gk DHBW

Duale Hochschule
Baden-Wirttemberg

Mannheim

Rework of the Coordination of Offensive Actions in

the RoboCup Small Size League

Study Report
for the study program Information Technology at the

Cooperative State University Mannheim

by
Ulrike Leipscher

Matriculation number: 6188730
Course: MA-TINF15ITIN

Supervisor: Prof. Dr. Jochem Poller

Declaration

| hereby declare that the report submitted is my own unaided work. All direct or

indirect sources used are acknowledged as references.

Oberpfaffenhofen, June 29th, 2018

Abstract

In the Small Size League (SSL) soccer competition of the Robot World Cup
(RoboCup), fast passes between robots are the main tool to overcome the de-
fence of the opponent team and allow for successful goal kicks. Most teams have
developed tactics to intercept passes and gain ball control. Therefore, reliable analysis
of the current situation and the decision if a pass is feasible are necessary. In this
work, different pass rating functions are introduced and tested. Focusing on simplicity
and reliability, the pass rater use distances of the opponent robots to the pass line as
basis for their ratings. An analysis of simulated soccer games using the new pass
raters shows similarly high success rates for passes. Finally, the implemented software

allows simple exchange and configuration to adjust to different opponents.

Contents

Table of Contents
List of Figures
Abbreviations

1 Introduction

1.1 RoboCup
1.2 SSL
1.3 TIGERs Mannheim
1.4 Aim of the project

2 Current Software Architecture and Concepts

2.1 Sumatra
22 Offensive
2.3 Support.
24 Pass Targets
2.4.1 Pass Target Calculators
242 Knownissues.
3 Methods
3.1 Pass Target Rating Functions
3.1.1 DistancePassRater
3.1.2 MovingRobotPassRater
3.1.3 PasslnterceptionRater
3.2 Calculation of final score L.
3.2.1 Weighting functions
3.2.2 Success Probabilities

_V -

Vi

Vi

A W N -

© © o o1 O

10
11

12
12
13
15
17
17
18
19

Contents

4 Results

4.1 Visualization of Test Results

4.2 Statistical Analysis
5 Discussion

6 Conclusion

Bibliography

A Appendix
A.1 Heatmaps

A.2 Pass rater statistics

21
21
25

28

30

List of Figures

10
11
12
13
14
15
16
17
18
19
20

A SSL soccer game at the RoboCup 2016 in Leipzig, Germany.

A TIGERs soccer robot. .

Main software components of Sumatra.

Data processing in the Artificial Intelligence (Al) module of Sumatra.

UML class diagram of pass target calculators.

Moving circles of MovingRobotPassRater..

Ratings as heatmap for DistancePassRater.

Ratings as heatmap for MovingRobotPassRater.

Statistical analysis of passrater.

DistancePassRater: Final score with situation weight.

MovingRobotPassRater: Pass score for chipped kicks.

MovingRobotPassRater: Pass score for straight kicks.

MovingRobotPassRater: Final passscore.

PassInterceptionRater:
PassInterceptionRater:
PassInterceptionRater:
PassInterceptionRater:

PassInterceptionRater:

Pass score for chipped kicks.
Pass score for straight kicks.
Final passscore.
Final score with constant weight.

Final score with situation weight.

Heatmaps of two pass raters compared.

Heatmaps of PassInterceptionRater.

_ VI -

12
15

22
24
26

Abbreviations

Al Artificial Intelligence

RoboCup Robot World Cup

SSL Small Size League

TIGERs Team Interacting and Game Evolving Robots
Ul User Interface

UML Unified Modeling Language

- VII -

1 Introduction

The work presented here is based on a project organized and maintained by students
of the Cooperative State University Mannheim. In the project Team Interacting and
Game Evolving Robots (TIGERs) Mannheim students develop and program robots
that can play soccer in the Small Size League (SSL) of the RoboCup. In the following

sections an insight is given to the project and the RoboCup and SSL in general.

1.1 RoboCup

The RoboCup or more precise the Robot World Cup Initiative was established in the
90th of the last century as the next big long term challenge in robotics and Al [2, 3].

Leading scientists proposed the following goal:

By the middle of the 21st century, a team of fully autonomous humanoid
robot soccer players shall win a soccer game, complying with the official

rules of FIFA, against the winner of the most recent World Cup [3].

Using soccer as the motivating factor to improve the development of more advanced
technologies in intelligent robotics, the first international RoboCup soccer games
were successfully held in 1997 in Nagoya, Japan with over 40 participating teams in
different leagues (real and simulated) [2]. Since then, RoboCup has grown into a
well-established institution in the field of robotics, not only covering several leagues
in (non-) humanoid robot soccer and simulated soccer, but also other fields like

logistics, as well as robotics @Home, @Work and in the field of disaster rescue.

The RoboCup competitions and conference are held annually all over the world, still
with the before mentioned goal in mind. Compared to previous challenges in Al,
like developing a chess software that is able to beat the best chess players in the

world, robot soccer offers great research potential in areas that are closer to real

1 Introduction

world problems. As the game is highly dynamic and usually not all information about
the environment is available, research in fields like vision, real-time sensor-fusion
and planning, reactive behavior and motor control will be stimulated. Furthermore,
strategy acquisition, learning, context recognition and strategic decision-making are
just a few additionally named topics that are promoted through RoboCup all in the

context of multi-agent systems [3].

1.2 SSL

Figure 1. A SSL soccer game at the RoboCup 2016 in Leipzig, Germany.

