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Abstract. Online adaptation of motion models enables autonomous robots
to move more accurate in case of unknown disturbances. This paper pro-
poses a new adaptive compensation feedforward controller capable of on-
line learning a compensation motion model without any prior knowledge
to counteract non-modeled disturbance such as slippage or hardware mal-
functions. The controller is able to prevent motion errors a priori and is
well suited for real hardware due to high adaptation rate. It can be used
in conjunction with any motion model as only motion errors are compen-
sated. A simple interface enables quick deployment of other robot systems
as demonstrated in Small Size and Rescue Robot RoboCup leagues.

1 Introduction

Precise control in an unknown, unstructured or dynamic environment is a crucial
ability for autonomous robots to move safely among obstacles. Here, navigation,
path planning, and controllers rely on a reliable motion model that cannot con-
sider detailed knowledge about unknown external disturbances such as friction,
slippage or even hardware malfunctions. These unmodeled disturbances may be
counteracted by appropriate feedback controllers but will always decrease loco-
motion performance of the robot system as any deviation from a planned path
requires continuous correction movements or in case of nonholonomic systems such
as tracked robots even trajectory replanning.

The used motion model as well as the controllers are often derived directly
from robot structure but can neither automatically adapt to changes in structure
nor in the environment. In order to overcome such problems, model based agents
have become popular in the fields of robotics which can infer characteristics of its
structure and the surrounding world.

On the other side, learning approaches often require an unreasonable amount
of training data in order to generalize well. In this work we have investigated a way
to benefit from both worlds: instead of learning the entire motion model we figure
out how to fix the performance errors of the existing model.

This motivates our contribution of an adaptive compensation feedforward con-
troller which is capable of adapting online to motion errors caused by unknown
disturbances. For this purpose, multiple learning approaches have been evaluated
in terms of applicability, real-time performance, motion precision and motion error
adaptation time. While learning approaches have been widely investigated in motor
and multi-joint trajectory control, the application to locomotion trajectory control
has not received much attention yet to the best of the author’s knowledge.

The proposed controller has been evaluated with two robot platforms with
distinct motion capabilities used in different RoboCup leagues: Small Size and
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Robot Rescue League. The adaptation is performed without any prior knowledge of
any underlying motion model which demonstrates that the method can be applied
to a wide range of systems.

2 Related Work

The RoboCup Small Size League (SSL) has to tackle with large robot control delays
with at least 100ms due to off-board processing. This problem can be bypassed
by capable feedforward controllers, reducing all feedback error terms significantly.
An early attempt was done by Gloye et al. using neuronal networks to predict
the behavior of the robots based on the current state and motion command to
overcome the system delay [1]. Based on the first trained neural network a second
network has been trained to predict appropriate motion commands leading into
the desired robot behavior. They demonstrated how the neural network is able to
learn a model compensating for a disconnected motor. However, these networks
can only be trained offline and require uniformly distributed data sets to cover the
whole function space.

In order to use neural networks in adaptive control tasks, the concept of Feed-
back Error Learning has been applied in [2]. The online trained artificial neural
network using an expanded version of the traditional back-propagation algorithm
outperformed a standalone PD controller applied to a SCARA robot arm but the
learning rate has to be adapted manually during training. Although the neural
network compensated general deviations, the feedback controller was still active to
capture irregularities.

The application of neural networks needs a lot of manual structural tuning such
as determining the optimal number of layers and neurons. A more convenient class
of learning approaches are function approximators which can directly infer from
data. Locally Weighted Learning (LWL) categorizes a class of non-linear function
learners based on locally linear approximations. This type of function approxima-
tion can be even used to learn forward or inverse robot models [3]. In general, LWL
methods can be split into two categories: Memory-based and incremental LWL.

A memory-based LWL method is Locally Weighted Regression (LWR) that
stores all training data in memory in order to calculate the prediction at a query
point [4]. For this purpose, all data is accumulated into a matrix from which the
locally weighted regression coefficient must be determined via matrix inversion for
each prediction. Obviously, this method is not suitable for online learning and real-
time control as LWR suffers from intensive computations increasing quadratically
by the number of data samples.

