37 maskBase : " color " // edges
38 colorThresh : 50
39 heightFactor : 0.75

3.1.2. Software Workflow

Figure 3.1.: Workflow diagram of the start of the application

The balldetectors data workflow can roughly be devided into two workflows. The
first, as illustrated in Figure 3.1, includes the process of starting the execution of
the software. As a first step, the YAML configuration files are loaded from the
ConfigStore. This ConfigStore also is the method of choice for storing and updat-
ing the configuration settings after the YAML file is changed. Next in the workflow,
after getting the path to the configuration file, the main program DetectionManager
is started.

Its workflow includes the main ball detection algorithm and, concentrated on the
configuration system, is shown in Figure 3.2. Especially the first components that are
called when the DetectionManager starts, reference the ConfigStore, in the Figure
represented by dashed arrows. While a ChangeListener permanently "listens" for

- 14 -

3.2. Motivation

changes in any configuration setting, the programm’s process continues, sets the
debug configurations from the respective part of the YAML file, initializes the camera
module and here, also sets the respective configurations. The DisplayManager shows
debug information to the user.

Figure 3.2.: Workflow diagram of the DetectionManager

The ball detection algorithm itself analyses every frame of the incoming video
stream from the camera module and initialises the UART packages to be sent to the
mainboard. At last, if a shutdown command has been invoked, the software exits
the execution.

3.2. Motivation

As mentioned above, in the previous version of the balldetector software the
configuration system involves YAML files and a ConfigStore. This setup generally

- 15 -

3.2. Motivation

allows changing the camera configurations but has one major disadvantage: Each
time a change is made, it is necessary to edit the configuration file and restart the
software.
The rather complicated process of the previous configuration system is another reason
to try and find a simpler and, more importantly, centralised solution: While YAML
is "broadly useful for [...] configuration files" [17], in the case of using it in the
balldetector other aspects need to be considered as well. This includes the other
software parts, Sumatra and the Firmware, as well as the usability during testing
the robots’ behaviour and software, or a game in the SSL.

One major concern when using the balldetector during a game of robot soccer is
the deployment of the exact same configurations to every robot. With the previous
version of the configuration system, this had to be done manually by connecting to
each robot, modifying the YAML file, restarting the balldetector, then on to the
next robot. Scaled up to the 11 robots in a game, this is a task that cannot be done
efficiently using the previous balldetectors configuration system.

This problem is resolved by the implementation of an improved balldetector
configuration system.
The improved configuration system should furthermore include the option of easily
changing configuration values, also single values, without needing to restart the
software and reinitialising all sections of the balldetector configurations.

- 16 -

3.3. Concept

3.3. Concept

Developing a concept is the first step of implementing an improved solution into a
software project [22]. For the new configuration system, it was decided to modify
the previous structure and extend the configuration system to involve the Firmware.
The revised data flow for the balldetector is illustrated in Figure 3.3. The com-
ponents changed are coloured blue. As shown, the use of YAML files is eliminated
completely, and the permanent store of the configuration is moved to the Firmware,
where a data structure holds all the values. The configuration then is sent to the
Raspberry Pi periodically via the existing UART interface, where it is stored locally
and here in turn is processed. From here, the camera configurations are sent to the
camera module the same way they were in the previous version.

Figure 3.3.: Data flow diagram of the improved configuration system

For making changes to the configuration values, two options are involved in the
concept of the new balldetector configuration system. One includes the simulation
interface of Sumatra, the TIGERs’ central AI. Here, the balldetector configura-
tions are added to the existing configuration system that connects the Firmware and
Sumatra. Values like settings for the kicker unit or the motors’ configurations can
be modified from the simulation interface in Sumatra. The other option involves the
Robot Console, which can be accessed by connecting a robot to a computer system,
a laptop for example, via a USB cable and using the serial Communication port
(COM) interface to access the command line interface. A number of commands are
already defined for the same robot-related settings that can be changed in Sumatra,

- 17 -

3.3. Concept

so this was a preferred and appropriate place for the balldetector configuration
too.

The following two sections describe the two options of changing values in the improved
configuration system in detail and explain their usage. The closing section of this
chapter deals with the modifications in the balldetector software.

3.3.1. Sumatra

The main advantage of including the balldetector configurations in the existing
Config System in the Firmware is that they are shown and can be modified in Suma-
tra. From the graphical simulation interface, configuration values can be changed
for all robots that are connected to Sumatra via the Base Station. In Figure 3.4
the affected components and their interaction, respectively their connections, are
displayed. In the new concept, the connection between the Firmware and Sumatra is
used for balldetector configuration values too. This option is useful when one or
multiple robots are connected to the Base Station, e.g. in a game of robot soccer
or for testing.

Figure 3.4.: Two options to change the configuration values

- 18 -

3.3. Concept

3.3.2. Robot Console

Another approach for an option to change configuration settings might seem redun-
dant, given the approach as stated above is implemented correctly and working.
However, it has to be considered that for most of the time, the TIGERs robots
are not on a field and in a game but rather in the laboratory or in use for tests,
debugging, or implementation of another feature. For these use cases, there might
not be a Base Station involved as not needed. Although, with only the robot as
hardware around, balldetector settings or settings for the camera module might
still need to be changed. Typing a command clearly is not only easier but also
time-efficient when needing to make changes quickly, so this approach takes on the
implementation of allowing user inputs on the command line to make changes in the
ball detection software.

The Robot Console can be accessed via the COM interface by connecting the robot
to a laptop or computer with a USB cable. This relation is also illustrated in
Figure 3.4. The Robot Console and the commands defined here also are part of the
existing Config System of the Firmware.

3.3.3. Ball Detector

Storing the balldetector configurations in a structure in the Firmware and adding
it to the Firmware’s Config System, which allows for changing the values from
Sumatra or the Robot Console is only half of the concept. The connection from the
Firmware to the balldetector and the correct processing of the configuration is
equally important. Here, the previous configuration system can partly be used. The
ConfigStore in connection with the ChangeListener already offers the functionality
that values can be changed on-the-fly. This is kept in the improved version of the
configuration system.
What has to be modified however is the use of YAML files and the processing of
the values also needs to be adapted to the structures defined in the Firmware. The
general workflow of the DetectionManager and the Main workflow (see Figure 3.1
and Figure 3.2) remains untouched for the most part.

- 19 -

3.4. Implementation

3.4. Implementation

The programming work for the implementation of the concept for the improved and
centralised balldetector configuration system comes down to changes in the code
of the Firmware and the balldetector. The following chapter explains the changes
to the two and gives code examples.

3.4.1. Firmware

In the Firmware, structures were defined to store the configurations. In fact, for
each section of the YAML file, one data structure was created. Structures in the
programming language C are used to "group a number of related variables together
and refer to them by one overall name" [28]. Listing 3.3 shows the structure for
the camera configurations, as an example. Compared to the previous balldetector
configuration section for the camera in the YAML files (see Listing 3.2), this data
structure is identical, except that data types have been added. The data types
consider the value range for the respective configuration value.

Listing 3.2: previous balldetector camera configuration YAML file
camera :

iso: 400
shutter_speed : 10000
exposureMode :
awbMode :
awb_gains_b : 2.0
awb_gains_r : 1.0
brightness : 50
saturation : 100
sharpness : 0
contrast : 0
exposureCompensation : 0
imageEffect :
hflip : true
vflip : true

- 20 -

3.4. Implementation

Listing 3.3: new balldetector camera configuration structure in C
typedef struct __attribute__ ((packed)) DetectorCameraConfig
{

uint16_t iso;
uint32_t shutterSpeed ;
int8_t exposureMode ;
uint16_t awbMode ;
float awbGainsBlue ;
float awbGainsRed ;
uint8_t brightness ;
int8_t saturation ;
int8_t sharpness ;
int8_t contrast ;
uint16_t exposureCompensation ;
uint16_t imageEffect ;
uint8_t hFlip ; // 1= true , 0= false
uint8_t vFlip ; // 1= true , 0= false

} DetectorCameraConfig ;

One aspect to highlight here are the configuration settings exposureMode, awbMode,
exposureCompensation and imageEffect. These were not assigned a value in the
YAML file configuration, and now are assigned to a type of integer in the C structure.
This is the case because the camera module’s driver MMAL expects values in the
form of the respective enum. However, the UART package sent from the firmware
to the Raspberry Pi only sends numeric data types. The configuration settings
mentioned above are represented by integer values in the data structure and therefore
need to be converted to the enum value in the balldetector later on. Exemplary,
the enum for the awbMode is shown in Listing 3.4.