The SSL is one of the two non-humanoid, as well as one of the oldest soccer leagues
at the RoboCup. Two teams with each eight driving robots that fit into a 180 cm
diameter circle and with a maximum height of 15cm play soccer against each other.
Those robots can be engineered freely by each team with the only restriction in size,
ball shoot speed and ball coverage. Figure 2 shows an example robot in close up
developed by TIGERs Mannheim. The game is conducted according to the SSL rules
(see [1]) by an autonomous referee (developed by various teams of the league) that
is overseen in last authority by a human referee. It is played with an orange golf ball

on a 12m times 9 m green carpeted field (according to the latest rules for division A

[1])-

1 Introduction

In figure 1 a photo, taken during a soccer game at the RoboCup 2016 in Leipzig,
Germany, is shown as example. Both teams receive vision data from a central vision
system consisting of multiple cameras 4 m above the game surface [4]. The vision
data of all cameras is beforehand processed by community maintained, open source
software called SSL-Vision [4] that recognizes the color patterns on top of each
robot as well as the orange ball and geometric data of the field. Therefore, each
team receives information about the positions of all robots and the ball on the field.
Next to the field, each team has a private computer system that is used to process
the position data received from the vision, as well as sensory output from their
own robots. Each team develops their own Al to control their robots and game
strategy. The SSL is the only RoboCup soccer league with a common vision and a
hybrid centralized/ distributed robot control system. It specializes in multi-agent

coordination and strategy planning in a highly dynamic environment [4].

1.3 TIGERs Mannheim

Figure 2. A TIGERs soccer robot of the newest generation at the RoboCup 2016 in Leipzig,
Germany.

TIGERs Mannheim is the robot soccer team of the Cooperative State University

Mannheim, founded in 2009 by a group of information technology students. Engi-

1 Introduction

neering their own robots (see fig. 2) and developing their own Al called Sumatra (see
section 2.1 for a detailed description), they participate in the SSL of the RoboCup
since 2011 with great success. Since 2014 the team belongs to the top 8 in the
SSL world cup and became European champion in 2016. Several other honors were
awarded during the recent years, for example for the best team description paper,
open source and excellence. During the last RoboCup in 2018, the team could
celebrate its biggest success in the worldwide competition so far with the 3rd place

in the SSL soccer games.

1.4 Aim of the project

The robot soccer team TIGERs Mannheim playing in the RoboCup SSL strives to
improve its Al every year. The participation in the competition of RoboCup 2017
showed deficits in the coordination of offensive and supportive robots. Offensive
robots aim to shoot goals while outplaying the opponent team with passes between
its team members. Supportive robots, that neither belong to the defense nor offense,
search for optimal positions to receive passes by the current offensive robot. To
evaluate the possible receive positions called pass targets various rating functions are
applied and combined to decide if a pass could be received and if it will be a good

position to shoot a goal after the ball was received.

During simulated and real soccer games, one of the two following scenarios can often
be seen. On the one hand passes very often get intercepted by the opponent team
as it reaches the ball faster than the team mate, or on the other, the robot receiving
the ball can not handle it fast enough before an opponent reaches the ball. Therefore
the evaluation of the pass targets needs improvement. This work aims to evaluate
new rating functions and concepts that will allow better coordination of the offensive

actions during game play in the SSL.

2 Current Software Architecture

and Concepts

This project focuses on the improvement of the Al only and therefore is a pure
software work. The central software of the TIGERs soccer team is called Sumatra,
written in Java. In the following sections its architecture and basic concepts will be

described.

2.1 Sumatra

TIGERs
Referee Box -Visi N
SSL-Vision Basestation
- N
SSL Referee Msg SSL Vision Frame
Y
Referee Module Cam Module Ethernet
Cam Detection ¢ v
Frame
Vision Filter Bot Manager
Referee Msg Module Module
::iltered Vision ¢ Robot Info
rame Frame
- World Info
” Module
¢ Match Command
Skill Skill System
Al Module —
Module

Figure 3. Main software components of Sumatra (green boxes) and their data exchange
with external components (orange boxes) [6].

Sumatra is build of several modules with different tasks. In figure 3 the main
components and their interactions are shown. All information available from external

sources (referee box, SSL-Vision and our robots) is taken in and processed by the

2 Current Software Architecture and Concepts

corresponding modules (see fig. 3: Referee Module, Cam Module, Bot Manager
Module). The output after processing the external information is collected in the
world info module generating a WorldFrame which serves itself as input for the Al
module. In the Al module the strategy and future actions are calculated which results
in selecting the next skill for each robot on the field. The last step before sending the
actual commands to each robot consists of calculating the next position, orientation
and kicker and dribbler configurations for each robot according to the chosen skill in

the skill system module.

Input Data

N1
WorldFrame
[BaseAiFrame } |:> Metis D TacticalField

Pandora
MetisAiFrame |:> Athena
Lachesis |:>

[AthenaAiFrame J |:> Ares |:> Skill System
E AilnfoFrame J |:> Visualization
N

Figure 4. Data processing in the Al module of Sumatra [7]. Input data (violet boxes) is
generated by the level above. Additional data output is displayed in orange boxes.

PlayStrategy

The Al of the TIGERs is based on a play - role - skill system. Skills are low level
tasks like a goal kick, a pass, receiving the ball or simply moving to a position. These
skills can be executed by any role. Roles basically define the actions of a single
robot. They combine different skills into useful sequences of actions, for example a
offensive role could do the following: receiving the ball, turn with the ball and shoot
at the goal. They consist mainly of a state machine that decides which skill is the
best to execute in the current situation. Information about the environment is taken
from the WorldFrame which is further processed by the Al sub module Metis to

analyze tactical information and collect it in the so called TacticalField (see fig.

2 Current Software Architecture and Concepts

4). Above the roles, Sumatra uses plays to coordinate several robots with similar roles

and group them. Currently there exist mainly four different plays in the Sumatra:

e The Keeper Play has only one role, the keeper, and does protect the own goal

from opponent goal shoots.

e The Defense Play coordinates the different defense roles according to a threat
based system. Depending on the ball and opponent locations, the opponent
robots pose different threats for our defense and will be blocked in front of the

defense area.

e The Offensive Play usually has one or two roles that have to be coordinated
especially for passes between the robots. Further details will be described in

section 2.2 below.

e The Support Play coordinates all robots that do not belong to any other
play mentioned before. It globally searches good positions on the field where
these robots can best support the offensive robot in shooting a goal, either by

receiving passes or distracting the opponent. See section 2.3 for further details.

