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1 Introduction

1.1 Motivation

The main goal of this work is the successful participation in the “Vision-Blackout”-

Technical Challenge of the RoboCup 2019, an annual international soccer-robotics

competition held in Sydney, Australia in 2019. While the main tournament of the

Small Size League is of considerable signi�cance, the technical challenge aims to

push the technological boundaries in the league. The “Vision-Blackout” Technical

Challenge in 2019 consists of the successful approach and intercept of a moving ball

without reliance on the global vision feed and using only on-board sensors on the

robot.

1.2 The RoboCup

The idea of the RoboCup is to “promote robotics and AI research, by offering a

publicly appealing, but formidable challenge” [1]. While it is obvious that the direct

social or economic output of the RoboCup is rather small, it empowers research that

shows applicability for real world problems. Over decades, in arti�cial intelligence

research chess has served similar purposes: Like chess, the RoboCup is considered

to work on a “standard problem”, where various approaches to a multiplicity of prob-

lems can be evaluated. In Table 1.1 a comparison between domain characteristics of

computer chess and RoboCup is shown. It as well shows how RoboCup shifts the

research focus to dynamic situations, while still providing limits and constraints,

that allow for a bearable research cost.
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Chess RoboCup
Environment Static Dynamic
State Change Turn Taking Real time
Info. accessibility Complete Incomplete
Sensor reading Symbolic Non-symbolic
Control Central Distributed

Table 1.1: Difference of domain characteristics between computer chess and
RoboCup [1]

The RoboCup consists of four different leagues:

• RoboCupSoccer

• RoboCupRescue

• RoboCup@Home

• RoboCupIndustrial

Since this work is based in the RoboCupSoccer area, only the RoboCupSoccer

league will be described further in the following.

1.2.1 The RoboCupSoccer

The goal of the RoboCupSoccer is to form a team of robots, capable to win a game

against the human soccer world champion by 2050 [1]. Concerning the overall

complexity of robotic soccer, the RoboCupSoccer was split into different leagues,

each with an emphasis on different topics:

• Humanoid - the complete challenge: development of the robots, dynamic

walking, visual perception of ball and players, self-localization ... It is also worth

noting that the league refuses to use non-human like range sensors.

• Standard Platform - similar to the Humanoid league, but using a standardized

robot (the NAO robot from Softbank Robotics)

• Middle Size - non-humanoid robots driving on wheels, but acting autonomously.

Not using humanoid robots allows to put the research focus on the perception

of the environment and multi-agent cooperation.
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• Small Size - a hybrid centralized/distributed system. Unlike in the other

leagues, localization and tactics are determined by systems outside of the

robots. Hence, it is the fastest of the leagues and the research is mainly com-

mitted to tactical decision making and multi-agent cooperation.

• Simulation - virtual league. Without the challenges in perception and control,

it is possible to fully focus on arti�cial intelligence and team strategy.

Different goals and restrictions lead to differing tasks to be solved in each league,

including control and coordination of the robots, vision systems and more. The rules

of the RoboCupSoccer leagues are changed every year, with the intent to assure

research push. Mostly those changes make the league somewhat closer to real

football. For example, by now the Small Size League aims to increase the number of

robots to eleven, while in other leagues color coded balls have been replaced by

arbitrary balls.

1.2.2 The Small Size League (SSL)

The Small Size League is one of the oldest leagues at the RoboCup. In the Small Size

League, the competition is held with wheeled robots, hence the controlling is easier

and the research focus can be put on multi-agent coordination and tactical decision

making.

Setup Currently, there are eight vs. eight robots playing against each other on a �eld

of 12m x 9m. The small size league has - unlike any other league - a vision system

shared between all teams. Above the �eld, one or more cameras are mounted (cf.

Figure 1.1). On top of each robot is a pattern containing circles in different colors

and thus identifying the robot (and its orientation) uniquely while the ball used is an

orange golf ball. The vision software on the shared computer calculates the positions

and rotations of the robots using the unique patterns as well as the ball. After the

calculation is done, global positions of the robots and ball(s) are broadcasted into the

network and received by the computers of both teams. After this point, the teams

are responsible on their own for everything that happens: They need an arti�cial

intelligence that coordinates their robots, a way to communicate to the robots and,

of course, the hard- and software of the robots themselves.
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Figure 1.1: Basic Setup of the Small Size League

The robots The teams are responsible for their hardware, but several techniques

have become standard (Figure 2.1). The use of omnidirectonal wheels allows the

robots independently control their rotation and position, which makes them holo-

nomic robots. A special device is used to kick the ball or even chip-kick it, the

allowed speed of the ball is 6.5m/s. The “kicking unit” of many teams also contains a

sensor for detecting contact to the ball. Additionally, a dribble device is integrated

that allows to give the ball a backspin, so that the robot can control the ball.

1.2.3 TIGERs Mannheim

The project TIGERs (Team Interacting and Game Evolving Robots) Mannheim is a

robot soccer team participating in the Small Size Leauge of the Robocup. The project

is maintained by students of the Cooperative State University Mannheim (DHBW

Mannheim) and exists since 2009. The team’s �rst appearance at the RoboCup was

in 2011 and by 2014, for the �rst time a top eight rank was reached. After winning

the European Championship in 2016, the team celebrated its biggest success in

last year’s RoboCup 2018. The third place was reached in the competition and the

Excellence Award for the overall performance and representation of, as well as

identi�cation with the RoboCup goals was won.

4



1.3 The Vision-Blackout Technical Challenge

In the Small Size League, each year additional challenges are held. This is done to

push development in speci�c research �elds and prepare the teams for (possible)

future changes of the rules. In 2019, one of those Technical Challenges is the so-

called “Vision-Blackout” [2]. In this challenge, the teams have no access to the global

position estimates usually offered by the SSL-Vision software. Therefore, onboard

sensing and control is needed. The Technical Challenge consists of two stages where

a single robot needs to accomplish a task. In both cases, the robot starts at least 2

meters away from all of the �elds edges.