Listing 3.4: AWB parameters for the Raspberry Pi Camera Module
/** AWB parameter modes . */
typedef enum MMAL_PARAM_AWBMODE_T
{

MMAL_PARAM_AWBMODE_OFF ,
MMAL_PARAM_AWBMODE_AUTO ,
MMAL_PARAM_AWBMODE_SUNLIGHT ,
MMAL_PARAM_AWBMODE_CLOUDY ,
MMAL_PARAM_AWBMODE_SHADE ,
MMAL_PARAM_AWBMODE_TUNGSTEN ,
MMAL_PARAM_AWBMODE_FLUORESCENT ,
MMAL_PARAM_AWBMODE_INCANDESCENT ,
MMAL_PARAM_AWBMODE_FLASH ,

- 21 -

3.4. Implementation

MMAL_PARAM_AWBMODE_HORIZON ,
MMAL_PARAM_AWBMODE_GREYWORLD ,
MMAL_PARAM_AWBMODE_MAX = 0 x7fffffff

} MMAL_PARAM_AWBMODE_T ;

With the structures defined, they need to be sent to Sumatra via the Base Station,
to the Raspberry Pi via UART and to the Robot Console. The actual algorithm for
the communication between those components already exits and is handled in the
Firmware’s Config System, so it has been extended by the newly defined structures
for the balldetector configurations.

The Config System also includes commands for the Robot Console. Commands
for the balldetector configurations have been added to implement this option of
modifying the configuration settings. The data structures are updated each time a
value is changed in the command line interface of the Robot Console.

The implementation of the commands in the Robot Console looks like shown in
Listing 3.5. The console input is read and compared whether it equals the command
"camera sat <value>" for setting the camera’s saturation. If this is the case, in the
SetSaturation() method the input value saturation is validated for a valid range,
the configuration structure is updated and the change confirmed to the user.

Listing 3.5: Implementation of setting the camera’s saturation from the Robot Console
/*
* get the users input and compare if it equals the command for the saturation
*/
if(ConsoleScanCmd (" camera sat %i", &i8) == 1)

{
ConsolePrint (" setting camera saturation to %hd\r\n", (uint16_t)i8);
SetSaturation (i8);

}

/*
* method to set the saturation to the new value
*/
void SetSaturation (int8_t saturation)
{

if (saturation > 100)
saturation = 100;

- 22 -

3.4. Implementation

detectorCamera . config . saturation = saturation ;

ConfigNotifyUpdate (detectorCamera . pConfigFileDetectorCamera);
ConsolePrint (" camera saturation changed to %hd\r\n", (int16_t)

detectorCamera . config . saturation);
}

Displaying the configurations in Sumatra is covered by defining the structure
ConfigFileDesc, which is part of the Config System in the Firmware. Following the
example of the balldetector camera settings, the definition for the ConfigFileDesc
is described in Listing 3.6.

Listing 3.6: Data Structure Declaration and Definition of ConfigFileDesc
/*
* the general structure of the ConfigFileDesc data structure
*/
typedef struct _ConfigFileDesc
{

uint16_t cfgId ;
uint16_t version ;
const char * pName ; // 60 characters max
uint16_t numElements ;
ElementDesc * elements ;

} ConfigFileDesc ;

/*
* the definition of the ConfigFileDesc for the camera settings
*/
static const ConfigFileDesc configFileDescDetectorCamera =
{ SID_CFG_BALLDETECTOR_CAMERA , 0, " balldetector_camera ", 14, (ElementDesc []) {

{UINT16 , "iso", "100 , 200 , 400 , 800", "Iso"},
{UINT32 , " shutterSpeed ", "microsec , max :6s", " ShutterSpeed "},
{UINT8 , " exposureMode ", "0 - 13", " ExposureMode "},
{UINT8 , " awbMode ", "0 - 11", " AwbMode "},
{FLOAT , " awbGainsBlue ", "1.0 -8.0", " AwbGainsBlue "},
{FLOAT , " awbGainsRed ", "1.0 -8.0", " AwbGainsRed "},
{UINT8 , " brightness ", "0-black ,100 - white ", " Brightness "},
{INT8 , " saturation ", " -100 -100", " Saturation "},
{INT8 , " sharpness ", " -100 -100", " Sharpness "},
{INT8 , " contrast ", " -100 -100", " Contrast "},
{INT8 , " exposureCompensation ", " -25 - 25", " ExposureCompensation "},
{UINT8 , " imageEffect ", "0 - 26", " ImageEffect "},
{UINT8 , " hFlip ", "0-false ,1- true", " hFlip "},
{UINT8 , " vFlip ", "0-false ,1- true", " vFlip "}

- 23 -

3.4. Implementation

}};

The communication to external robot components is handled in the ExtTask of the
robot. Therefore, the communication to the Raspberry Pi also is integrated into this
task of the Firmware. In the previous architecture, a shutdown command is sent
to the Raspberry Pi (see Figure 2.6). This connection is reused and extended to
include the configuration values (see Figure 3.3.

3.4.2. Ball Detector

In the balldetector the counterpart for the structures defined in the firmware are
implemented. For this counterpart, data structures identical to those in the Firmware
are defined. A new C++ file is created for this. The complete file can be found under
Appendix A. The individual structures are combined in a superordinate structure
Config, see Listing 3.7. This is implemented to better mimic the previous structure of
the YAML files and to provide a greater context for the single configuration sections.
Also, for future implementations, this modular approach is easily extendible.

Listing 3.7: Config: Thhe superordinate data structure
typedef struct _Config
{

_ExtCameraConfig cameraConfig ;
_ExtDebugConfig debugConfig ;
_ExtDetectorConfig detectorConfig ;

} Config ;

The existing Config Store from the previous balldetector configuration system
is redefined. The greatest part of the work is to update the data types and to
deconstruct the connection to the YAML files. Every part of the code, where values
for the detector itself, e.g. the method, values for debugging or for the camera are
set, the newly implemented data structure is referenced instead of the respective
part of the YAML file. Enums are defined for the values of the configuration that
cannot be represented by an integer value, as explained in Section 3.4.1.

- 24 -

3.4. Implementation

In the case of the camera module’s parameters, the new update function looks as
follows in Listing 3.8. A variable of type Config is created, which is the representation
of the data structure that holds all configuration values received via UART. Each
parameter for the camera then is set to the respective value from the configuration
data structure.

Listing 3.8: Method updateConfig() for the camera parameters
void Camera :: updateConfig ()
{

Config * pConfig = ConfigStore :: getConfig ();
parameters .ISO = pConfig -> cameraConfig .iso;
std :: cout << " Camera iso set to " << parameters .ISO;
parameters . shutter_speed = pConfig -> cameraConfig . shutterSpeed ;
parameters . exposureMode = static_cast < MMAL_PARAM_EXPOSUREMODE_T >(pConfig ->

cameraConfig . exposureMode); // if set to "off" ignores ISO ...
parameters . awbMode = static_cast < MMAL_PARAM_AWBMODE_T >(pConfig -> cameraConfig

. awbMode);
parameters . awb_gains_b = pConfig -> cameraConfig . awbGainsBlue ;
parameters . awb_gains_r = pConfig -> cameraConfig . awbGainsRed ;
parameters . brightness = pConfig -> cameraConfig . brightness ;
parameters . saturation = pConfig -> cameraConfig . saturation ;
parameters . sharpness = pConfig -> cameraConfig . sharpness ;
parameters . contrast = pConfig -> cameraConfig . contrast ;
parameters . exposureCompensation = pConfig -> cameraConfig . exposureCompensation

;
parameters . imageEffect = static_cast < MMAL_PARAM_IMAGEFX_T >(pConfig ->

cameraConfig . imageEffect);
parameters . hflip = pConfig -> cameraConfig . hFlip ;
parameters . vflip = pConfig -> cameraConfig . vFlip ;

if (pCameraComponent)
raspicamcontrol_set_all_parameters (pCameraComponent , & parameters);

}

3.4.3. Tests

Testing the improved balldetector configuration system involved the following test
cases:

These tests can be seen as Unit Tests and were carried out multiple times during the

- 25 -

3.5. Results

Purpose Test Case Description
Communication between Firmware and
Sumatra

Change values in Sumatra

Communication between Firmware and
Bot Console

Change values from Bot Console

Data types and input Enter invalid values in both Sumatra
and Bot Console

Camera configuration Change values and read camera’s param-
eter to verify

Debug configuration Change values and verify console output
on Raspberry Pi

Balldetector configuration Change values and verify changes on
Raspberry Pi

Table 3.1.: Test Cases

process of programming. Errors could be eliminated quickly so that at the end of
the implementation phase, the tests succeeded and were run multiple times to verify
the stability of the implemented configuration system.