In general the Al module consists of several sub modules as shown in figure 4.
The first step to generate the strategy for the game is to use the collected world
information from the WorldFrame and analyze the tactical information in Metis.
This sub module consists basically of a list of calculators that process the position
and velocity information of all robots and the ball to calculate different important
aspects for the game, like ball possession or which robot can reach the ball the fastest.
With the collected data, the sub module Athena decides which plays to execute and
the specific role assignment. Athena is therefore further subdivided into Pandora
which chooses the roles and plays and into Lachesis which assigns the chosen roles
to specific robots. Lachesis is often simply called RoleAssigner. In the third step,
the skill for each role is chosen and its specifics are decided in Ares and the skill

system, respectively. These steps are calculated for each incoming vision frame with

2 Current Software Architecture and Concepts

a frequency of about 60 fps in the represented order. It allows for dynamic game play

and fast reactions of the robots.

2.2 Offensive

The offensive play calculates a strategy with the objective to shoot a goal in the
near future. The offensive strategy first considers each robot independently from its
current role. For each robot the viability of all 0Of fensiveActionMoves is calculated.
OffensiveActionMoves are for example a forced pass during an indirect free kick
(see official rules in [1]), a direct goal kick, a clearing kick near the own defense area
or a standard pass (further description in [8]). First it is determined if an action is
viable in which viability can be TRUE, PARTIALLY or FALSE. Actions with viability
TRUE are the best choice for execution, PARTIALLY viable actions might be executed
depending on their viabilityScore, actions with FALSE viability are not considered
in any further calculation. In addition to the viability, actions are ordered according
to their priority. This means an action that is higher in order has a higher priority
and will be preferred to an action with same viability and lower priority. An actions is
executed if it has the viability TRUE and the highest priority compared to other actions
with viability TRUE. If only actions with viability PARTIALLY are available, all actions
are ranked by a further calculated viabilityScore which determines according to

predefined criteria how successful this actions might be on a scale between 0 and 1
[8].

To evaluate most of the actions (like passes and goal kicks) specific points on the
field have to be rated according to their goal kick or pass chance. Therefore in a
lot of situations, the offensive strategy uses so called pass targets (see section 2.4)
to calculate the appropriate viability scores. To find the best possible option for the

next strategy, the rating functions for passes and goal kicks are crucial.

2 Current Software Architecture and Concepts

2.3 Support

The support play tries to position all available robots with the objective to receive
future passes and have a good goal chance. Positions are chosen randomly on the
field and evaluated by two factors: first the chance to successful pass the ball from
its current position to this support position and second by the chance to successful
score a goal from this position. For both options, the best positions are chosen and
robots with a supportive role are send there. To avoid grouping of robots, positions
close to already chosen ones are removed from the generated support position list.
To keep positions relatively stable, the chosen positions from the previous frame are
kept and rated again in the next frame together with new candidates. If the old ones
are as good as the new ones, the old positions are preferred [8]. Furthermore, the
supportive roles are those that get additional pass targets as they are possible new

pass receivers. These will be described in the next section.

2.4 Pass Targets

Generally spoken, pass targets are possible pass positions on the field that are rated
by there score chance and by their pass chance. Theses chances are expressed as
double values between 0 (bad) and 1 (good). In previous versions these scores were
defined by the visibility to the ball, the score chance from this position, the time
difference for the nearest opponent and the robot to the pass target, the angle and
the distance to the goal. All of these factors were weighted by their own respective
weighting factor [5]. Unfortunately, the results were not satisfying as many passes
could not be received due to interceptions by the opponent team. Therefore new

ways for the evaluation of possible pass positions are tested.

2 Current Software Architecture and Concepts

2.4.1 Pass Target Calculators

Pass targets are generated, rated and selected in three respective calculators in

Metis:

1. Pass targets are randomly generated in a defined area around supportive robots
in the PassTargetGenerationCalc. The area is defined by a moving circle
with its center moved from the current robot position P; by a vector defined

from the current robot velocity v; and its maximum brake acceleration @,
center = Py + (v % (v¢/maz)/2) (1)

The radius is dynamically calculated by the time the ball needs to reach given

center position tp,; and again the maximum acceleration a,,,, of the robot:
~ 2
radius = amaz * (thair/2) (2)

Each generated pass target candidate is verified by certain parameters, for
example if the point lies in the field and outside the defensive areas. If it is a

legal point it will be saved for the next step, the actual rating.

2. Each pass target that survived all previous inspections, will be rated in the
PassTargetRatingCalc. There are mainly two rating functions at work: one
to rate the actual pass chance and a second one to rate the score chance from
the new position. Afterwards a combined score is calculated that allows for

comparison between different pass targets.

3. In the last step, the PassTargetSelectionCalc, rated pass targets are sorted
by their total score and for each available supportive robot a defined maximum
number (usually 5) of pass targets is selected and stored in the TacticalField

(see previous section 3).

- 10 -

2 Current Software Architecture and Concepts

2.4.2 Known issues

The aim is to find a simple rating method that can be applied in any situation. One
problem might be that receiving a pass and shooting a goal are two totally different
objectives and their rating can not simply be combined to a final score. Though
choosing the best pass target can only be achieved, if pass chance as well as score
chance can be combined. The need to also use the score chance when evaluating
a pass position lies in the fact that passes should bring the robots closer to the
opponent goal to allow for goal kicks. Therefore if the score chance is included in
the pass target rating, pass positions automatically are driven to the opponent goal

as score chances are usually higher the closer the position is to the goal.

Another issue comes from the two possible types of passes: straight and chipped
kick. Both types need their own rating function as chipped passes can not be
intercepted while the ball is above robot height (15cm [1]). Again these two scores
can not simply be combined to one final score though keeping both scores for the

OffensiveStrategy to decide which to use, might be a possibility.

Last but not least the pass rating function itself did consider too many influencing
factors that could not be easily combined to one score. So far rather complicated
weightings were used to calculate the pass rating with unsatisfying results. For this
work a few simpler methods were tested and compared which are further described

in the next chapter.

-11 -

3 Methods

In the following sections, three new pass rating methods are introduced which each
consider chipped and straight passes. In addition a new way to combine pass and

score chance will be put forward.