1.3.1 Stage One: Approach Stationary Ball

In the �rst stage, the robot has to �nd and grab a stationary ball that is placed at a

random location within a 1m x 1m box around the robot. This requires the robot to

�nd the ball, no matter if it is in front or behind it.

Figure 1.2: Constraints for stage one of
the technical challenge [2]

One can achieve points for:

• +1 Touching the ball with any part of the robot

• +1 Touching the ball with the dribbler

• +1 robot stopped with ball touching the dribbler at the end
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1.3.2 Stage Two: Intercept a Moving Ball

In the second stage, a moving ball needs to be intercepted. The ball will start its

trajectory between 3 to 5 meters with a speed of less than 6.5 m/s and will pass

within 0.5m of the robots starting position. The starting position of the robot is the

same as in the �rst stage and the robot faces the ball right from the beginning.

(a) Starting positions of ball and robot for
stage two of the circle

(b) The ball needs to pass within a circle
with a 0.5m radius around the robot

Figure 1.3: Constraints for stage two of the technical challenge [2]

Points can be achieved for the exact same criteria as in the �rst stage of the

challenge.

1.4 Problem Definition

To successfully participate in the “Vision-Blackout”-Technical Challenge in the Small

Size League as part of the Robocup 2019 competition, several tasks need to be

done in hardware and software. In hardware, a camera and the corresponding data

feed need to be integrated into the existing robots. In software, a computer vision

ball-detection algorithm needs to be designed which not only detects a ball but

also reports the position relative to the robot to the robot movement controller.

Additionally, an algorithm for the robot movement based on the incoming ball

positions from the ball detector is needed for both parts of the challenge.
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2 Preliminaries

This chapter will focus on the preliminary information surrounding the technologies

used in the implementation of the technical challenge.

2.1 Hardware

2.1.1 The TIGERs Robot

The robots of the TIGERs have been developed by the team itself and are highly

specialized on the requirements for robotic soccer in the Small Size League. Like

the Robots of the other teams, a TIGERs robot has omnidirectional wheels and a

combined kicking, chip-kicking and dribbling unit.

Figure 2.1: The 2019 generation of the TIGERs robot

A variety of sensor inputs such as motor feedback, the infrared barrier of the

dribbling unit or a gyroscope are connected to the mainboard, where the controlling

of the robot takes place. Custom input and expendability are possible with a UART

interface on the robot. Figure 2.1 shows that the 2019 generation of the TIGERs

robots comes with a new feature: Onboard cameras that can be used as additional
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sensor input, providing local vision information. The vision processing is supposed

to take place on a Raspberry Pi that is integrated into the robot and communicates

with the main robot computer via an UART interface.

2.1.2 Raspberry Pi

The Raspberry Pi is a Singele-Board-Computer (SBC) that is often used in education,

Internet-of-Things-Applications or private projects (Figure 2.2a). Because it was de-

veloped to offer people to start learning about computers and programming, it is sold

for a low price. The “Pi” contains a single chip system with an ARM-Microprocessor

and interfaces for USB, LAN, a camera module and general purpose input/output

pins (GPIO) (cf. Figure 2.2b). Two of those pins offer UART functionality (Pin 8 and

Pin 10).

(a) The Raspberry Pi 3b+ (b) The Raspberry Pi 3b+ Pinout

2.1.3 Pi Camera Module

We use the the �rst generation of the Raspberry Camera Module as the camera

connected to the Pi. The Raspberry Pi Camera Module is a specialized camera

intended for use on the Raspberry Pi Single Board Computers. Unlike most cameras

for general Linux computers, it is not connected via an USB interface but rather
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with a �at cable connected directly to the PCB of the Raspberry Pi. The 5 Megapixel

sensor itself has a native resolution of 2592x1944 pixels.

Figure 2.3: Illustrated sensor crops of the modes of the Pi Camera Module V1. [3]

Mode Resolution Aspect Ratio Framerates FoV Binning
1 1920x1080 16:9 1-30fps Partial None
2 2592x1944 4:3 1-15fps Full None
3 2592x1944 4:3 0.1666-1fps Full None
4 1296x972 4:3 1-42fps Full 2x2
5 1296x730 16:9 1-49fps Full 2x2
6 640x480 4:3 42.1-60fps Full 4x4
7 640x480 4:3 60.1-90fps Full 4x4

Figure 2.4: Different modes of the Pi Camera Module and their characteristics [3]

The camera module can operate in a variety of different sensor modes, where

the modes are distinguished by different resolutions, sensor crops and maximum

frame rates. The different �elds of view are shown in Figure 2.3. As seen in the

table in 2.4, only the modes 2, 4, and 7 support both the full sensor frame and high

frame rates and are thus relevant for our task. Mode 2 is the high resolution and low

9



framerate option with 5 Megapixels, but only at 15 fps. Mode 7 has the exact opposite

characteristics with a resolution of only 0.3 Megapixels but a high framerate of up

to 90 fps. The compromise between these two modes is the mode 4. At a resolution

of 1.3 Megapixels and a maximum framerate of 42 frames per second it can both

offer decent resolution and framerate.

2.2 Basic Computer and Robotic Vision Principles

In the �eld of autonomous robots one of the key challenges is to give robots the

possiblity to perceive their environment. A vision system, like the human one,

appears to be a powerful instrument for tasks like orientation, distance estimation

or self-positioning. That is the reason why a lot of robotic applications make use of

computer vision, even when such vision systems tend to be very sensitive and error-

prone. In computer vision, most methods to identify objects rely on the concepts

of color segmentation and edge detection. To understand those concepts and how

they can be applied, it is worth having a look at how an image is represented in a

computer �rst. Here, a basic understanding of color spaces is crucial.

2.2.1 Discretization of a Scene

A camera discretizes both the space and the color. Conceptually, this discretization

is done by the sensor of the camera and results into pixels (local discretization) and

corresponding color values. A single pixel hence represents the light detected by

the camera’s sensor at a speci�ed position in space, and evaluates the color of the

percepted light.