Locally Weighted Projection Regression (LWPR) instead is keeping and up-
dating multiple locally weighted linear models to approximate non-linear functions
[5][6]. This method enables incremental updates as the existing local model is just
updated or a new one is created if there is no trustworthy model available. This is
achieved by keeping a set of Receptive Fields (RF) with activation terms. Training
data is then only added to a model if the RF provides sufficient activation. A forget-
ting rate weights training points gathered earlier down which is useful for systems
that change over time. Furthermore, LWPR takes use of the online dimensionality
reduction method Partial Least Squares (PLS) to handle redundant and irrelevant
input data. As the method works incremental by design, it is well suited for our
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proposed approach. In this work the LWPR implementation by Klanke et al. [7]
has been adopted.

Another interesting class of non-linear function approximators is Gaussian Pro-
cess Regression (GPR) which is a non-parametric regression method that can ap-
proximate (multivariate) non-linear functions [8]. However, the complexity of pre-
diction is cubic in the number of training samples [9] as all training data is put into
a single kernel. For this reason Csato et al. proposed Sparse Online Gaussian Pro-
cess (SOGP) [10] building a sparse kernel by using a Bayesian online algorithm and
subsampling relevant data from sequentially arriving training data. In this way, the
processing time has been reduced significantly and therefore makes it suitable for
online processing. An implementation of SOGP is available in the Online Temporal
Learning (OTL) library1 which has been used in this work.

Recursive Least Squares (RLS) is an iterative approach of Linear Least Squares
Regression (LLSR) [11]. The RLS algorithm minimizes the squared error of in-
crementally arriving samples by updating the internal weight vector instead of
computing a full matrix inversion as LLRS does. This results in a constant predic-
tion and update time but the model can only cover linear dependencies between
inputs and output variables. Again the OTL library provides an implementation
of RLS which is used in this work as well.

3 Adaptive Compensation Feedforward Controller

Fig. 1. Basic schema of the Adaptive Compensation Feedforward Controller

The proposed adaptive compensation feedforward control approach in Figure 1
can be categorized as Direct Modeling [12] which learns a motion error compensa-
tion model based on all previously observed errors during robot movements. The
basic idea is not to learn the entire motion model determining a transferring action
between two consecutive states but the required compensating action to nullify all
motion errors produced by feedforward commands. This approach reduces model
complexity significantly and enables to focus on training of motion error compen-
sations rather than the complete motion model of the robot. As the presented
adaptive compensation feedforward controller does only predict compensating ac-
tions, it can be used in combination with any existing controller such as feedback
controllers. Additionally, the used compensation model and learning method can be
initialized to return neutral (e.g. zero-valued) compensating actions when no prior

1 https://bitbucket.org/haroldsoh/otl
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training data is available. This reduces undesirable behaviors due to insufficient
training or bad generalization capability of the used learner to a minimum.

The input state vector s(t) used by the proposed controller is composed of the
desired velocity vdes(t), the desired acceleration ades(t) and optional user selectable
input values. The optional input values, for example IMU angles, can be selected
by an expert in order to improve the inference from observed data.

In this work, the controller tracks the velocity of the robot base rather than
single motor commands. Thus, the learning part tries to estimate a compensating
velocity ∆v̂ to be added up to the target robot base velocity vdes in order to achieve
the target velocity in real world while using feedforward control only.

The adaptive compensation controller works in two steps: Compensation model
learning and error compensation prediction which are both explained next.

3.1 Compensation Model Learning
An ideal feedforward controller should be able to replace any feedback controllers.
Indeed, we can learn from feedback errors in a way the adaptive compensation
feedforward controller can prevent motion errors a priori instead of performing
corrections in the feedback control loop afterwards.

This problem can be stated in a mathematical way. The robot will move in
the next time step with a certain speed vcur(t + 1) resulted from a previously
commanded speed vdes(t) and an execution error ε(t) caused by unmodeled dis-
turbances:

vcur(t+ 1) = vdes(t) + ε(t). (1)

The motion error ε(t) is often compensated by feedback controllers in robotic sys-
tems and can be determined by computing the difference between the commanded
and resulting velocities:

ε(t) = vdes(t)− vcur(t+ 1). (2)

On the other side, ε(t) can be minimized by adapting vdes(t) properly which results
in the velocity compensation rule:

v̂des(t) = vdes(t)− ε(t) (3)

⇒ 0 = v̂des(t)− vcur(t+ 1) (4)

with v̂des(t) as adapted control output. As a result, we require a compensation
policy π(s(t)) that must be able to predict a compensating action ∆v̂ to overcome
the expected motion error ε based on the current state s(t):