3.1 Pass Target Rating Functions

<<Interface>> SelsiEES

ICaclulator AcCalculator

<l

- newTacticalField: TacticalField

+ doCalc(TacticalField, BaseAiFrame) + getNewTacticalField(): TacticalField

— N

PassTargetGenerationCalc PassTargetRatingCalc PassTargetSelectionCalc
N)) - double optimalPassDuration
+ doCalc(TacticalField, BaseAiFrame) ~ EPassRaﬁer eRater + doCalc(TacticalField, BaseAlFrame)

+ doCalc(TacticalField, BaseAlFrame)

/. MovingRobotPassRater
<<Interface>>
- Collection<ITrackedBot> consideredBots
IPassRater - double maxHorizon
< - double stepSize
rateStraightPass(IVector2, [Vector2): double + rateStraightPass(IVector2, IVector2): double
rateChippedPass(IVector2, IVector2, double): double + rateChippedPass(IVector2, IVector2, double): double
getMaximumRatingValue():double + getMaximumRatingValue(): double
- rateLine(IVector2, IBallTrajectory): double
4 N
/ Sl
1 N
! N
DistancePassRater PasslinterceptionRater
- Collection<ITrackedBot> consideredBots - Collection<ITrackedBot> consideredBots
- double startTime - double passRatingUpperDist

- double maxDistance
+ rateStraightPass(IVector2, IVector2): double

+ rateStraightPass(IVector2, IVector2): double + rateChippedPass(IVector2, IVector2, double): double
+ rateChippedPass(IVector2, IVector2, double): double + getMaximumRatingValue(): double
+ getMaximumRatingValue(): double - rateTrajectory(ABallTrajectory, Collection<|TrackedBot>): double

- rateLines(ILineSegement): double

Figure 5. UML class diagram of the pass target calculators and their relation to the pass
raters.

Pass targets define possible positions the current offensive robot could pass to.
Therefore the ball should travel between its current position and the respective pass

target without any disturbance of the opponent team. There are various ways to

-12 -

3 Methods

determine if the opponent team has a chance to intercept the pass. Three different
approaches were implemented as pass rater classes as shown in figure 5 (yellow boxes).
The three Metis calculators for the pass targets (light blue boxes, see also section
2.4) share the calculated information by saving data in the TacticalField. The
PassTargetRatingCalc then uses one of the pass rater classes which all implement
the IPassRater interface for easy exchange, to rate the pass target candidates.
Each pass target is rated once as straight pass and once as chipped pass. The three

implementations are further described below.

In addition to the pass rating, the PassTargetRatingCalc also calculates the score
chance for each pass target (not shown). The goal kick rating was maintained from
the previous implementation with only slight adjustments. It considers all opponent
robots between the goal and the shooting position. Stepping through discrete time
steps, the movement of the robots is calculated from their current velocity. Their
calculated position allows to determine how much of the goal each robot covers at
that moment. The rating becomes worse the more the goal is covered if you look at
the goal starting from the current shooting position. Often after receiving the ball,
the receiver has to turn to the correct angle for a goal kick. In the previous version
of this rater, the time to turn around was neglected. This was corrected by adding a
time to turn that has the the turn angle as a factor. The additional time is Os if the
ball can directly be redirected at the goal which is the case for angles smaller than
60°.

3.1.1 DistancePassRater

In a simple geometric approach the DistancePassRater calculates the distances of
each opponent robot (keeper excluded) to the pass line (ball travel line). The rating
can become 1 (best score) if all opponent robots are further from the pass line than
a configurable distance (see fig. 5: maxDistance, default: 3m). The calculation for

chipped and straight passes is basically the same with the slight difference that the

- 13 -

3 Methods

considered ball travel line starts at the first touchdown position of the ball where
it can be received again. This is a simplified view of the pass line. Though it is
possible to calculate the correct line segments where the ball is below robot height,
this would give several segments. Considering all line segments where it is possible
to intercept the ball, makes further calculations too costly in terms of performance.
Vision frames are received every 16 ms and with each frame all calculations in Sumatra
are run again to adjust the game strategy to the latest information. Therefore time
consuming calculations have to be kept to a minimum always considering the balance
between performance and the error made by simplifying information. When a ball
is chipped, the first part of the ball travel line is the highest (usually above robot
height). Though the following jumps after the first touchdown might be above robot
height, it is very likely that the ball can be intercepted during most of its remaining
travel line. Therefore this approximation is made to simplify the rating.

Passes through the opponent defense area are favored by the rating because defending
robots (besides the keeper) are not allowed to touch the ball inside the defense area.
Therefore the pass line segments that lay inside the defense area are excluded from
the distance rating. For straight kicked passes, an additional configurable parameter,
called startTime, can be set to start the ball travel line from this time point. As
the DistancePassRater uses such a simple geometric approach, all positions on
the field would get a pass score near 0 when an opponent is close to the ball. To
avoid this situation, either the rating for chipped passes has to be used or the start
time of the pass can be set to a small value, artificially moving the pass line further
away from the opponent. The default value for startTime is set to 0.1s. This
adjustment to the ball travel line can be done because a kick is the fastest when it
was just executed. Any robot that is not already on the pass line can not reach the

ball in the first few milliseconds as its reaction time would be a few vision frames.

_14 -

3 Methods

3.1.2 MovingRobotPassRater

The MovingRobotPassRater uses a more advanced geometric approach, con-
sidering also time for movements and velocities of the robots. Similar to the
DistancePassRater (see above, section 3.1.1), it determines distances to the travel
line of the ball though not from the robot itself, but a moving circle calculated by
the velocity and acceleration of the robot (see fig. 6). The calculation of the moving
circle is very similar to the one used to calculate the area where pass targets can be
generated (see section 2.4). This is done for each time point given the configurable

stepSize (default: 0.15s).

Figure 6. MovingRobotPassRater calculates circles around the moving robot for discrete
time steps (here with stepSize = 0.025s). Circles are drawn darker the further in time
they are. Cyan line shows the velocity vector of the robot.