3.5. Results

The result of this project is the successful implementation of an improved configuration
system for the balldetector. The improved version is not limited to the use
of components included in the ball detection software but rather centralised the
configuration system in the robot’s Firmware, where the major advantage is the
option to deploy the same configuration settings to multiple robots at once. This
option is accessed from the graphical simulation interface integrated in Sumatra, as
can be seen in Figure 3.5 with the pre-existing button "Save to All". In addition to
that, tabs for the three configuration sections of general balldetector configurations,
debugging and camera settings are defined.

- 26 -

3.5. Results

Figure 3.5.: Option to change camera parameters from Sumatra

When a robot is connected to a laptop or computer, the balldetector configurations
can be changed via the command line interface Robot Console. The current settings
for the different configuration sections can be viewed with the command "<section>
current", as is displayed in Figure 3.6. Here, all commands regarding the camera
settings are called with the command "camera current", after all possible commands
were called with "help camera". At last, the saturation for the camera module is
changed to 90. The command line output confirms the successful change.

- 27 -

3.5. Results

Figure 3.6.: Option to change camera parameters via the Robot Console

In the improved balldetector configuration system, the data flow has been re-
designed, the permanent configuration storage has been centralized in the Firmware,
where it is sent to the Raspberry Pi periodically and from there is processed as
before, with small changes to data types and a new structure defined for receiving
the configurations from the Firmware.

- 28 -

3.6. Discussion

3.6. Discussion

In the project of improving the balldetectors configuration system, many compo-
nents of the TIGERs software project have been modified. The permanent storage
of configuration settings in the Firmware was an approach that has shown great
success when it comes to usability when changing values from either the central AI
Sumatra or from the Robot Console. Regarding the steps of a software development
process [22], more testing has to be done to fully determine all implications the
changed configuration system has for the TIGERs team, both in internal work and
also in a robot soccer game in the SSL. Especially in an event like RoboCup, this
implementation is considered very useful and time-saving when it comes to calibrating
many robots in a tight schedule.
Maintaining the software, which also is part of a software’s development cycle [22],
will be covered by future work of the TIGERs team.

Because of the modular structure and the improved framework for sending and storing
the balldetector configuration that has been developed with the implementation
of this work, future additions or substitutions to the improved configuration system
can be applied easily.

- 29 -

4. Cross-Compilation

"Embedded computers often lack the necessary resources for developing and compiling
software. The Raspberry Pi is rather special in this regard since it already includes
the gcc compiler and the needed linking tools (under Raspbian Linux). But while
the code can be developed and built on the Raspberry Pi, it may not always be the
most suitable place for software development. One reason is the lower performance
of the SD card." [15] The limited random access memory (RAM) size of 500MB is
another limitation on the used Raspberry Pi 3A+, which slows down the compile
process.[5]
Therefore a cross-compiling toolchain is one of the first targets to achieve faster
development speed by faster compilation time. Programs build on a normal x86
architecture aren’t compatible with the ARM-architecture of the Raspberry Pi
processor. A special compiler is necessary which runs on x86 and produces ARM
programs, as well as the respective ARM libraries. Crosstool-NG is a generator for
such toolchains. It builds the GNU compiler collection (GCC) and the standard
libraries necessary to build a standard C/C++ program.[18] With this environment,
all dependencies of the final executable could be cross-compiled. In this case, there
are over 300 dependencies. The work of building them by hand can be avoided by
using the libraries installed on the Raspberry Pi and and to copy them onto the host
pc afterwards. An additional advantage is, there are no compatibility issues between
different release versions of the handcrafted library and the library installed on the
Pi. To configure the build process and use the cross-compiling toolchain CMake
is used. It offers the usage of Toolchain Files to configure the cross-compilation
while still providing native compilation functionality directly on the Pi.[7] A tu-
torial to create and use the toolchain can be found on the TIGERs Mannheim GitHub.

- 30 -

5. Camera Model

In principle, cameras project three-dimensional world points onto a two-dimensional
image. This is modeled in three consecutive steps. Transforming the world position
Pw into the camera space position Pc, projecting the point onto the image plane
and applying the intrinsic camera matrix to account for the optical properties of the
camera. [20] Equation (5.1) represents this procedure, where Pw = [Xw, Yw, Zw, 1]T

is the position in the world, and p = [u, v, 1]T is the two-dimensional position on
the picture in pixels. K is the intrinsic camera matrix and the 3x4 matrix [R|t]
represents the extrinsic parameters, while s is an arbitrary scaling factor. Take note
both points are represented with homogeneous coordinates, which is not further
explained here. To achieve a more readable text, the homogeneous is also often
dropped. [16]

sp = K[R|t]Pw (5.1)

s


u

v

1

 =


fx 0 cx

0 fy cy

0 0 1



r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz



Xw

Yw

Zw

1



5.1. Transformation Into Camera Space

The extrinsic parameters R and t encode the homogeneous transformation from
world space into camera space and compose a 4x4 transformation matrix. R hereby
represents a rotation and t a translation. This matrix is multiplied with the point

- 31 -

5.2. Projection onto the image plane

Pw in world space to transform it into Pc in camera space, see equation (5.2). [20]

Pc =
R t

0 1

Pw (5.2)

Xc

Yc

Zc

1

 =


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1




Xw

Yw

Zw

1



5.2. Projection onto the image plane

A 3x4 projection matrix is required to project Pc onto the image plane. In equa-
tion (5.3) an additional normalization with x1 = Xc/Zc and y1 = Yc/Zc is applied. [20]

Zc


x1

y1

1

 =


1 0 0 0
0 1 0 0
0 0 1 0



Xc

Yc

Zc

1

 (5.3)

Equation (5.4) is the combination of the transformation and projection of Pw to
calculate the normalized representation of Pc in one single step with the matrix [R|t].
[20]

Zc


x1

y1

1

 =


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz



Xw

Yw

Zw

1

 (5.4)

- 32 -

5.3. Transformation Within the Image Plane

5.3. Transformation Within the Image Plane

To account for the intrinsic parameters of the camera, the transformed projected
and distorted point is transformed a second time within the image plane by using
the matrix K.
The focal length F is the distance between the focus point and the Image plane.
That’s the distance between the aperture and the image plane in a lens-free pinhole
camera model.
The size of the pixels on the sensors in world units (e.g., mm) are px, py. They can
be achieved by dividing the size of the sensor with the number of pixels. And they
are often combined with the focal length to create fx = F/px, fy = F/py.
The parameters cx, cy in pixels moves the optical center of the image to the given
position in the picture. This shift has extra importance with distortion, due to the
influence of the distance to the optical center on distortion. [20]

K =


fx 0 cx

0 fy cy

0 0 1

 (5.5)

5.4. Distortion Model

Distortion is an optional step in this model. It can be applied, to increase the
precision. The normalized and projected point Pc is distorted with the model in
equation (5.6).

x2

y2

 =
x1

1+k1r2+k2r4+k3r6

1+k4r2+k5r4+k6r6 + 2p1x1y1 + p2 (r2 + 2x2
1) + s1r

2 + s2r
4

y1
1+k1r2+k2r4+k3r6

1+k4r2+k5r4+k6r6 + p1 (r2 + 2y2
1) + 2p2x1y1 + s3r

2 + s4r
4

 (5.6)

= δ(x1, y1)

r2 = x2
1 + y2

1 (5.7)

- 33 -

5.4. Distortion Model

δ(x, y) =
xδ(r)(r) + δ(t)

x (x, y) + δ(s)
x (x, y)

yδ(r)(r) + δ(t)
y (x, y) + δ(s)

y (x, y)

 (5.8)

δ(r)(r) = 1 + k1r
2 + k2r

4 + k3r
6

1 + k4r2 + k5r4 + k6r6 (5.9)

δ(t)
x (x, y) = 2p1x1y1 + p2

(
r2 + 2x2

1

)
(5.10)

δ(t)
y (x, y) = p1

(
r2 + 2y2

1

)
+ 2p2x1y1 (5.11)

δ(s)
x (x, y) = s1r

2 + s2r
4 (5.12)

δ(s)
y (x, y) = s3r

2 + s4r
4 (5.13)

(5.14)