π(s(t)) 7→ ∆v̂. (5)

In this work, the labels ∆v̂ for the input state s(t) are updated iteratively based
on the current prediction and observed motion error:

∆v̂(k+1) = ∆v̂(k)︸ ︷︷ ︸
=̂π(s(t))(k)

−kε (6)

where k controls the adaption rate and the initial value ∆v̂(0) is usually zero. The
resulting updated mapping s(t) 7→ ∆v̂(k+1) is then given to the learner to update
the compensation policy:

π(s(t))(k+1) 7→ ∆v̂(k+1) (= π(s(t))(k) − kε). (7)
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Non-modeled disturbance such as terrain (slippage) will affect execution errors
as well. Therefore, it is highly desirable to add all available informative data to
the state vector s(t). Modern learning approaches are well suited for such kind of
mapping problems as demonstrated later.

3.2 Error Compensation Prediction

In each control loop cycle the controller estimates a compensating action ∆v̂ based
on the previously learned model. The compensation step can be expressed as:

v̂des(t) = vdes(t) +∆v̂ = vdes(t) + π(s(t)). (8)

The resulting compensated velocity command v̂des(t) can be directly forwarded
to the robot controllers using a motion model internally that maps the velocity
commands to motor commands. The measured velocity in the next time frame
vcur(t+ 1) is back-propagated to the proposed adaptive compensation feedforward
controller in order to update the compensation policy as described above.

4 Experiments

Multiple evaluation criteria and scenarios have been evaluated during this work.
Especially runtime performance is crucial for robot controllers as computational
time must comply with the control loop timing. Furthermore, the presented frame-
work has been tested in simulation first and applied on real robots afterwards.
During this experiments, error correction capabilities and adaptation speed have
been investigated which is summarized next.

In the following sections, an iteration refers to a reproducible movement based
on predefined trajectories. These iterations are repeated in order to compare the
performance of the used learners over time.

4.1 Runtime Performance

The processing time can be split into two parts: Compensation model update and
prediction. While the update time is negligible for the control loop as it can be
performed asynchronously, the prediction time determines the maximum possible
control loop frequency. During all experiments, the update rate for the rescue robot
was 40Hz, for the soccer robot 100Hz and the prediction rate 100Hz.

The experiments have been performed on the real robots and with a simulated
SSL Robot within the software framework from TIGERs Mannheim [13] running
on Intel i7 CPU with 2.6 GHz. Three different trajectories were specified while
keeping the head orientation fixed (see Figure 4): A circle, a curved rectangle, and
a star, each about 2m in diameter and between 8s and 60s long.

The robot receives velocity commands from our feedforward controller and uses
an internal kinematics model to calculate wheel velocities. As the simulated robot
would obviously behave perfectly, the low-level wheels commands have been arti-
ficially disturbed by a constant error while turning off all feedback controllers to
simulate a non-calibrated system.

Table 1 shows that LWPR and SOGP take more processing time when perform-
ing star trajectory due to input diversity provided by this movement pattern. This
behavior can be explained as LWPR uses local models whose number is increasing
over time when additional input space has been covered while in case of SOGP the
number of basis vectors increases over time.
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LWPR SOGP RLS
# Prediction Update Prediction Update Prediction Update

Rectangle
1 0.0310 0.0278 0.1700 1.1209 0.0490 0.2183
2 0.0488 0.0423 0.2741 1.7781 0.0485 0.2111
5 0.0479 0.0432 0.2704 1.6948 0.0479 0.2184

Circle
1 0.0271 0.0237 0.1477 0.9327 0.0524 0.2132
2 0.0349 0.0317 0.1804 1.1189 0.0528 0.2198
5 0.0360 0.0355 0.1899 1.2149 0.0519 0.2156

Star
1 0.0948 0.0845 0.8102 3.9831 0.0496 0.2293
2 0.1317 0.1221 0.8146 4.1630 0.0490 0.2191
5 0.1395 0.1315 0.8191 4.1901 0.0474 0.2202

Table 1. Average processing timings of 1st, 2nd and 5th iteration for all evaluated learning
approaches given in milliseconds.