2.2.2 Color Spaces

The color usually consists of three different values - “channels” - that must be

offset against each other to result in the actual color. However, the color can be

represented by different models - so called color spaces. For different applications,

different color spaces are appropriate.
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(a) RGB Color Space: a cube [4] (b) YUV Color Space: a cube

(c) HSL Color Space: a cylinder [5] (d) HSV Color Space: a cylinder [6]

Figure 2.5: Color Spaces visualized: RGB, YUV, HSL and HSV

RGB

The three primary colors red, green and blue (RGB) are additively combined to a

color. The RGB space is a color space closely coupled to the human perception of

color. This is one of the major advantages of this color space and the reason why it

is used widely.

YUV

YUV is a color space where the luminance is in an isolated channel (Y). The human

vision system is more sensitive to luminance than to chrominance (the U and V

channel). An image in the YUV space can be compressed by downscaling the

chrominance channels [7], which has only little effect on a humans perception. For

that reason, YUV is often used for fast transmission of images. The “downscaling” of

the chrominance channels is called subsampling. Different subsampling systems

and ratios are conceivable. They are identi�ed by a sequence of numbers:

11



• horizontal sampling reference (usually 4)

• number of chrominance samples per row

• number of changes of chrominance samples between two rows.

Figure 2.6 shows how this subsampling works. For example in a 4:2:0 subsampling,

four pixels of the �rst row in the luminance channel are presented by two pixels in

the U and V channels. In the second row, zero of these pixel change, which means,

that the color values for the second row is the same as for the �rst row. Hence, the

U and V channel in a YUV 4:2:0 image have only half the width and height (and thus

only a quarter of the amount of pixels) as the Y channel.

4:1:1 4:2:0 4:2:2 4:4:0 4:4:4

Y

U / V

Img

Figure 2.6: Different Mappings for Chroma Subsampling

HSL and HSV

Hue, saturation and lightness (HSL) or value (HSV) are the three channels of this color

spaces. HSL and HSV are similar to each other, but not identical. What distinguishes

them from other color spaces is that they are both cylindrical geometries and not

cubes. The reason is that “hue” is represented as an angular dimension starting

with red (0°) passing the other primary colors green and blue at 120° and 240° and

returning to red (360°). Their major advantage is that the actual color can be retrieved

from one single channel (hue). This simpli�es detection of color coded objects.
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2.2.3 Color Segmentation

Color segmentation describes the method of identifying an object based on its

color. If possible, often even a colored marker is used to be able to track an object.

Different methods for color segmentation exist.

Methods The most obvious and simplest one is to de�ne constant thresholds

for each color channel . While this is easy to implement and to use, it results in

rectangular blocks in the color space, which might not give the desired accuracy for

the color detection [8]. Alternatively, a Look-Up-Table can be de�ned, that contains

for every possible value in the color space the corresponding detection color [9].

Conceptually different is the use of nearest neighbor classi�cations. Only some of

the pixels are classi�ed as one of the colors. The classi�cation of the other pixels

is done by determining what is the dominant color of the k nearest neighbors of

already classi�ed [10].

Masking Masking an image describes the process of calculating a binary image

based on certain criteria. The mask allows to analyze only the pixels that ful�ll the

criteria. Color Segmentation can be used for de�ning a mask, all pixels that match

the wanted color are masked with “1” (true), the rest is masked with “0” (false).

2.2.4 Edge detection

If the color of an object can be or is one of two important features of an object,

the shape of it is the other one. The outline of an object can be retrieved by edge

detection. Edge detection methods operate on the neighborhood of a pixel and

examines the relative contrast between them. There are several �rst order (maxi-

mum slopes) and second order (zero crossings) approaches and different operators

have been proposed, such as Canny [11], Prewitt [12] or Marr-Hildredth [13]. It is

possible to examine each color channel individually and thereby acquire more

speci�c information.

2.2.5 Reconstruction of the 3D Position - Mapping

For robotic vision it is usually not enough to identify an object in an image, but

the information where exactly it is often is of the same or even higher value. If

13



a position in three-dimensional space is needed, a single camera can usually not

deliver suf�cient information. In such a case, two cameras can be used and stereo-

scopic vision can be applied. Often additional information or reduced information

requirements allow to use only one camera. For example, if only the distance to an

object is searched, the size of the object in the image will satisfy the request. If it is

known that the object moves along a plane in the three dimensional space - like a

ball on a �eld - the position in the image can as well be mapped directly to a world

position. Both ideas combined offer the possibility to locate an object accurately in

three dimensional space with only a single camera. However, this is not possible

if the original size of the object is not known beforehand. Moreover, information

about the camera - such as lense distortion, position and orientation - is needed to

correctly identify a position.

2.3 UART Communication

The Universal Asynchronous Receiver Transmitter (UART) is a hardware device for

asynchronous serial communication. It consists of a receiver and a transmitter, that

need to be con�gured to the same same baud rate, character length, parity, and stop

bits.

Data Frame In every frame one character is transmitted. The character can have

�ve to nine bits, but usually one byte (eight bits) is used. To signal the start of a

message delivery, a start bit reverting the idle state (high-voltage) is used. Next, the

data bits are placed, followed optionally by a parity bit. The stop bit is high-voltage

again, returning the voltage to the idle state. This way, between the start bit (low-

voltage) and the end of the message there are at least two signal edges between two

characters. This allows re-synchronization of receiver and transmitter.

The messaging modes are often described by the data/parity/stop shorthand

notation which the number of data bits per frame, the type of parity using the letters

E for even parity, O for odd parity and N for no parity bits and the number of stop

bits in the frame. This results in strings like 7E1 for a frame with seven data bits, an

even parity bit, and one stop bit. Most commonly used is the 8N1 mode using 8 data

bits, no parity and a stop bit in each frame.
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Figure 2.7: Two 8N1 UART frames with the annotated start and stop bits
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3 Approaches for Object/Ball Detection

One of the most important challenges faced in this work is the detection of the ball. A

lot of research has already been done in this topic, and in all RoboCupSoccer Leagues

some kind of ball detection is needed. There are several common approaches for

ball detection we want to discuss in the following section.