The presented distortion model in equation (5.8) is composed by three single models,
radial distortion, equation (5.9), tangential distortion, equations (5.10) and (5.11),
and thin-prism distortion, equations (5.12) and (5.13).
These models represent different physical conditions like an imperfect assembled
camera or effects caused by the lense itself, e.g. if the lense and the image sensor
aren’t perfectly parallel, or the distortion caused by the lense itself. [9]
It’s not predetermined if [x1, y1]T or [x2, y2]T is the distorted point or undistorted
point. The model can work in both ways, and the usage may differ by the used
toolbox and the use case. It’s easier to undistort a whole image if the distortion
model distorts positions. That’s because it’s not purposeful to undistort a position
of a pixel and get a resulting position in between multiple pixels of the final image.
The other way around to calculate from which position the color of the undistorted
pixel originates and then interpolate the resulting color from the adjacent pixels is
much easier. But as mentioned the requirements for the distortion model change. If
the use case is to undistort only one pixel, it is more efficient if the distortion model
undistorts positions.[35]

- 34 -

6. TIGERs Camera Calibrator

The TIGERs Camera Calibrator is a collection of python modules and jupyter
notebooks, created to easily calibrate the cameras of the TIGERs bots using the
Open Source Computer Vision Library (OpenCV). The Camera Calibrator requires
images of calibration patterns. At first a detector detects a chessboard calibration
pattern and positions are obtained, which would be placed on straight lines on a
undistorted image. With the positions detected on multiple images a calibrator
approximates the camera and distortion model parameters. In a final step the
distortion model is inverted to suit the use case of the on bot vision software. The
aim is to create a sufficiently precise distortion model with as few parameters as
possible to reduce the performance impact on the bot hardware.

6.1. Pattern Detection Notebook

The pattern detection is handled by OpenCV. It can detect 3 different patterns, a
chessboard pattern and two circle patterns, one symmetric and one asymmetric, but
only the chessboard pattern is currently supported in the TIGERs Camera Calibrator.
[26] The Detector itself is wrapped in an extra python module, which is used in
the detection notebook. It can be fully configured, by changing the parameters of
a python dictionary. After the detection is applied a TkInter based graphical user
interface (GUI) is used to validate the results. The window shows the pictures, where
a pattern was detected and highlights the positions of the detected features. It is up
to the user to make the decision if the pattern is detected well enough or whether
the configuration should be improved further. The notebook structure is designed

- 35 -

6.2. Camera Calibration Notebook

for accumulating results from multiple detection runs with different configurations.
Therefore patterns with a different amount of chessboard tiles and different detection
parameters can be combined. The results are shared between the notebooks via the
jupyter storemagic. [33]

6.2. Camera Calibration Notebook

The OpenCV camera calibration module is wrapped in another python module,
which is used by the camera calibration notebook. In addition the distortion and
camera model is implemented in a python module as well and is used to validate the
calibrated Camera Parameters. The implemented distortion model only supports
radial, tangential and thin prism distortion. Therefore only these 3 distortions are
enabled by the calibration wrapping and the tilted camera model, also provided by
OpenCV, is not available. [26] The main feature of this notebook are the plotting and
validation capabilities. Which are shown in more detail in Section 6.4 and appendix B.

6.3. Distortion Inversion Notebook

In the next notebook the distortion inversion can be controlled. This is necessary
because OpenCV does provide the distortion model parameters in the direction
distort an undistorted point into the distorted picture. [26] Which is optimal to
undistort whole images, see Section 5.4. Therefore a inversion of the distortion
model is necessary to effectively undistort the ball position. For this reason a python
module was developed using the scipy library, to optimize the parameters of the
inverted Model by using data generated by the OpenCV model.

- 36 -

6.4. TIGERs Camera Calibrator in Use

6.4. TIGERs Camera Calibrator in Use

The following section describes how the created tools are used on a set of images.
Multiple Programs and scripts can be found on the internet to take these pictures
with the Raspberry Pi, e. g. raspistill. It’s important that the chosen camera
mode matches the used camera mode of the final product. They don’t need to be
equal, but they must have the same aspect ratio and use the same cutout of the
camera FOV.

6.4.1. Detection

Figure 6.1.: Successful detection of a chessboard pattern

The paths of the resulting images are inserted into the list all_images and the
detection is configured with the chess_detect_config dictionary. Part of the

- 37 -

6.4. TIGERs Camera Calibrator in Use

parameters are used for the findChessBoardCorners function of OpenCV. It takes
care of the most part of the detection. Note, that the x and y parameters don’t
specify how many chessboard tiles there are. It specifies how many inner corners with
4 aligning tiles exist, see the detected pattern in Figure 6.1. On a 6x8 chessboard
this results into 5x7 corners. [26] With the remaining parameters a subpixel corner
detection can be made. It may be used to refine the positions of the detection even
further by using the cornerSubPix function of OpenCV. [26] Figure 6.1 shows the
GUI where the user can zoom into the images and decide if it shall be used in this
way.

6.4.2. Calibration

The Camera Calibration notebook is similarly configured via the calibration_-
config dictionary. As mentioned earlier it provides nearly the full features of the
calibrateCameraExtended OpenCV function by only excluding the tilted camera
model. Further information on the dependencies of these parameters can be found
in the OpenCV documentation. [26]

(a) Reduced image section (b) Full image section

Figure 6.2.: Comparison between the considered image sections

Despite the overall aim to create a model with as few parameters as possible, the
focus in this step is on a very precise model. That’s because the inverted model is

- 38 -

6.4. TIGERs Camera Calibrator in Use

configured independently, and is created by the data this model creates, so a better
model created by OpenCV will yield in a better training environment for the final
product. To classify the best model, the root-mean-square error (RMSE) provided
by OpenCV during the calibration is not sufficient. Again that’s because of the
direction of the model. This model is created to undistort a image, and this affects
the considered image section of the model. In Figure 6.2a is this reduced section
shown. The red dots represent the pixels in the undistorted image and the green
ones, the corresponding pixels in the distorted image. The problem is, that the green
dots only represent a small amount of the whole image. If the model is used on the
whole distorted image area a figure like Figure 6.2b might be the result.

Figure 6.3.: Criteria 1: rectangular distorted shape

As one target of this work is, to undistort a ball position, which can appear on the
whole distorted image, the full image section must be considered and the RMSE is
not usable alone. But it is still a valuable criteria, because it provides the information
how well the model approaches the reality in the reduced image section. The aim is
to create a distortion model which is bijective on the whole area. To achieve this

- 39 -

6.4. TIGERs Camera Calibrator in Use

Figure 6.4.: Criteria 2: no singularity in radial distortion

Figure 6.5.: Criteria 3: mostly monotonic radial distortion

four additional criteria are introduced.

Criteria 1 Is the shape of the distorted image in the plots rectangular?

Criteria 2 Has the radial distortion no singularities?

Criteria 3 Is the radial distortion mostly monotonic?

Criteria 4 Has the shape of the undistorted image a clear border?

The first criteria, the shape of the distorted image is relevant because of the way
how the figures like Figure 6.2b are created. All points within the 640 by 480 pixel
image, and a padding of an additional 1000 pixels around the image are distorted
with the distortion model provided by OpenCV. These points are filtered and only
if the distorted point is within the 640 by 480 image, the undistorted input is added
to the undistorted image. If the model does not behave very well outside of it’s
designed borders it can result into a shape shown in Figure 6.3. The target is to have
a completely filled rectangular shape of the distorted image, so that every possible

- 40 -

6.4. TIGERs Camera Calibrator in Use

Figure 6.6.: Criteria 4: sharp and wide border around undistorted shape

position in the image has a corresponding undistorted point.
The second and third criteria are based on the radial distortion model δ(r)(r). In the
area close to a singularity the values sometimes tend towards infinity. This causes
the model to distort points within this distance very unpredictable. A plot with
a singularity is shown in Figure 6.4, and it’s affects can be seen in Figures B.4a
and B.16a. The area were no green distorted points are shown, is the region where
the singularity can be found. This unpredictable distortion of positions does affect
the data to train the final model on and therefore should be avoided.
The third criteria, that the radial distortion should be mainly monotonic is based on
an empiric observation. The distortion of a lens is stronger the further away from the
optical center. Therefore the radial distortion also needs to get bigger, the further
away it gets from the optical center, respectively the radius increases. Especially low
parameter models like shown in Figures 6.5, B.1, B.7 and B.19 tend to suffer from
this problem. [26]