Listing 1 shows the basic rating algorithm with the ball trajectory and the target
point as input. It steps through each time point searching for the smallest relative
distance between the moving circles and the ball travel line. While it is stepping
through the time points, the ball travel line is shortened as the ball moves forward.
In contrast, the moving circles become larger because there is more time for the
robot to accelerate and move in any direction (see fig. 6). The time frame in which
moving circles are generated is capped to a maximal time, called maxHorizon. This
value is also configurable with a default value of 0.7s. So the moving circles do
not get any larger than at 0.7 s even if the time to reach the target point is larger
than this. The rating can become 1 (best score) if no moving circle cuts the ball

travel line at any given time point. Otherwise the minimal relative distance (always

- 15 -

3 Methods

private double ratelLine(IVector2 target, IBallTrajectory
ballTraj)
{

double tMax = ballTraj.getTimeByPos(target);

IVector2 start = ballTraj.getTouchdowns () .isEmpty () ?
ballTraj.getTravelLine () .getStart ()
ballTraj.getTouchdowns () .get (0);

ILineSegment passlLine = Lines
.segmentFromPoints (start, target);

double score = 1;
for (double t = 0; t < tMax; t += stepSize)
{
IVector2 curPos = ballTraj.getPosByTime (t);
ILine curline = passline.isPointOnLine (curPos) 7
Lines.segmentFromPoints (curPos, target) : passlLine;
double dist = getLinesOutsidePenArea(curlLine).stream()

.mapToDouble(l -> getScore(movingRobots, 1, t))
.min() .orElse (1) ;
score = Math.min(score, dist);

}

return score;

Listing 1. Method rateLine from MovingRobotPassRater.

compared to the given circle radius) becomes the pass score for this pass target.
Similar to the DistancePassRater, the rating for chipped passes uses a ball travel
line that starts at the first touchdown of the ball trajectory. For pass lines that
cross the opponent defense area, the segment inside this area is excluded from the
rating to favor passes through the defense area. In listing 1 in line 16, the method
getLinesOutsidePenArea checks this condition and returns a list of line segments

outside the defense area.

- 16 -

3 Methods

3.1.3 PasslInterceptionRater

Compared to the other raters, the PassInterceptionRater uses the most advanced
calculation. It rates how well each opponent robot could intercept the pass line
by constructing a trajectory for the robot that assumes the robot wants to stop as
fast as possible. Then the distance from the resulting brake point to the closest
interception point on the pass line is used to rate the pass target. Similar to the
DistancePassRater the best score can be reached when the brake points of all
considered robots are further than a configurable distance from the pass line. The
default value is again 3m. As in the other raters, chipped passes only consider the

ball travel line starting with the first touchdown point of the ball.

3.2 Calculation of final score

After each pass target candidate received a pass score for chipped and straight kicked
passes, as well as a goal kick score, these separate scores need to be combined to
one final score. This final score will determine the selection of the best pass target in

the next game strategy.

So far all pass ratings only consider the opponent robots and calculate distances to
the pass line in their own respective way. Usually this is done for a defined point in
time or a maximal time span. As long passes across the field take more time, the
opponents have more time to react and intercept the pass. Due to wanting a simple
rating method, long passes are usually not rated any worse than short ones which does
not mirror the actual situation in a game. To compensate for this misjudgment, the
pass ratings gain a second factor: the pass duration. The pass duration is considered
optimal if it is less or equal than a configurable value with a default of 1s. Therefore
these passes are multiplied with the factor 1 (best value) as only there previously

calculated rating decides the score. Passes that would take two times this value (here

- 17 -

3 Methods

2s) are multiplied by 0 and therefore their pass score will be 0 as well. If the pass

duration lies in between 1s and 2s, the factor will be reduced linearly.

The decision, if the next pass will be chipped or kicked straight, comes from the
current offensive role. Therefore the pass target calculators do not explicitly decide
which pass score (chip or straight) is the right one. But as usually only one pass
score is used for further calculations, the final pass score is set equal to the maximum
score of chip and straight pass score times their respective duration factor. The last
step is to calculate one final score with the pass and goal kick ratings. To receive
this final score, different weighting functions can be applied. These are described in

the section below.

3.2.1 Weighting functions

The selection of the pass targets can be done by sorting all rated positions by their
final score. Pass score and goal kick score can be combined with different weighting

concepts:

1. Constant weight: Pass score and goal kick score are added after each was
multiplied with a constant factor, resulting in a score between 0 and 1 again.
A factor of 0.8 for the pass score and 0.2 for the goal kick score was chosen.
That way, the pass chance is prioritized over the goal kick chance to assure

passes without interception by the opponent team.

score; = passScore; * 0.8 + goal KickScore; x 0.2 (3)

2. Situation weight: Pass score and goal kick score are multiplied with a factor
that changes depending on the current situation, more precisely the x coordinate

of the ball position. If the ball is close to the own defense area the pass score

- 18 -

3 Methods

gets a higher factor than the goal kick score and vise versa if it is closer to the

opponent defense area.

score; = passScore; x (1 —weight(Tpar))

(4)

+goal KickScore; x weight(xpay)

The two concepts are applied and compared by pass success rate and the amount of
goal kicks and goals during 15 min of simulation in the Sumatra User Interface (Ul).
For comparison, the pass score is used as sole final score. This way, the most secure
pass options should be selected as best pass targets, expecting more passes back to
the own half and less towards the opponent goal.

3.2.2 Success Probabilities

As mentioned before, pass rating and goal kick rating are conceptually two very
different scores. The combination of the two scores with the help of weighting
functions as described above, does not guarantee that the chosen pass target is
really the best one. A totally different approach might be to compare the pass scores
(or goal kick scores respectively) of all pass targets between each other. A real
probability p of success in comparison to the other pass targets can be calculated

with the following formula:

score;
(score;) = ———— 5

nil 2 Zi]\il score; (5)

The probability that a pass followed by a goal kick from the receive position (=
pass target) succeeds, can than be calculated by simple multiplication of the two

corresponding probabilities for pass and goal kick:

- 19 -

3 Methods

pi(pass, goal) = p;(pass) * p;(goal) (6)

The offensive strategy always needs to analyze if the current ball position has a
good score chance compared to passing to another robot and shooting from the new
position. For direct comparison, the current ball position or during an ongoing pass
the expected receive position are added to the pass targets when calculating the

success probabilities.