3.1 Hough Transform

The use of the Hough Transform is one of the most common approaches for object

detection. It requires an edge image and allows to identify geometric shapes in it.

Figure 3.1: Hough Line transform: The source image, the transformed image and the
detected lines
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3.1.1 Basic Principle - Line Detection

Consider an edge image containing a cross, as the one in Figure 3.1. A line can be

described by the angle, at which they appear in the image and the distance of this

line to a �xed point, lets say the center of the image or the bottom left corner. Now

each white pixel is allowed to “vote” which lines pass through it. This results into

the transformed image, where each possible combination of angle and distance

contains the sum of votes. If a lot of pixels voted for the same angle and distance, it

is very likely that there is a line with this parameters.

3.1.2 Modification for Circle Detection

The modi�cation of the Hough transform to be able to detect circles needs an

additional dimension in the transformed space. This dimension represents the

radius, and hence restricting possible radii reduces computation cost. The other

two dimensions are the x and y coordinate of the circle’s center. Each radius has

its own “layer”. In this layer, a canditate to be part of a circle votes for all pixels

that could be centerpoints of a circle of this radius. This is identical to drawing a

circle of that radius around the candidate. If enough points vote for a combination

of center position and radius, the circle is detected. A comparison of different

implementations for circle detection using the Hough Transform can be found in

Yuen et al. [14].

The major drawbacks of Hough-based approaches in ball detection is a relatively

high computational cost. However, if the image contains suf�ciently strong edges,

the use of a Hough Transform delivers stable and accurate results.

This approach has been used in various research projects in robotics, e.g. for

catching a �ying ball [15].

3.2 Blob Detection

In the Small Size League, an orange ball is used. The leagues shared vision system

makes use of color segmentation and, as a second step, blob detection to identify

the ball. A blob is a connected region of pixels labeled as the same color. For the

grouping of identically labeled pixels, the neighborhood of the pixels is examined.

Horizontal grouping is achieved by run-length-encoding of each line. Vertically, the
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resulting runs are merged using “tree-based union with path compression”. A more

speci�c description of this method can be found in [9].

Another approach to identify blobs is the use of summed-area-tables, also know

as integral images, as Pluhatsch [16] suggests. In integral images, for each pixel the

sum of the pixels in the rectangle stretching to the top left pixel of the image is

computed. This can be done very ef�ciently. For any rectangle in the image, the

“inner sum” can now easily be determined by the values of the rectangle’s corner

pixels. If we now take a binary image, obtained by color classi�cation (all pixels

labeled with the color 1, rest 0), the summed-area table can be used to ef�ciently

search for minimal regions containing a maximum of classi�ed pixels.

3.3 Background Substraction

In several applications, it is as well possible to perform a background substraction

in order to identify the ball [17]. Those methods rely on the assumption, that the

background of a scene does not change, and hence everything that appears after

substracting the background image is an object of interest. Substracting the back-

ground can be seen as a special form of masking an image. However, this is only

applicable for use with static cameras.

3.4 Convolutional Neural Networks (CNNs)

Currently state of the art and highly examined by researchers is the use of Deep

Convolutional Neural Networks (CNNs) for object detection in computer vision.

Providing a large training dataset with positive and negative sets, a CNN achieves

robust results, independent of lighting conditions [18]. The use of neural networks

in this domain would be impossible without the use of Graphical Processing Units

(GPUs), which allow major speed-ups (x10 to x30) compared to CPU only processing.

This is unfortunately one of the major drawbacks of this approach, and a reason

why in onboard systems it often can not yet be used.
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3.5 Using Superpixels for Object Detection

One of the problems in computer vision is, that by the abstraction to pixels, only few

information about the objects themselves can be retrieved. The human vision how-

ever perceives objects or areas at once. The approach of superpixels is, that regions

of the same (or similar) color are grouped, with each group resulting called “super-

pixel”. That means superpixels are sensitive to edges and are representing colors

- the reason they seem perfect for object detection applications. Moreover, when

operating with superpixels, the calculation cost is reduced, because “irrelevant”

information is “hidden” inside the superpixel. The question is how to determine

those superpixels ef�ciently. Draegert [19], member of a team participating in the

Humanoid League, describes a way how to iteratively build a binary space partition-

ing tree (called PLANT), where the leaf nodes can be seen as superpixels. A merge

of leaf nodes to one single superpixel can be performed to increase the adaption to

diagonal structures. The splitting of the image is always axis aligned and aimed to

increase the dissimilarity between the two resulting nodes and thus increasing the

homogeneity of the nodes themselves. The use of superpixels in RoboCup appears

to be very promising: Extracting the �eld contour or detection of blobs (e.g. for ball

detection) have been done [19], as it is shown in Figure 3.2.

(a) Image reduced to superpixels using a
PLANT

(b) Ball and �eld contours retrieved from the
superpixel image

Figure 3.2: Application of superpixels for ball and �eld contour detection in the
Humanoid League of the RoboCup
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4 Implementation

In this chapter we present our approach for the technical challenge, as well as how

it was integrated into the existing systems. Additionally we validate the implemen-

tation and present the results.

4.1 Setup

In our setup, we separate the controlling of the robot and the processing of images

strictly. Hence, a second microcomputer - we use a Raspberry Pi - is added to our

robot. A camera is connected to the Raspberry Pi, which scans each frame delivered

by the camera for balls. The detected balls are send to the robot, to whom this

information is like any other sensor input. This setup allows to have less critical

demands to the image processing and reduces the chance fatal failures in the robots

controlling unit. At maximum, a sensor information is lost. Moreover, it increases the

replaceability of the image processing hard- and software, since only the interface

for sending detected balls to the robot needs to be met.