- 41 -

6.4. TIGERs Camera Calibrator in Use

Model name C. 1 C. 2 C. 3 C. 4 RMSE Alias
k1-k2 X X X 0.3821
k1-k2-k3 X X X 0.2702
k1-k2-k3-k4-k5 X X X 0.2604
k1-k2-k3-k4-k5-k6 X X X 0.2603
k1-k2-k4 X X 0.2610
k1-k2-k4-k5 X X X X 0.2604 A
k1-k2-p12 X X X 0.3802
k1-k2-k3-p12 X X X 0.2677
k1-k2-k3-k4-k5-p12 X 0.2594
k1-k2-k3-k4-k5-k6-p12 X X X 0.2589
k1-k2-k4-p12 X X 0.2594
k1-k2-k4-k5-p12 X X X X 0.2589 B
k1-k2-s1234 X X X 0.3703
k1-k2-k3-s1234 X X X 0.2644
k1-k2-k3-k4-k5-s1234 X X X 0.2567
k1-k2-k3-k4-k5-k6-s1234 X X X 0.2565
k1-k2-k4-s1234 X X 0.2572
k1-k2-k4-k5-s1234 X X X X 0.2568 C
k1-k2-p12-s1234 X X X 0.3658
k1-k2-k3-p12-s1234 X X X 0.2643
k1-k2-k3-k4-k5-p12-s1234 X X X 0.2553
k1-k2-k3-k4-k5-k6-p1-s12342 X X X 0.2552
k1-k2-k4-p12-s1234 X X 0.2561
k1-k2-k4-k5-p12-s1234 X X X 0.2553

Table 6.1.: Comparison of the different calibrated distortion models

The fourth criteria is the border of the undistorted shape in the plot. This border
needs to be sharp and wide. In Figure 6.6 this is not the case. The lower left corner
of the undistorted shape continues beyond the expected border. This effect can also
be seen in the distorted green points. The green dots look like they wrap around

- 42 -

6.4. TIGERs Camera Calibrator in Use

Parameter A B C
fx 338.70 338.44 337.65
fy 338.36 338.13 337.39
cx 319.15 319.74 319.88
cy 228.98 229.25 232.14
k1 7.0490 7.6025 6.4179
k2 1.0318 1.1167 0.9113
k4 7.4290 7.9839 0.9113
k5 3.3603 3.6295 3.0060
p1 - -0.0001 -
p2 - -0.0003 -
s1 - - -0.0003
s2 - - -0.0002
s3 - - -0.0035
s4 - - 0.0015

Table 6.2.: Calibration results

something and continue in another direction. This clearly counteracts the aim to
create a bijective distortion model and should therefore be avoided. Even if there is
a small gap between the usable part and the outer points, a wide gap is preferred to
make sure it’s not only the imprecision of the plot.
These four additional criteria are applied to Figures B.1 to B.24 and the results
are shown in Table 6.1. Only the three highlighted models A, B and C meet the
requirements. All use the k1, k2, k4 and k5 parameters of the radial model. B uses in
addition the tangential and C the thin prism model, with the parameters p1, p2 or
s1, s2, s3, s4 respectively (Table 6.2). The results vary on some parameters like k4,
but they don’t allow to rank the distortions, even in combination with the RMSE.
Therefore all three models are further investigated in Section 6.4.3.

- 43 -

6.4. TIGERs Camera Calibrator in Use

6.4.3. Distortion Inversion

The procedure of inverting the model is at first creating enough data with the previous
model and optimize the inverted one with it. The training with a low parameter
model usually comes with a loss in precision, but as shown in the RMSE column
of Table 6.1, even the models with two or three parameters created decent results
in the area they were trained on. Therefore in the inversion process it’s important
to create the test data set for the whole distorted image area. The data consists
of a set of n two-dimensional undistorted Points P = {p1, p2, ..., pn} and a set of n
two-dimensional distorted points Q = {q1, q2, ..., qn}. These data sets are created on
the same way how the plots are created. Each undistorted point pi inside an image
area with a large padding is distorted and if this distortion is inside the area, the
point is added to the data set together with its corresponding position qi = δ(pi).
With this data the cost function c can be described as Equation (6.1). The minimize
of the scipy kit is used to optimize f . [31]

c(k1, ..., k6, p1, p2, s1, ..., s4) =
√√√√ 1
n

n∑
i=1

(
[‖δ−1(k1, ..., k6, p1, p2, s1, ..., s4, q1)− p1‖2]

2
)

(6.1)
To create the best low parameter model, further investigation is necessary. Currently,
the models A-C have between four to ten distortion parameters in addition to four
parameter of the intrinsic matrix matrix (Table 6.2). The intrinsic parameters can
be reduced by combining fx and fy into f = fx+fy

2 . The effect of the tangential and
thin prism model are very small on the overall distortion especially if it’s considered
that the ki parameters are multiplied with up to r6, while pi is multiplied with r2

and si with up to r4, therefore these parameters are ignored for the inversion. This
reduces the amount of parameters down to a minimal of four, if a distortion model
with only one parameter is sufficient. Multiple test with different combinations of
radial parameters were run, and the results are shown in Table 6.3. As expected
the highest order model k1-k2-k4-k5 clearly creates the best overall result, but it’s
unclear if e. g. model k1-k2 is sufficient as well. [35] Another effect, that the results
with data created by the distortion model A are the best can be expected. That’s
because the inversion models don’t have the capabilities to represent the tangential

- 44 -

6.4. TIGERs Camera Calibrator in Use

or thin prism distortion used in model B and C.

Model A Model B Model C
k1 13.429 13.54 14.286

k1-k2 1.4644 1.9937 4.1717
k1-k2-k3 1.2211 1.8459 4.0882
k1-k2-k4 1.2644 1.87 4.1047

k1-k2-k4-k5 0.25493 1.4575 3.7171
k1-k4 3.1262 3.3821 5.0797

Table 6.3.: Final cost function value of the inverted distortion models

To decide if k1-k2 is sufficient, the errors are put into relation to the reality. The
Raspberry Pi Camera Module has in combination with the used lense a FOV in y
direction of ca. 70°. [6] Therefore an error of one pixel on a 640x480 image introduces
an error of 0.15°. This might be measurable if the bot stands still, but during the
game with the acceleration in multiple dimensions by the omnidirectional drive, or
by bot collisions, or just by the roughness of the game field, has an imprecision much
higher than 0.15°. Therefore even though the result is worse than the k1-k2-k4-k5
model the k1-k2 model was selected to be implemented on the bots, because of the
smaller performance overhead. The question which data set shall be used is hard to
answer. As shown on Figures B.6a, B.12a and B.24a the distortion models differ,
but no applicable metric was found to tell which one represents the reality better.
Therefor a real life test is necessary. The complete results are shown in Appendix C,
but in short the model calibrated with the data from Model C created the best
results with an average error of -9.6mm ± 15.0mm. Therefore these parameter are
used on the bots, spite of the worse theoretical results shown in Table 6.3.

- 45 -

7. Back-Projection

After a successful calibration and distortion removal the detected ball position is still
a two dimensional image position, which is helpful but can be improved. A three
dimensional position in regards to the bot is much more helpful, because the bot can
not only detect if the ball moves from the left side of the image to the right side. It
also knows if the ball moves towards the bot or away, or is in the air, therefore a
velocity and direction of the ball movement can be calculated and the prediction of
the ball position can be improved. E. g. during the task of intercepting a ball, it’s
not sufficient to move the bot to the left, if the ball is on the left side of the image
and vice versa, because if the ball is shot in an angle this might fail. E. g. the ball
starts on the left in regard to bot, but the correct interception point would be on the
right side, because of the direction of the ball movement. The bot would still start
moving to the left and would realize midways that he’s on the wrong path, which
might be too late to intercept the ball correctly.