Though this approach allows for better comparison of the pass targets, it also comes
with a few drawbacks. From equation 6 it is clear that having one of the single
probabilities 0 will give a total success probability of 0. This could lead to further
problems. For example, the ball is in the own field half and so are the pass targets of
the supportive robots. In this situation all pass targets are far from the opponent goal,
probably all having a goal kick score of 0. This would mean all total probabilities will
become 0 and a sorting by pass chances is useless. To avoid this situation, a small
value (default 0.005) is added to each goal kick score. Considering the pass score, it
might be very unlikely that all pass targets have a pass score of 0 at the same time.
Therefore no value is added as default. Only in the unlikely situation that really all
pass targets have a pass score of 0, the pass success probability p;(pass) of each

pass target 7 is set to 1/N with N as the total amount of considered pass targets.

- 20 -

4 Results

In general new concepts in the Al of the game strategy are difficult to evaluate. The
best way would be a statistical analysis of the new Al in a real game against other
teams. Unfortunately this kind of data is not available so far. Sumatra comes with a
simulation tool and a Ul. It allows to collect simulated data playing against the own
Al which should behave similar to the real world behavior. A small evaluation of the

implemented pass raters is done with this tool.

The three different pass raters are compared under several conditions. Each pass rater
is combined with each weighting method or the relative scoring (success probabilities).
In the next section heatmaps over every position on the field displaying the different

pass target ratings will be used for further comparison.

4.1 Visualization of Test Results

For visual comparison, heatmaps with 120 x 90 points on a simulated quatro-sized
field (12m x 9 m) were generated. Each rated point equals an area of 10 x 10cm.
Each point was rated with the respective function using the pass line from the current
ball position (center of big red circle) to the rated point on the field. As an example,
figure 7 shows ratings for theDistancePassRater from the point of view of the
yellow team. In 7a and 7b pass ratings for chipped passes versus straight passes are
shown. It can be seen that areas around and behind the opponent robots (blue)
receive worse scores than areas distant from the opponents. For chipped passes,
opponents close to the ball can be over chipped and therefore the scores get higher
again with a certain distance behind those robots (see fig. 7a: behind the robot 4
blue). Similar, parts of the defense area receive the best score because the robots
before can be over chipped and are not allowed to enter the defense area itself.

For the straight passes this is not true as the straight passes can be intercepted

-21 -

4 Results

(b) Straight pass score.

(c) Final pass score. (d) Final score with constant weight.

Figure 7. Heat maps of pass ratings from DistancePassRater for the yellow team. From
green (best rating: 1) to red (worst rating: 0). (d) shows the final score including goal
kick score calculated using constant weight.

before they reach the safe zone of the defense area. Figure 7c shows the final pass
score that is max(chipPassScore * chipDurationScore, straightPassScore
* straightDurationScore). With an optimal pass duration of 1s, areas further
away from the ball get worse ratings than when only considering the pass score
(compare 7a and 7c). Finally, figure 7d shows the pass score and goal kick score
put together to one score with the constant weighting function (see section 3.2.1,

equation 3). The appendix containts further figures for comparison, for example

-22 -

4 Results

figure 10 showing the final score for the same situation calculated with the situation
weight (see section 3.2.1, equation 4). The final score always has better ratings for
positions close to the opponent goal because from there goal kicks have a better
chance of success. This is due to adding the goal kick score to the rating. The
situation weight ignores the pass score almost completely when the ball is close to
the opponent goal (see appendix, fig. 10). The areas around the goal get really high

scores (green areas) even if passes are not likely to be successful.

Compared to the DistancePassRater, the MovingRobotPassRater shows a very
optimistic rating (see appendix, fig. 11 to 13). Most positions on the field have high
sores (green areas). Only close to the opponents and behind them (looking from the
ball), the ratings get bad. Discrete lines with bad scores are visible for robots with
high velocity (cyan lines symbolize their velocity vector, see fig. 11, robot 2 blue)
due to using discrete time steps to calculate the moving circles. This effect can be
reduced by using a smaller step size. The shown figures were generated with a step
size of 0.1s. Reducing the step size to 0.025s shows smoother results (not shown),
but it increases the amount of iterations four times. As calculation times are relevant
for the over all performance of the Al and robot control, a less accurate rating is

tolerated.

Figure 8 compares the two weighting functions for the MovingRobotPassRater.
The constant weighting function (fig. 8a) looks very similar to the final pass score
(see appendix, fig. 13) as the goal kick score is only a minor part (with factor 0.2)
in the total score. With the ball close to the opponent defense area, the situation
weighting (fig. 8b) changes the scoring a lot more as the goal kick score influences
the final score by 70 %.

The PassInterceptionRater behaves very similar to the DistancePassRater
(see appendix, fig. 14 to 18). The main difference is that bad regions (red) are
moved in the direction of the velocity vectors of the considered robots. Furthermore,
the opponent defense area is not excluded from the rating. In theory, this rating

function should be more realistic compared to the DistancePassRater because it

-23 .

4 Results

(b) Situation weight.

Figure 8. Heat maps of pass ratings from MovingRobotPassRater for the yellow team.
The final score is shown using two different weighting functions.

also considers the current movement of the robots. Nevertheless, predicting the future
behavior of opponent robots is risky as their Al and robot control is hardly known.
Movements of robots are very dynamic in the SSL and therefore a simpler approach
like the DistancePassRater might just be as good because it only considers the

current situation.

_24 -

4 Results

For further comparison, another situation in the game is shown in figures 19 and
20 in the appendix. In this case, the ball lies in the own field half which changes
the weight of the situation weight function towards the pass score. Therefore the
difference between constant weight and situation weight gets less obvious. Again, the
MovingRobotPassRater shows the most optimistic rating. The other two raters

are quite similar, though the PassInterceptionRater is a bit more pessimistic.