Figure 4.1: The basic �ow of data in our setup
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4.2 Reference Methods for Ball Detection

As explained in chapter 3, a broad set of methods exists to detect balls. OpenCV

(Open Computer Vision, [20]) is a standard libray for vision systems and provides

support for Blob Detection and Circular Hough Transform. Another implementation

tested for reference is the Small Size League’s Vision software, which has as well

a method for Blob Detection implemented and already shown to be applicable at

RoboCup [21].

4.2.1 Blob Detection based Methods

The following two reference implementations make use of blob detection for ball

detection. However, they differ in the input needed and how they are implemented.

OpenCV SimpleBlob

OpenCV’s SimpleBlob Detector takes a grayscale image and searches for blobs of

non-zero pixels. This means that before being able to apply this �lter, it is a good

idea to mask the input image. This can be done with other OpenCV methods, such

as “inRange”. However, the best color space to �lter for speci�c colors is HSL or HSV,

which is not available natively from the camera. Hence, a conversation into HSL or

HSV color space is appropriate. 4.1 shows how the detection can be implemented.

1 void searchBalls(cv::Mat frame)
2 {
3 // Create a Simple Blob Detector
4 cv::SimpleBlobDetector::Params params;
5 params.minThreshold = 254; // use only 100% white pixels
6 params.maxThreshold = 255;
7 //... more params ...//
8 cv::Ptr<cv::SimpleBlobDetector> detector;
9 detector = cv::SimpleBlobDetector::create(params);

10

11 // Define color thresholds
12 cv::Scalar hsv_min(0, 117, 142, 0);
13 cv::Scalar hsv_max(24, 255, 255, 0);
14

15 // Apply a Color Threshold for masking the image
16 cv::cvtColor(frame, frame, cv::COLOR_BGR2HSV, 0);
17 cv::inRange(frame, hsv_min, hsv_max, frame);
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19 // Detect Blobs ("Keypoints" -> center position and area)
20 std::vector<cv::KeyPoint> keypoints;
21 detector->detect(frame, keypoints);
22 }

Code 4.1: Reduced example for applying OpenCVs SimpleBlobDetection

Applying the SSL Vision

The vision system used in the league makes use of the method described in sec-

tion 3.2. Hence, color thresholds can be de�ned and if blobs of suf�cient size of

the de�ned color appear, they can be returned as balls. The SSL Vision has been

developed for use with the natively available YUV color space. This method is easy

to use but highly sensitive for lighting changes, although in YUV Color Space the

luminosity is separated from color channels. Moreover, the processing is already

done in parallel. Because of the algorithm used offers nearly constant processing

time, the algorithm can be seen as real-time compatible. However, when tested

on the Raspberry Pi, the processing always took more than 20ms, which did not

ful�ll our requirements. This is not a big surprise, since it is intended for use with

multiple colors to be detected. A lot of optimization work could be done to reduce

the overhead and possibly achieve the speed wanted.

4.2.2 Edge Detection based Methods

Both of the previously de�ned methods have problems detecting the actual shape

of an object. If - for instance because of shadows - parts of the ball appear not

precisely enough in the de�ned color, it might be missed. With Edge Detection, it is

not required to de�ne the color. On the other hand, edge detection is not trivial if

an image is blurry. Edge detection was �rst described in [13].

OpenCV Hough

The Circular Hough Transform implemented in OpenCV takes a grascaled image and

internally applies and edge detection (Canny), and �nally applies the actual Circular

Hough Transform. To avoid false detections, it is recommended to blur the image

beforehand. Several parameters can be passed to the function in order to get the

wanted result [22], as it is shown in Code 4.2:
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• dp - the inverse ratio of resolution used for detection. This parameter can be

used to downsize the image before applying the detection.

• minDist - the minimum distance between to circles to be detected

• cannyMax - the upper threshold used in the Canny Edge Detection algorithm.

The lower threshold will be half of cannyMax

• minVotes - the minimum votes a circle needs to be detected

• minRadius and maxRadius - range of acceptable radii. Larger or smaller

circles will be rejected.

1 void searchBalls(cv::Mat frame,
2 int kernelSizeBlur, int sigmaGauss, int dp, int minDist,
3 int cannyMax, int minVotes, int minRadius, int maxRadius)
4 {
5 // Grayscale image
6 cv::Mat gray;
7 cv::cvtColor(frame, gray, CV_BGR2GRAY);
8

9 // Blur image to reduce false edges
10 cv::GaussianBlur(gray, gray, cv::Size(kernelSizeBlur,

kernelSizeBlur), sigmaGauss);
11

12 // Get the circles
13 std::vector<cv::Vec3f> circles;
14 cv::HoughCircles(gray, circles, cv::HOUGH_GRADIENT, dp, minDist,

cannyMax, minVotes, minRadius, maxRadius);
15 }

Code 4.2: Reduced example for applying OpenCVs Hough Circle Transform

While this implementation is very robust, it has two major drawbacks: First, the

processing speed is slow. One of the reasons for that is the use of the Canny Edge

Detector, which unfortunately can not be replaced since the OpenCV interface does

not allow to apply only the Hough Circle Detection step and skip the edge detection.

Second, a moving ball might appear as an elliptoid rather than a circle, but in this

implementation, only circles are detected.
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4.2.3 Concept: Grid Algorithm

The idea for the Grid Algorithm is to separate the image into smaller parts, on which

only parts of the ball are supposed to be detected (a half or an edge). This is done

in order to reduce the number of pixels to analyze by maximizing the information

offered. First of all, a grid is de�ned with respect to the camera parameters and the

angle of the camera to the �eld, so that the size of a gridcell always corresponds to

the expected ball sizes. Since the declaration of the grid and the calculation of the

lines can be done in advance, it is not consuming any time in the actual analysis of

the image. For each cell an identi�cation algorithm is performed: One possibility

to implement it is to perform an analysis along the diagonals, checking whether it

contains pixels that might be part of a ball and if they are at the beginning or end of

the line. Depending on which diagonal(s) contain “ballpixels” or not, the cell can be

labeled respectively. As well, a lot of “false-alarms” can be rejected, when irrational

combinations appear.