To create this three dimensional position, some extra information needs to be ex-
tracted from the picture. A position on an image represents a ray into the three
dimensional world. But the information where on the ray the ball is, is lost during the
process of taking the image. A common approach is to intersect rays of two different

Axis bot camera
+x right right
+y forward down
+z up forward

Table 7.1.: Comparison of the axis between bot and camera space

- 46 -

7. Back-Projection

cameras, and get the exact three dimensional position, but this is not possible on
the TIGERs Bots, due to the lack of a second camera. Therefore another approach
is required, which is to detect the size s of the ball on the image. This size directly
corresponds to the distance d between ball and the camera. The relationship is
shown in Equation (7.1), with h the height of the ball in world units and f the focal
length. [36][37]

h

d
= s

f
(7.1)

And with d, the ray is known, as well as the position on the ray and therefore the
three dimensional position of the ball can be calculated by Equation (7.2)


Xc

Yc

Zc

 = d√
x2 + y2 + 12


x

y

1

 (7.2)

Another step of the backprojection is to transform the position from the camera
space into the more widely used bot space. This allows the information created
by the balldetector to be easily used in other parts of the software, because the
information is already in the used reference system. The transformation consists
of an translation, rotation and swapping axis. The meaning of the different axis
can be found in Table 7.1. Note that not only axis y and z need to be swapped, in
camera space positive y coordinates represent down and in bot space positive z up.
Therefore this axis needs also to be inverted. The camera is only tilted ϕ = −20°
downwards, to increase the part of the FOV pointed onto the field and therefore
the rotation is only around the x axis. This simplifies the needed rotation matrix.
The translation from the bot center to the camera is t = [0, 0.070, 0.072]T . All three

- 47 -

7. Back-Projection

steps combined are shown in Equation (7.3)


Xb

Yb

Zb

 =


1 0 0 0
0 cosϕ − sinϕ ty

0 sinϕ cosϕ tz

0 0 0 1




Xc

Zc

−Yc

1

 (7.3)

=


Xc

cosϕZc + sinϕYc + ty

sinϕZc − cosϕYc + tz)



- 48 -

8. Future Work

This chapter is dedicated to future work, which could not make it into this work’s
projects. They all are related to further improving stability, robustness and perfor-
mance of the TIGERs’ image recognition software balldetector.

The software currently uses the Raspberry Pi 3 A+ to do all processing and analysis
of the incoming video stream from the camera module. Generally, with the topic
of image and object recognition in computer vision, the use of convolutional neural
networks (CNNs) comes into play relatively quickly. For the original implementation
of the balldetector in 2019, the use of CNNs was evaluated and concluded as
"impossible without the use of graphics processing units (GPUs), which allow major
speed-ups (x10 to x30) compared to Central processing unit (CPU) only processing"
[32].

With the machine learning platform TensorFlow Lite, image classification and
training as well as optimizing a model is possible on the Raspberry Pi, as done by
Johnson, who documented her project online [21]. She used TensorFlow Lite, which
is optimized for mobile and edge devices, and the Raspberry Pi 4 (4GB) with the
Raspberry Pi Camera in version 2. With the pre-trained model MobileNetV3-SSD
she benchmarked the model at "roughly 8 frames per second" [21] and with using
the Coral’s USB Accelerator the model inference speeds could be accelerated further.
The USB Accelerator contains an Edge TPU, is specialized for TensorFlow Lite
operations and has set remarkable speed benchmarks. The benchmark by Coral
states 7.2 ms for the time per inference for the MobileNetV2-SSD when using a
Desktop CPU and the USB Accelerator (USB 3.0) additionaly, compared to 106ms
for only using the Desktop CPU [11]. Other model architectures achieved comparable

- 49 -

8. Future Work

results. Using Coral’s USB Accelerator, Johnson achieved around 24 frames per
second.

Despite the different hardware preliminaries, the machine learning approach to
detecting the robot soccer balls might shine in a new light by using Coral’s USB
Accelerator. But achieving 24 frames per second is still not fast enough for the use
in the TIGERs project, as robots move as fast as 6 metres per second. The image
classification or object detection as well as the Raspberry Pi sending the detected
balls and their positions to the robot and the control of the robot to intersect the
ball needs to be taken into account for the process.

Upgrading the existing Raspberry Pi 3 A+ or upgrading the camera module might also
be helpful for improving precision and robustness for the balldetector. However,
this is one of the least prioritized approaches, because upgrading 16 robots is not only
a matter of time and effort but also the costs to the hardware need to be considered.

Other approaches of enhancing the performance with the given hardware are much
more preferred initially. These include measuring the existing performance exactly,
benchmarking the delays, for example the communication between the Raspberry
Pi and the camera, the delay of MMAL, its driver, the communication delay in the
UART communication between the robot’s Firmware and the Raspberry Pi and also
any delays that occur in the actual ball detection algorithm.

- 50 -

9. Conclusion

The goal of this study report was to develop solutions for robust on-board image
recognition and to improve the current implementation of the software to better meet
the requirements of the TIGERs project in the context of RoboCup SSL. The work
focused on two main developments: an improved, centralised configuration concept
and an undistorted backprojection of the ball.

By centralising the configuration systems, diverging configurations on several robots
are avoided. In addition, it reduces the effort required to calibrate the robots, so
that a better configuration can be achieved in the same time. This is particularly
useful for events with a very tight schedule such as RoboCup.
The improved quality and consistency of calibration helps to achieve more robust
results. The basic implementation still needs to be tested in such an environment,
as so far, the benefits are merely theoretical. Once it proves successful, future
implementations may include additional configurations, which can then already use
the existing framework to send and store the configuration.

The complete process of calibrating a camera and distortion model was presented,
starting with the detection of calibration patterns and ending with the backprojection
of the detected ball position into the three dimensional space. A real life test with
eight measuring positions successfully confirmed the whole process having a precise
prediction with an average error of less than 10mm. The ability to control the
robot in relation to three-dimensional ball position improves the overall stability,
since unavoidable problems with two-dimensional positions are eliminated. The
undistortion of the detected position further increases the stability by improving the
detected ball positions.

- 51 -

Bibliography
[1] 8-Bit UART Datasheet: UART V 5.3. url: https://www.cypress.com/

file/140646/download (visited on 03/05/2020).
[2] A Brief History of RoboCup. url: https://www.robocup.org/a_brief_

history_of_robocup (visited on 04/02/2020).
[3] Ian Auty. What is MMAL? 2018. url: https://github.com/techyian/

MMALSharp/wiki/What-is-MMAL%3F (visited on 11/25/2019).
[4] Basics of UART Communication. 2016. url: https://www.circuitbasics.

com/basics-uart-communication/ (visited on).
[5] Buy a Raspberry Pi 3 Model A+ – Raspberry Pi. url: https : / / www .

raspberrypi.org/products/raspberry- pi- 3- model- a- plus/ (visited
on 06/19/2020).

[6] Camera Field of View Calculator (FoV). url: https://www.scantips.com/
lights/fieldofview.html (visited on 06/19/2020).

[7] cmake-toolchains(7) — CMake 3.18.0-rc2 Documentation. url: https://
cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html (vis-
ited on 06/19/2020).

[8] RoboCup Soccer Small Size League Technical Committee. SSL-Vision Blackout
Challenge. 10/16/2018. url: https://ssl.robocup.org/robocup-2019-
technical-challenges/ (visited on 02/23/2020).

[9] Dean H. Brown. “Decentering distortion of lenses”. In: (1966).
[10] Abdul Dremali. Firmware vs embedded software: What’s the difference? 2019.

url: https://www.andplus.com/blog/firmware-vs-embedded-software-
what-s-the-difference- (visited on 04/14/2020).

[11] Edge TPU performance benchmarks. url: https://coral.ai/docs/edgetpu/
benchmarks/ (visited on 05/23/2020).

[12] core Electronics. Raspberry Pi Wide Angle Camera Module (Seeed Studio).
url: https://core-electronics.com.au/raspberry-pi-wide-angle-
camera-module-seeed-studio.html (visited on 06/02/2020).

- 52 -

https://www.cypress.com/file/140646/download
https://www.cypress.com/file/140646/download
https://www.robocup.org/a_brief_history_of_robocup
https://www.robocup.org/a_brief_history_of_robocup
https://github.com/techyian/MMALSharp/wiki/What-is-MMAL%3F
https://github.com/techyian/MMALSharp/wiki/What-is-MMAL%3F
https://www.circuitbasics.com/basics-uart-communication/
https://www.circuitbasics.com/basics-uart-communication/
https://www.raspberrypi.org/products/raspberry-pi-3-model-a-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-a-plus/
https://www.scantips.com/lights/fieldofview.html
https://www.scantips.com/lights/fieldofview.html
https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html
https://ssl.robocup.org/robocup-2019-technical-challenges/
https://ssl.robocup.org/robocup-2019-technical-challenges/
https://www.andplus.com/blog/firmware-vs-embedded-software-what-s-the-difference-
https://www.andplus.com/blog/firmware-vs-embedded-software-what-s-the-difference-
https://coral.ai/docs/edgetpu/benchmarks/
https://coral.ai/docs/edgetpu/benchmarks/
https://core-electronics.com.au/raspberry-pi-wide-angle-camera-module-seeed-studio.html
https://core-electronics.com.au/raspberry-pi-wide-angle-camera-module-seeed-studio.html

Bibliography

[13] Firmware: Definition. 2006. url: https://techterms.com/definition/
firmware (visited on 04/14/2020).