4.2 Statistical Analysis

Though visual analysis of the pass rater gives a good first impression on the results,
the behavior of the Al during an actual game is the important factor to decide which
rater will be the best choice. To collect some data about passes and goal kicks while
using the different pass raters, recordings of about 20 min were made in Sumatra
for each pass rater and weighting function, respectively. Afterwards those recordings
were analyzed from minute 1 to 16. For each recording, passes were counted as
well as their outcome (successful, intercepted, missed or disturbed after reception).

Furthermore, goal kicks and their success were counted.

Figure 9 shows the results of this analysis. The original counts are shown in table 1
in the appendix A.2. The upper bar graph displays the success rate of the passes.
Counted were all passes of offensive robots to their team mates. The pass success
rates for the different pass rater do not differ much when using the same weighting
function. As expected, using only the pass score as sole criteria for the pass target
selection, the success rates are the highest with over 75% for each rater. The more
the goal kick rating weighs into the score, the less successful the passes are. For
the constant weight with 20% goal kick score, pass success rates are between 67.9
to 73.7%. The situation weight can have a weight of up to 70% for the goal kick
score which results in success rates of 61.0 to 68.2%. For the success probabilities,
the relative goal kick score and the relative pass score are multiplied which basically
means the relative goal kick score is the weighting factor itself for the pass score and

- 25 -

4 Results

100

Hanl
rrell

pass rater

40 B DistancePassRater
m MovingRobotPassRater
B PassinterceptionRater

pass success rate [%)]

pass : goalkick ratio

w

goal/ goalkick [%]
[S~]

L

3
/e
p.'

function

Figure 9. Statistical analysis of the three pass rater in combination with different weighting
functions.

can be between 0 and 1. As a result, the pass success rate for the success probability
is the lowest with 56.9 to 59.6%.

The second bar graph shows the ratio between passes and goal kicks. It is important
that even if the focus of the pass rater lies in successful passes without interception
or disturbance by the opponents, the main point for successful passes is to overcome
the defense of the opponent team and shoot goals to win the game. Therefore, there
should be a reasonable amount of goal kicks compared to pass actions. The ratio is
displayed as pass : goal kick which means on z passes follows one goal kick (values

are rounded). The ratios go from 4:1 (constant weight/ DistancePassRater) to

- 26 -

4 Results

14:1 (pass score/ DistancePassRater). The results do not show a clear outcome.
Though it is observable that using only the pass score instead of a weighting function
gives the highest pass to goal kick ratios as passes are preferred over goal kicks. This

behavior is not desirable.

Finally, the third bar graph shows the goal kick success rate. The values are calculated
by dividing the actual goal count by the number of goal kicks. The results vary
quite a bit and do not show a clear picture. Between the weighting functions, the
situation weight seems the most stable and successful weighting function to achieve
goals with up to 21.9% success. Interestingly, using only the pass score shows a
good success rate as well with up to 20.0% for the DistancePassRater. Though
looking at the absolute counts, this rater had the least goal kicks (20, see tab.
1) in combination with the pass score. In absolute numbers, the combination of
PassInterceptionRater and situation weight could achieve the highest count with
7 goals in the recorded 15 min game. It is also noticeable that the new approach using
success probabilities does not perform any better than the other more conservative

weighting functions.

Looking once more at the absolute counts in table 1 (see section A.2), the main
reason for pass failures is still the interception of the pass by the opponents. Though,
one has to consider that the offensive strategy uses two different concepts for passes:
the normal pass where the pass position is chosen with the help of pass targets and
on the other hand redirected passes that only use the current robot positions as
targets. This is done due to making fast decisions for rather fast redirects and the
fact that not all pass target positions can be chosen for redirects as the angle needs
to be rather small between the incoming pass and the redirect position. For this
analysis, these two kinds of passes were not distinguished and therefore any pass

failure, independent if it was a redirect or normal pass, is considered.

-7 -

5 Discussion

In this work, three pass raters have been implemented and tested. All of them show
decent results in the simulation with pass success rates up to 83.1%. All of them use
rather simple approaches using position and velocity information of the opponent
robots to calculate pass scores for the pass targets. Therefore these raters can be

applied in any situation in the game.

In terms of performance, the MovingRobotPassRater needs the most time to
calculate all desired ratings. The Al has maximal 16 ms to develop a strategy
before the next vision frame containing new position information is received. The
MovingRobotPassRater needs up to 4 ms alone, especially if its step size is lower
than 0.1s. Compared to that, the other two raters perform rather well with usually
less than 1 ms calculation time. So to use the MovingRobotPassRater a compromise
between performance and accuracy of the rating function has to be made. The
chosen step size of 0.1 ms seems to work well as the shown results were as good as

for the other pass raters.

Passes are only a tool to over come the opponent team in a soccer game. Therefore,
additionally to the pass raters, new weighting functions and concepts were tested
that combine the pass ratings with goal kick ratings. All of them were compared
to using the pass score alone as final score. As expected, having a second factor
that considers the scoring chance, more goal kicks are performed. Though the
results were not consistent for the three pass raters in combination with the different
weighting functions, the PassInterceptionRater did perform well with up to

21.9% success.

In the end, this analysis does not substitute for the data collected in real SSL soccer
games. During the last RoboCup only the PassInterceptionRater together with
the situation weight was extensively tested. The performance was good though only

few goals were shot out of the game against stronger opponents. During RoboCup

- 08 -

5 Discussion

another quite different approach also showed good results as it allowed for good
scoring chances. The current goal kick rater was replaced with a different rater that
especially works with redirect angles. One problem that still exists is that very often
robots have to turn with the ball to pass to the next robot. This takes time which
allows opponents to approach and disturb the next pass. To avoid this situation,
robots that have good positions for redirected shots at the goal are preferred pass
targets independent of possible interceptions from the opponent team. As mentioned
earlier, soccer games in the SSL are very dynamic, so that calculated future behavior
of the opponents is hardly correct and might as well be neglected in some situations.
This approach still uses pass ratings for passes in the own field half and to bring the
ball to the other half. The difference is that pass score and goal kick score are not
combined at all, rather goal kick scores are used solely when any goal kick score
above a defined value exists. In the end, to find the best combination of position

raters and the way to apply them still needs further work and data analysis.