However, this method requires very exact con�guration of the grid and a lot of a

priori knowledge, but does not seem to be suf�ciently better than other approaches.

Hence, only the concept was developed but never implemented.

4.3 Scan Lines

After implementation, neither of the approaches ran fast enough to satisfy the re-

quirements - although possibly they could be tweaked to get there. In the following,

we will present two different approaches that focus on reducing the operations

needed for detection. Mainly inspired by the work of Lu et al. and their ball recogni-

tion algorithm using rotary and radial scan lines, we implemented another approach.

As in subsection 4.2.3, we �rst of all aimed to reduce the number of pixels to process.

The basic idea here is simple: Along few horizontal lines ball candidates shall be

detected. For those candidates, in the center of the line, a vertical scan is performed.

If it is succesful, after a plausability check a ball is detected. The basic process is

shown in Figure 4.2 and will be further explained in the following.
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(a) Initial Scan Lines with logarithmic distri-
bution

(b) Detected horizontal Ball candidates
marked white

(c) Vertical Scan Lines de�ned based on the
horizontal candidates

(d) Detected vertical ball candidates marked
white

Figure 4.2: Scan Lines process to detect balls in the image

4.3.1 Choosing the Color Space

As seen before, it is important to choose the appropriate color space for the detection.

However, switching between color spaces should be omitted if possible. Since for

reducing the amount of data to transfer from the camera to a computer most

cameras already use YUV, it seems a good idea to check if a detection can be done

in YUV space. If we take a look at Figure 4.3, we can see that orange - the color we

want to detect - is de�ned as a high positive “V” value and a low, negative “U” value.

Moreover, as shown in section 2.2.2, the U and V channel are independent of color.

Hence, we can ignore the Y channel. Next, we aim to grayscale the image in order to

have one single channel to operate on. The way we do this is V − U . This results in

an image where previously orange pixels have the highest possible value. This is

optimal for the edge detection and line analysis procedure explained later.
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Figure 4.3: UV Plane of the YUV color space.
Orange is located in the upper left corner, at
positive values for the V channel and nega-
tive values for the U channel.

4.3.2 Definition of Horizontal Lines

Instead of a whole grid, only horizontal lines are de�ned. The position of those lines

is chosen in a way, that in regions, where only large balls can appear, the distance

between them is high, while in regions, where small balls are expected, only a small

gap is between the lines (as it can be seen in Figure 4.2a). This is done to make sure

that every ball in the image is hit by at least one of those lines. We implemented

different methods to de�ne the position of the horizontal Scan Lines, so that for

con�guration only the position of the �rst line and the last line, as well as the way

the lines are distributed in between (linear, logarithmic or quadratic) needs to be

set.

4.3.3 Line Analysis

Along the lines a simple edge detection is performed. The effect of the process is

shown in Figure 4.4. Important at this point is that the direction of the edge must be

known. We will use that information for detecting starts and stops of ball candidates:

A start is marked by a positive edge, while the stop of an ball candidate is marked by

a negative edge. Since we need the direction of the edge, we use �rst order edge

detection. The kernel we use is highly asymmetric:[
−0.75 −0.25 0.75 0.25

]
(4.1)

Evaluations showed that this kernel results in strong responses for sharp edges

while still providing suf�cient response for slightly blurred edges.
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(a) Intensity along a line in the combined UV-
Chanel. The elevated region in the right
part is a ball.

(b) Line after applying edge detection. Addi-
tionally, thresholds are shown in orange
and resulting ball candidates in grey.

Figure 4.4: Extracted Line: UV-Intensity and Edge Detection. Edges higher than the
threshold are rejected as long as they are not followed by a negative edge.

Start

c.start = 0
c.end = 0 i = 0

End

i < edges.size

edges[i] < -thresh

c.start = i

c.start != -1 &&
edges[i] > thresh

c.end = i

c.start > 0 c.end =
edges.size

save
canditate

save
canditate

i+=1

Figure 4.5: Algorithm for detecting ball candidates along a single line
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This information will be used in the following step, where the resulting edges of

the line are analyzed and searched for ball candidates. The procedure is shown in

Figure 4.5. Beginning on one side of the image, �rst an edge to orange is searched

(“start of ball candidate”). When found, the position is updated. If there is another

start that is found before the inverse edge has been found, the former position is

discarded and the starting position is updated. This allows to identify balls in front

of objects of similar colors. If a “positive edge” is followed by a “negative edge”, the

candidate is added to a list of candidates and the search is started again. One major

advantage when scanning lines is, that the pixels of one line in the image are held

continuously in the storage, and thus access is very quick.

4.3.4 Vertical Scan

For all found canditates, the same procedure is used to perform a vertical scan along

a line through the midpoint of the candidate. Another optimization can be used at

this point, since it is not necessary to scan the line at full height of the image but

only a region around the vertical position of the scan line. The region is de�ned by

the width of the horizontal ball candidate (of course some extra area is searched).

All ball candidates where vertically nothing is found are discarded. The vertical scan

is performed in exactly the same way as the horizontal scan before.

4.3.5 Plausability Check

When both horizontal and vertical scan have been successful, �nally a plausability

check is performed. Does the vertical candidate intersect the horizontal line from

which it originates? Is the bounding box close to quadratic? Of course, on the sides

of the image the checks are adjusted accordingly. Those checks allow not to detect

only perfect circles, but as well ellipses and similar shapes. However, a rectangle

matching those checks will be detected as a ball. This is not a problem since it is

highly unlikely that an orange rectangle will appear on the �eld.