[14] Raspberry Pi Foundation. Camera Module. url: https://www.raspberrypi.
org/documentation/hardware/camera/README.md (visited on 12/23/2019).

[15] Warren W. Gay. “Mastering the Raspberry Pi”. In: Apress, Berkeley, CA,
2014. Chap. Cross-Compiling. (Visited on 06/17/2020).

[16] Hongbo Li, David Hestenes, and Alyn Rockwood. “Generalized Homogeneous
Coordinates for Computational Geometry”. In: Geometric Computing with
Clifford Algebras. 2001.

[17] Brian Ingerson, Clark C. Evans, and Oren Ben-Kiki. YAML Ain’t Markup
Language (YAML™) Version 1.2. 3rd ed. 2009. url: https://yaml.org/
spec/1.2/spec.html (visited on 05/14/2020).

[18] Introduction. url: https://crosstool-ng.github.io/docs/introduction/
(visited on 06/19/2020).

[19] ISO/IEC JTC1 SC22 WG14 N1021. Information Technology: Programming
languages, their environments and system software interfaces: Extensions for
the programming language C to support embedded processors. 09/24/2003. url:
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1021.pdf (visited
on 04/14/2020).

[20] J. Heikkila and O. Silven. “A four-step camera calibration procedure with
implicit image correction”. In: 1997.

[21] Leigh Johnson. Real-time Object Tracking with TensorFlow, Raspberry Pi, and
Pan-Tilt HAT. 2019. url: https://towardsdatascience.com/real-time-
object-tracking-with-tensorflow-raspberry-pi-and-pan-tilt-hat-
2aeaef47e134 (visited on 05/23/2020).

[22] Ken Lunn. “Software Development with UML”. In: 2003. Chap. Software
Development Life Cycle.

[23] Jan Newmarch. “Linux Sound Programming”. In: 2017. Chap. Raspberry Pi.
(Visited on 06/02/2020).

[24] Objective. url: https://www.robocup.org/objective (visited on 04/02/2020).
[25] Nicolai Ommer, Andre Ryll, and Mark Geiger. “Extended Team Description

for RoboCup 2019: TIGERs Mannheim”. PhD thesis. Mannheim: Cooperative
State University Mannheim, 2019. (Visited on 02/14/2020).

[26] OpenCV: Camera Calibration and 3D Reconstruction. url: https://docs.
opencv.org/master/d9/d0c/group__calib3d.html (visited on 06/19/2020).

- 53 -

https://techterms.com/definition/firmware
https://techterms.com/definition/firmware
https://www.raspberrypi.org/documentation/hardware/camera/README.md
https://www.raspberrypi.org/documentation/hardware/camera/README.md
https://yaml.org/spec/1.2/spec.html
https://yaml.org/spec/1.2/spec.html
https://crosstool-ng.github.io/docs/introduction/
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1021.pdf
https://towardsdatascience.com/real-time-object-tracking-with-tensorflow-raspberry-pi-and-pan-tilt-hat-2aeaef47e134
https://towardsdatascience.com/real-time-object-tracking-with-tensorflow-raspberry-pi-and-pan-tilt-hat-2aeaef47e134
https://towardsdatascience.com/real-time-object-tracking-with-tensorflow-raspberry-pi-and-pan-tilt-hat-2aeaef47e134
https://www.robocup.org/objective
https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://docs.opencv.org/master/d9/d0c/group__calib3d.html

Bibliography

[27] RoboCupSoccer - Small Size. url: https://www.robocup.org/leagues/7
(visited on 05/04/2020).

[28] Tony Royce. “C Programming”. In: Palgrave, London, 1996. Chap. Complex
Data Structures.

[29] Rules of the RoboCup Small Size League. url: https://robocup-ssl.github.
io/ssl-rules/sslrules.pdf (visited on 05/04/2020).

[30] Andre Ryll. Hardware V6: Bot Hardware & Sicherheit. 12/2018. (Visited on
02/01/2020).

[31] scipy.optimize.minimize — SciPy v1.4.1 Reference Guide. url: https://docs.
scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.
html (visited on 06/19/2020).

[32] Fabio Seel and Sabolc Jut. “On-Board Computer Vision for Autonomous Ball
Interception: Implementing the Vision-Blackout Technical Challenge in the
Robocup Small Size League”. Study Report. Mannheim: Cooperative State
University Mannheim, 2019. (Visited on 12/22/2019).

[33] storemagic — IPython 7.15.0 documentation. url: https : / / ipython .
readthedocs.io/en/stable/config/extensions/storemagic.html (vis-
ited on 06/19/2020).

[34] Eben Upton. Camera board available for sale! 2013. url: https://www.
raspberrypi.org/blog/camera-board-available-for-sale/ (visited on
04/13/2020).

[35] Jason P. de Villiers, F. Wilhelm Leuschner, and Ronelle Geldenhuys. “Centi-
pixel accurate real-time inverse distortion correction”. In: (2008).

[36] Wikipedia, ed. Intercept theorem. 2020. url: https://en.wikipedia.org/
w/index.php?title=Intercept_theorem (visited on 06/19/2020).

[37] Wikipedia, ed. Pinhole camera model. 2020. url: https://en.wikipedia.
org/w/index.php?title=Pinhole_camera_model (visited on 06/19/2020).

- 54 -

https://www.robocup.org/leagues/7
https://robocup-ssl.github.io/ssl-rules/sslrules.pdf
https://robocup-ssl.github.io/ssl-rules/sslrules.pdf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://ipython.readthedocs.io/en/stable/config/extensions/storemagic.html
https://ipython.readthedocs.io/en/stable/config/extensions/storemagic.html
https://www.raspberrypi.org/blog/camera-board-available-for-sale/
https://www.raspberrypi.org/blog/camera-board-available-for-sale/
https://en.wikipedia.org/w/index.php?title=Intercept_theorem
https://en.wikipedia.org/w/index.php?title=Intercept_theorem
https://en.wikipedia.org/w/index.php?title=Pinhole_camera_model
https://en.wikipedia.org/w/index.php?title=Pinhole_camera_model

Appendix

Appendix 55

Appendix A: Balldetector Configuration 56

Appendix B: Calibration Plots 58

B.1. Without tangential and prism distortion 59
B.2. With tangential and without prism distortion 65
B.3. Without tangential and with prism distortion 71
B.4. With tangential and prism distortion 77

Appendix C: Test of the full balldetector system 83

- 55 -

Appendix A.

Balldetector Configuration

Listing A.1: Data structures for the balldetector configurations in the header file
"Commands.h"

pragma once

// superior data structure Config
typedef struct _Config
{

_ExtCameraConfig cameraConfig ;
_ExtDebugConfig debugConfig ;
_ExtDetectorConfig detectorConfig ;

} Config ;

// data structures for the different configuration sections
typedef struct _ExtCameraConfig
{

uint16_t iso = 200; // 100 , 200 , 400 , 800
uint32_t shutterSpeed = 10000; // microseconds , max: 6s
uint8_t exposureMode = 0; // 0 - 13
uint8_t awbMode = 0; // 0 - 11
float awbGainsBlue = 2.0; // 1.0 - 8.0
float awbGainsRed = 1.0; // 1.0 - 8.0
uint8_t brightness = 50; // 0 = black , 100 = white
int8_t saturation = 0; // -100 - 100
int8_t sharpness = 0; // -100 - 100
int8_t contrast = 0; // -100 - 100
int8_t exposureCompensation = 0; // -25 - 25
uint8_t imageEffect = 0; //0 - 26
uint8_t hFlip = 0; // 1 = true , 0 = false

- 56 -

Appendix A. Balldetector Configuration

uint8_t vFlip = 0; // 1 = true , 0 = false
} ExtCameraConfig ;

typedef struct _ExtDebugConfig
{

uint8_t stdOut = 1; // 1 = true , 0 = false
uint8_t show = 1; // 1 = true , 0 = false
uint8_t balls = 1;
uint8_t channel = 3; // uv --> Channel [enum]
uint8_t lines = 1; // 1 = true , 0 = false
uint16_t sendInterval = 1;
uint32_t resolution = 720;

} ExtDebugConfig ;

typedef struct _ExtDetectorConfig
{

uint8_t method = 1; // " cmVisionScanLines " --> Method [enum]

struct _ScanLines
{

uint16_t firstLineAt = 1; // Percentage from top
uint16_t lastLineAt = 90;
uint16_t numLines = 60;
uint8_t linesDirection = 0; // "up" --> ScanLinesLinesDirection [

enum]
uint8_t lineDistribution = 0; // quadratic -->

ScanLinesLinesDistribution [enum]
uint16_t edgeDetectionThresh = 35; // Minimum value for an edge to be

considered start /end of a ball
uint16_t minConfidence = 20;
uint16_t minDistBetwBalls = 15;
float shadowFactor = 0.6;

} ScanLines ;

struct _CmVisionScanLines
{

uint8_t maskBase = 0; // " color " --> CmVisionMaskBase [enum]
int32_t colorThresh = 50; // range at color channel used is -255 - +255
float heightFactor = 0.75;

} CmVisionScanLines ;
} ExtDetectorConfig ;

- 57 -

Appendix B.