- 29 -

6 Conclusion

The goal of this study report was to improve the coordination of offensive and support-
ive robots in the SSL soccer competitions. The work focused on the establishment of
reliable pass rater functions as well as weighting functions that combine pass ratings

and goal kick ratings.

The next position the current offensive robot passes to is chosen via pass targets.
These positions receive a pass score and a goal kick score, respectively. The pass
score determines the success probability of a pass from the current ball position to
this point. Whereas the goal kick score rates the success of a goal shot from this
position. Three different pass raters were implemented and tested in combination
with three weighting functions that combine the pass score and the goal kick score

to one final score. The final rating is used to select the best pass target.

All raters and weighting functions showed decent results for pass success as well as
goal kick success in simulated soccer games. Nevertheless a final decision for the
best combination of pass rater and weighting function can not be made from such
a small analysis. Three reliable pass raters were added to the Al that can be used
and switched easily in real soccer games. All raters run over a newly implemented
interface that allows easy exchange. The selection of the pass rater as well as
weighting function is possible by simply changing a parameter in the configuration of
the Al.

-30 -

Bibliography

[1]

2l

8l

[4]

[5]

[6]

[7]

8]

Small Size League Technical Committee. Laws of the RoboCupSoccer Small
Size League 2018. Tech. rep. RoboCup Federation, 06/2018.

RoboCup Federation. Website of the RoboCup - A Brief Hlstory of RoboCup.
Accessed: June, 26th 2018. 2016. URL: http://www.robocup.org/a_brief _

history_of_robocup.

RoboCup Federation. Website of the RoboCup - Objective. Accessed: June,
26th 2018. 2016. URL: http://www.robocup.org/objective.

RoboCup Federation. Website of the RoboCup - RoboCupSoccer - Small Size.
Accessed: June, 26th 2018. 2016. URL: http://www.robocup.org/leagues/
7.

Mark Geiger et al. Extended Team Description for RoboCup 2017. Tech. rep.
Baden-Wuerttemberg Cooperative State University, 2017.

Malte Mauelshagen et al. Team Description for RoboCup 2012. Tech. rep.
Baden-Wuerttemberg Cooperative State University, 2012.

Nicolai Ommer. “Al Architecture and Standard Game Strategies in RoboCup
SSL". Study report. 06/2011.

Andre Ryll et al. Extended Team Description for RoboCup 2018. Tech. rep.
Baden-Wuerttemberg Cooperative State University, 2018.

- VIII -

http://www.robocup.org/a_brief_history_of_robocup
http://www.robocup.org/a_brief_history_of_robocup
http://www.robocup.org/objective
http://www.robocup.org/leagues/7
http://www.robocup.org/leagues/7

A Appendix

A.1 Heatmaps

The following heatmaps were generated by rating 120 x 90 points on a simulated
quatro-sized field. All scores are between 0 (bad, red) and 1 (good, green) and define
how well a pass between the ball (center of the big red circle) and the given point
could be executed. The ratings shown are for the yellow team with the blue team as

opponents.

Figure 10. DistancePassRater: Final score with situation weight.

_IX -

A Appendix

Figure 12. MovingRobotPassRater: Pass score for straight kicks.

A Appendix

Figure 13. MovingRobotPassRater: Final pass score - maximum of chip and straight pass
score times the respective pass duration score.

Figure 14. PassInterceptionRater: Pass score for chipped kicks.

_X| -

A Appendix

Figure 15. PassInterceptionRater: Pass score for straight kicks.

Figure 16. PassInterceptionRater: Final pass score.

- XII -

A Appendix

Figure 18. PassInterceptionRater: Final score with situation weight.

- XTI -

A Appendix

(a) Final pass score. (b) Final pass score.

(e) Final score - situation weight. (f) Final score - situation weight.

Figure 19. Heatmaps compared: Left) DistancePassRater; Right)
MovingRobotPassRater.

- XIV -

A Appendix

(c) Final score - situation weight.

Figure 20. PassInterceptionRater: Comparing the two weighting functions with the
sole pass score.

_XV -

A Appendix

A.2 Pass rater statistics

Table 1. Statistics for pass raters.

passes goalkicks goals
function rater | success intercepted disturbed missed

DPR | 218 29 21 13 20 4

pass score MRPR | 220 32 21 17 24 3
PIR | 217 15 15 14 26 4

DPR | 127 34 21 5 44 2

constant w. MRPR 165 27 25 7 35 4
PIR| 201 44 21 12 25 3

DPR | 139 42 21 10 35 6

situation w. MRPR 152 41 21 9 35 5
PIR| 114 50 14 9 32 7

DPR | 101 42 21 7 33 2

probabilities MRPR 131 54 15 20 23 3
PIR| 115 51 33 3 29 5

Table 1 shows the counts of passes and goal kicks with their respective outcome
for the different pass rater/ weighting function combinations. These counts are
the results from analyzing 15 min of simulation recordings in Sumatra for each
combination. The names of the pass raters are abbreviated: DistancePassRater
(DPR), MovingRobotPassRater (MRPR), PassInterceptionRater (PIR).

- XVI -

	Table of Contents
	List of Figures
	Abbreviations
	Introduction
	rc
	ssl
	tig
	Aim of the project

	Current Software Architecture and Concepts
	Sumatra
	Offensive
	Support
	Pass Targets
	Pass Target Calculators
	Known issues

	Methods
	Pass Target Rating Functions
	DistancePassRater
	MovingRobotPassRater
	PassInterceptionRater

	Calculation of final score
	Weighting functions
	Success Probabilities

	Results
	Visualization of Test Results
	Statistical Analysis

	Discussion
	Conclusion
	Bibliography
	Appendix
	Heatmaps
	Pass rater statistics