4.3.6 Estimating Radius and Confidence Values

The horizontal scan lines are likely to intersect the ball out of center. That is why the

width of the horizontal candidates is a bad guess for the diameter (and hence the

radius). On the other hand, the vertical scan line position is de�ned in a way that it
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should intersect the ball in the middle. For that reason, the radius is calculated by

taking half the length of the vertical candidates and the horizontal width is ignored

completely. By now, circles of different colors can be detected, as long as they appear

in front of a background that is darker on the channel we use. For example, a green

ball in front of a blue area could be detected. In order to choose the right, orange

ball in such a situation a con�dence value is de�ned: The average “orangeness” of

�ve pixels inside the ball is calculated. The pixels are the center of the detected ball,

and half the radius in the four axis-aligned directions.

4.3.7 Combining Ball candidates

A ball can and should be intersected by plural lines. This results into plural candi-

dates for the same ball. The goal is to identify every ball only once, and in order to

achieve that, the candidates need to be combined to only one single ball. This is

done by de�ning a minimum distance between the center of balls. All candidates

that are closer to each other are sorted into groups of ball candidates. Finally, for

each group a single ball is calculated for representing the group. This is done by

electing the median values for the center position (x, y) and the radius. For the

certainty the highest value of all balls in the group is picked.

4.4 Communication

4.4.1 Setup

The detected balls are sent to the robot using an UART interface. The raspberry pi

supports uart using pin 8 as the sending pin (TX) and pin 10 as the receiving pin (RX).

Due to the realtime application of this project is important, an update to the robot

needs to be sent 60 times per second. Since the ball detection algorithm can detect

multiple balls, these need to be �ltered. While a con�dence value is calculated by

the software on the Raspberry Pi, noise can lead to the wrong ball (one that does

not actually exist) having a higher con�dence value than the real ball. The robot

will be responsible for the �ltering, while the Raspberry Pi just sends all the balls

that it detects if the number of balls is less than 10, or just the 10 balls with the best

con�dence if there are more balls detected. In any case the balls should be sorted

by con�dence before sending.

29



4.4.2 Definition of the Message

In our messages to the robot we want to send a number of detected balls since

all the �ltering will be done on the robots. In each message we send a list of balls

with the size of 10 and the resolution of the image. The resolution of the image is

a array with the size of 2 for the width and height of the image. Each value has a

size of 16 bits since our resolution exceeds 256 pixels. For each ball we send the

center position of the ball as two signed 16 bit integers. These values are signed

because the center of the ball could be outside of the frame while only part of the

ball is visible on the camera and thus have negative positions. A ball also includes

its radius in pixels as an unsigned 8 bit integer and a con�dence value which is

also an unsigned 8 bit integer. The con�dence is de�ned by the average value of

the subtracted U-V channels at various positions within the ball. When sending 10

balls, the total message size is 64 Bytes. When sending data with 8N1 encoding and

a baudrate of 115200 baud, we can transmit up to 180 messages per second to the

robot using the UART interface.

1 #define BALLCOUNT 10
2 typedef struct _TransmitBallContainer
3 {
4 struct _ball
5 {
6 uint16_t pos[2]; // X positive right, Y positive down (in relative

display pos. 0<=n<=10000)
7 uint8_t radius; // in realtive sensor area, 0=>no area, 10000=>area

of entire screen
8 uint8_t confidence;
9 } balls[BALLCOUNT];

10 uint16_t res[2];
11 } TransmitBallContainer;

Figure 4.6: The de�nition of the message that will be sent to the robots.
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4.5 Robot Programming

4.5.1 Sensor Input

The incoming date via the UART interface needs to be passed to the skills, speci�cally

the “Get Ball” skill designed for the �rst part of the challenge, and the “Intercept Ball”

skill designed for the second part of the challenge. Since the skills have access to

the Sensor Input data, the messages should be written into that structure. Since

the robot also has to do the �ltering of the incoming ball position data, the UART

receiver will pass the data to a ball �lter �rst. This ball �lter decides which of the

received balls is the correct one and saves this into the sensor data structure. Since

all sensor data will be logged, a small size is important to ensure that the storage

device for the log is not �lled too fast.

UART
Receiver

Ball Filter

Sensory Data Structure

GetBall Skill

InterceptBall
Skill

readwrite

call

read

receive

Figure 4.7: Data �ow on the Robot

4.5.2 Procedure to Approach a Stationary Ball

The �rst stage of the technical challenge is to approach a stationary ball and stop

with the ball touching the dribbler. To accomplish this, we use an internal state

machine for the control of the robot. One of the major advantages of the approach

presented here is, that it is not needed to map the ball to either world or relative
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coordinates. The controlling makes use only of the position of the ball in the image.

It consists of four states, as it can be seen in Figure 4.8. In the following, we will

explain the states and which move constraints are set, as well as which commands

are send to the robot and which sensors are used.

Search &
Find Ball

Center
Ball

Drive To
Ball

Stop

Robot close to Ball

No Ball
in Vision

Ball Detected Ball in Center

Ball Lost

Docking

Ball touching dribbler

Figure 4.8: Stages for the robot control to collect a stationary Ball

State 1: Searching and Locating the Ball Since we use only one camera, we can only

see what is in front of the robot. Hence, to �nd a ball that is located anywhere

around the robot, the robot needs to turn. It turns until a ball is detected, then it

switches to the next state.

State 2: Centering the Ball in the Robots Vision Field In this state, the goal is to

correctly orientate the robot to the ball. To do so, we de�ne a “deadzone” in which

the center of the ball should be. The ball turns left and right (depending on where

in the image the ball is located). For this, only the x coordinate is needed. As soon as

the ball enters the “deadzone” (+/- center of the image), the rotation of the robot is

stopped and the next state is entered. The purpose of the deadzone is, is to prevent

the robot from overshooting because of hysteretic effects when braking. Moreover,

since the deadzone is constant in the image domain, the needed rotational accuracy

increases with the closeness of the ball to the robot (cf. Figure 4.9). If, at some point

during this state, no ball is seen anymore, the robot goes back to the �rst state and

restarts the search.
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(a) Ball is far away, but in deadzone (b) Ball is close, so higher accuracy is needed

Figure 4.9: The deadzone concept for correctly orientating the robot

State 3: Drive to the Ball The next state is very simple, since it needs only a simple

move forward of the robot in direction of the robot. If the ball goes out of center,

the robot slightly turns until it is back inside the deadzone. The robot drives at a

relatively high speed towards the ball. It must be avoided that the robot approaches

the ball with a high velocity and risks to push it further away. Hence the “docking”

state is entered when the robot is close to the ball.