Calibration Plots

The golden points represent a reference model. It is a distortion model with
k1, k2, k4, k5 and s1, s2, s3, s4. Therefore no tangential distortion is used. This
is the model selected for the final application as described in Chapter 6.
The undistortion plots are created by padding the distorted image with a large border
of 1000 pixels. These positions are then distorted with the respective distortion
model. The resulting distorted position is checked. Only if it is within the boundaries
of the distorted image without the padding, the corresponding undistorted position
is added to the undistorted plot.
The radial distortion plots only use the radial distortion part of the model. Although
a usual radial distance of an undistorted position isn’t much larger than 1.5 after it is
projected onto the image plane, the radius is used in up to r6 in the radial distortion
model. Therefore the x-axis expands from r = 0 to r = 10.

- 58 -

B.1. Without tangential and prism distortion

B.1. Without tangential and prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.1.: Distortion model with k1, k2

- 59 -

B.1. Without tangential and prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.2.: Distortion model with k1, k2, k3

- 60 -

B.1. Without tangential and prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.3.: Distortion model with k1, k2, k3, k4, k5

- 61 -

B.1. Without tangential and prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.4.: Distortion model with k1, k2, k3, k4, k5, k6

- 62 -

B.1. Without tangential and prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.5.: Distortion model with k1, k2, k4

- 63 -

B.1. Without tangential and prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.6.: Distortion model with k1, k2, k4, k5

- 64 -

B.2. With tangential and without prism distortion

B.2. With tangential and without prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.7.: Distortion model with k1, k2 and p1, p2

- 65 -

B.2. With tangential and without prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.8.: Distortion model with k1, k2, k3 and p1, p2

- 66 -

B.2. With tangential and without prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.9.: Distortion model with k1, k2, k3, k4, k5 and p1, p2

- 67 -

B.2. With tangential and without prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.10.: Distortion model with k1, k2, k3, k4, k5, k6 and p1, p2

- 68 -

B.2. With tangential and without prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.11.: Distortion model with k1, k2, k4 and p1, p2

- 69 -

B.2. With tangential and without prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.12.: Distortion model with k1, k2, k4, k5 and p1, p2

- 70 -

B.3. Without tangential and with prism distortion

B.3. Without tangential and with prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.13.: Distortion model with k1, k2 and s1, s2, s3, s4

- 71 -

B.3. Without tangential and with prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.14.: Distortion model with k1, k2, k3 and s1, s2, s3, s4

- 72 -

B.3. Without tangential and with prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.15.: Distortion model with k1, k2, k3, k4, k5 and s1, s2, s3, s4

- 73 -

B.3. Without tangential and with prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.16.: Distortion model with k1, k2, k3, k4, k5, k6 and s1, s2, s3, s4

- 74 -

B.3. Without tangential and with prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.17.: Distortion model with k1, k2, k4 and s1, s2, s3, s4

- 75 -

B.3. Without tangential and with prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.18.: Distortion model with k1, k2, k4, k5 and s1, s2, s3, s4

- 76 -

B.4. With tangential and prism distortion

B.4. With tangential and prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.19.: Distortion model with k1, k2 and p1, p2 and s1, s2, s3, s4

- 77 -

B.4. With tangential and prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.20.: Distortion model with k1, k2, k3 and p1, p2 and s1, s2, s3, s4

- 78 -

B.4. With tangential and prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.21.: Distortion model with k1, k2, k3, k4, k5 and p1, p2 and s1, s2, s3, s4

- 79 -

B.4. With tangential and prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.22.: Distortion model with k1, k2, k3, k4, k5, k6 and p1, p2 and s1, s2, s3, s4

- 80 -

B.4. With tangential and prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.23.: Distortion model with k1, k2, k4 and p1, p2 and s1, s2, s3, s4

- 81 -

B.4. With tangential and prism distortion

(a) Undistortion of an image

(b) Radial distortion

Figure B.24.: Distortion model with k1, k2, k4, k5 and p1, p2 and s1, s2, s3, s4

- 82 -

Appendix C.

Test of the full balldetector system

Figure C.1.: Test setup

Eight different positions were chosen to construct a test case for the whole system.
The aim is to see how well the calculated three dimensional position matches the
actual real world position. Therefore the three created undistortion models created in
Section 6.4 are compared. The measurements are shown in Table C.1 and the average
errors of each column combined over all three dimensions is for A -13.4mm ± 23.8mm,
for B -12.8mm ± 22.3mm and for C -9.6mm ± 15.0mm.

- 83 -

Appendix C. Test of the full balldetector system

real (x, y, z) A (x, y, z)
0.000 0.100 0.030 0.000 0.089 0.028
0.000 0.300 0.030 0.000 0.280 0.004
0.000 0.500 0.030 0.000 0.516 -0.026
0.050 0.100 0.020 0.046 0.098 0.019
-0.050 0.100 0.020 -0.046 0.094 0.016
-0.200 0.300 0.020 -0.192 0.288 -0.018
0.200 0.300 0.020 0.192 0.293 -0.080
0.000 0.300 0.090 -0.001 0.283 0.056

mean error -0.0001 ± 0.0045 -0.0001 ± 0.0044 -0.0000 ± 0.0044

real (x, y, z) B (x, y, z)
0.000 0.100 0.030 0.000 0.089 0.028
0.000 0.300 0.030 0.000 0.280 0.005
0.000 0.500 0.030 0.001 0.516 -0.026
0.050 0.100 0.020 0.047 0.098 0.019
-0.050 0.100 0.020 -0.046 0.095 0.017
-0.200 0.300 0.020 -0.193 0.288 -0.018
0.200 0.300 0.020 0.191 0.293 -0.070
0.000 0.300 0.090 -0.001 0.283 0.056

mean error -0.0074 ± 0.0104 -0.0072 ± 0.0104 -0.0071 ± 0.0105

real (x, y, z) C (x, y, z)
0.000 0.100 0.030 0.000 0.090 0.028
0.000 0.300 0.030 0.001 0.280 0.007
0.000 0.500 0.030 0.001 0.516 -0.022
0.050 0.100 0.020 0.047 0.098 0.019
-0.050 0.100 0.020 -0.046 0.095 0.017
-0.200 0.300 0.020 -0.193 0.288 -0.016
0.200 0.300 0.020 0.191 0.294 -0.005
0.000 0.300 0.090 -0.001 0.282 0.058

mean error -0.0326 ± 0.0315 -0.0311 ± 0.0290 -0.0217 ± 0.0173

Table C.1.: Balldetector test measurements in m

- 84 -

	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	RoboCup
	Small Size League
	TIGERs Mannheim
	Aim of this work

	Current Hardware and Software Architecture
	TIGERs Robots
	Raspberry Pi and Raspberry Pi Camera Module
	Base Station
	Sumatra
	Firmware
	Balldetector: The Image Recognition Software

	Improved Configuration System
	Previous Balldetector Configuration System
	YAML File Structure
	Software Workflow

	Motivation
	Concept
	Sumatra
	Robot Console
	Ball Detector

	Implementation
	Firmware
	Ball Detector
	Tests

	Results
	Discussion

	Cross-Compilation
	Camera Model
	Transformation Into Camera Space
	Projection onto the image plane
	Transformation Within the Image Plane
	Distortion Model

	TIGERs Camera Calibrator
	Pattern Detection Notebook
	Camera Calibration Notebook
	Distortion Inversion Notebook
	TIGERs Camera Calibrator in Use
	Detection
	Calibration
	Distortion Inversion

	Back-Projection
	Future Work
	Conclusion
	Bibliography
	Appendix
	Balldetector Configuration
	Calibration Plots
	Without tangential and prism distortion
	With tangential and without prism distortion
	Without tangential and with prism distortion
	With tangential and prism distortion

	Test of the full balldetector system