State 4: “Docking” In the docking state, the robot drives at a slower speed to grab

the ball without pushing it. As soon as the ball is closer than a certain distance,

additional sensor information is needed to accurately grab the ball. The optimal

case would be that the robot approaches the ball without pushing it at all. The

infrared barrier at the dribbler unit is used to detect if the robot touches the ball. As

soon as the infrared barrier is interrupted, the robot needs to stop and will enter

the last state - stop.

State 5: Stop This state is used to make sure that the robot stops completely. At

this point, the procedure has come to an end.

4.5.3 Procedure to Intercept a Moving Ball

The second stage of the challenge requires a different approach. The biggest dif-

ference is, that the ball is moving towards the robot and hence the robot should

not drive towards the ball, because it might re�ect the ball if it is too fast. The other

difference is that the robot does not need to search the ball. Of course, the ball

trajectory could be estimated and a general approach for both challenges could
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be applied, but we decided to implement a procedure, where no further external

information, such as the robots global position, is needed.

Wait for
Detection

Intercept

Center
Ball

Stop

Robot stopped,
ball touching dribbler

Ball Detected

Drive To
Ball

Ball Bounced
off

Robot close
to Ball

Ball in Center

Docking

Ball touching
dribbler

Figure 4.10: Stages for the robot control to collect a moving Ball

State 1: Wait Since the constraints of the challenge require the robot to face the

ball at the beginning of the challenge, the robot waits for any detected ball in the

�rst state.

State 2: Intercept As soon as the ball is detected, the robot tries to center the ball

on the x axis of the image using sideways movements. Since the ball will be moving

towards the robot, no forward movement is needed at this point. In addition to

the sideways movement, the robot will be moving backwards to slow the relative

speed of the ball to the robot to ease the receiving of the ball using the dribbler

apparatus. This of course can be limited by a wall that is behind the robot. When to

ball interrupts the light barrier and stays there, the challenge is completed and the

robot will go into the stop state. If however the ball bounces off and the light barrier

is brie�y interrupted only to be clear again, the robot will try to watch the ball and

detect weather the ball has left the frame to the left or right side of the screen. After

that it goes into the center ball state.

State 3: Center Ball After the direction in which the ball has left the frame was

saved by the Intercept state, the robot will rotate into that direction until the ball is
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visible and then the robot will center the ball on the x axis of the frame and moves

into the approach ball state.

State 4: Approach Ball This identical to the approach ball state in the stationary ball

scenario. The robot moves towards the ball until the light barrier is interrupted and

then goes into the stop state.

State 5: Docking The Docking state needs a slight modi�cation compared to the

one used in the �rst stage of the challenge. Additionally, the dribbler roll needs

to be active, so that the ball will receive a backspin and stop its movement. Then,

the robot needs to stop cautiously its own movement and the dribbler roll without

losing the ball.

State 6: Stop This is the end state and ensures that the robot will take no further

action.

4.6 Validation

The different parts of the project have been validated individually. For the ball

detection, this has been done by applying it in different environments and examining

the furthest distance where a ball is still detected. While in noisy surroundings

false positives are retrieved, as soon as an actual ball is in the camera’s �eld of view,

the correct ball is chosen. With the setup, a ball up to �ve metres away from the

robot still was detected. The UART communication has been tested �rst between

two Raspberry Pis and was successful. When trying to connect the Raspberry Pi to

the robot, however several errors occured. One of the problems we were able to

identify is that sequences of bits with the value “0” longer than eight bit resulted

into communication errors. The problem could be solved by sending only one

ball and performing the �ltering step on the Raspberry Pi. Finally, the Bot Skill was

�rst executed in abbreviated forms, so that the robot simply stops completely as

soon as a ball is detected. This allows to assume that the integration of the three

components is successful. First complete runs of the task under technical challenge

conditions however showed that �ne-grained tuning still is needed. However, the

tests showed that the approach can also be used during games in order to improve

the reception of our own passes and the de�ection and interception of the opposing
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teams passes. This will provide a big advantage in the competition, since a better

ball control allows for faster and more complex plays.
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5 Conclusion and Future Work

During this project the fundamental techniques needed for the “Vision Blackout”

technical challenge were developed. This includes a concept for an onboard vision

system, featuring separate microprocessors for onboard vision and the robot control.

For the ball detection, several approaches have been evaluated and a new approach,

the “Scan Lines”, has been implemented. This approach excels at high processing

rates and thus can offer the robot information at high rates, which allows more

precise reactions. Moreover, the communication between the microprocessors

has been established and succesfully tested. For the two stages of the technical

challenge, state machines have been designed and �rst tests have proven them to

be correct.

While many challenges and hurdles were overcome during this project, there are

additional challenges that need to be mastered in order to tune the implementation

to perfection. One of these challenges is the usage of proper control theory when

approaching and intercepting the ball to ensure smooth movement of the robot

and thus a cleaner and less error prone capture of the ball at the front of the kicker.

Additionally, a more robust movement algorithm that predicts the path of the ball

using projection mapping and advanced predictive �ltering can be implemented.

The algorithm for ball detection is very dependant on hard edges on the ball to

detect it properly. Fast moving balls can pose a challenge for this type of detection

since motion blur is a big enemy for edge detection based algorithms. A future

version of the algorithm can utilize a combination of different approaches like

the Hough Transform and Blob detection based algorithms to assist the current

implementation.
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