The noticeable update time of SOGP is caused by large matrix inversions.
Although the prediction time of SOGP requires only a simple matrix multiplication,
it suffers from the high matrix dimension and therefore underperforms LWPR and
RLS. As expected, RLS runs with constant processing timings in every scenario.

All methods can be considered sufficiently fast for real-time control. The pre-
diction time allows theoretical control rates beyond 1kHz for all approaches, but
SOGP can only be updated in a much slower rate. As prediction and update is
done asynchronously, SOGP is still feasible for real-time control.

4.2 RoboCup Small Size Soccer Robot
The real soccer robot (see Figure 2(a)) was driven with a kinematics model that
maps velocity commands to motor commands [14]. The evaluation has been carried
out with the trajectories introduced previously.

Running these experiments on the real soccer robot reveals another motivation
for using adaptive feedforward controls. SSL robots are performing off-board pro-
cessing due to limited space on the robot. This system setup introduces a delay time
of about 100ms to the control loop from which feedback controllers are suffering.

Comparison of Learning Methods The next experiment has been performed
with previously used learning approaches, compared with a PD feedback controller
in addition. Figure 3 illustrates the evolution of all approaches after each iteration.

(a) SSL Robot by
TIGERs Mannheim

(b) Rescue Robot by
Team Hector

Fig. 2. Robots from different RoboCup Leagues have been used for evaluation.
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Fig. 3. Evolution of velocity RMSE for different control approaches applied at the real
soccer robot. The 6th and 7th iteration have been performed without model updates to
evaluate stability of the controller.

The most exciting result is the bad performance of the PD feedback controller
caused by high control loop time leading to late and overcompensating reactions.
This emphasizes the use of adaptive feedforward control proposed in this work.

RLS has performed very bad as well due to used linear compensation model.
This linear model cannot capture non-linearities as required for controlling the
robot orientation. This resulted in non-converging model updates and continuous
overcompensation leading to oscillatory motions in the rotational axis. For this
reason, RLS could not be applied to the star shape due to the lack of controller
equilibrium. From this point on, RLS has been rejected from all future experiments
due to stability issues.

no comp. LWPR SOGP RLS

ref

current

Fig. 4. Plot from the resulted movement of the fifth iteration for each learning approach.
The green line shows the reference trajectory and blue the feedforward executed trajectory.

Throughout all experiments, LWPR and SOGP performed similar well. After
the first three iterations, all approaches were able to reduce the overall pose er-
ror significantly by feedforward motion error compensation which is visualized in
Figure 4. It shows the pose tracking improvement when using LWPR or SOGP.
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Evaluation of Compensation Commands using LWPR Each deviation from
the commanded velocity accumulates to a pose error which is typically compensated
by feedback pose controllers that have been disabled throughout all experiments. As
stated before the goal of our approach is to reduce the required pose adjustments.
Hence, the velocity deviation is analyzed next using LWPR as example as it has
performed best.
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Fig. 5. Comparison of circle trajectory execution without (left) and with LWPR compen-
sation after five iterations (right) using the real soccer robot.

The uncompensated robot system shows a phase shift in transverse plane lead-
ing to reduced amplitudes (Figure 5(a)) and is affected by an undesired rotational
velocity accumulating to a rotational drift up to 90◦ after each iteration. This can
be explained by the use of omni wheels causing a lot of non-modeled slippage.

Figure 5(b) shows how the LWPR feedforward controller is able to compensate
successfully the phase shift and reduces even significantly the rotational drift of
the system. The magenta line shows the compensating actions that the controller
predicts at the corresponding states given the execution errors that have been
observed in the five previous iterations. A full video of this experiment is available
online at https://youtu.be/3__shNa66oA.

Evaluation of Performance on a Major Malfunction The ability to adapt
towards hardware wear and malfunctions is a major motivation for adaptive feed-
forward control. In the next experiment, the right rear wheel has been disabled
causing the robot to drive a curve, although a forward movement is commanded.

This experiment should evaluate how well LWPR and SOGP can adapt to such
situations. The first step was to drive in a straight line back and forth, starting
with an empty model.

Figure 6 shows that SOGP converges much slower than LWPR during this
experiment. In case of LWPR, the quick convergence has been achieved by tuning
the integrated forgetting factor. But in contrast SOGP has no notion of forgetting
old data why already sampled data will stay in the model until it is replaced by
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Fig. 6. Evolution of controllers when right rear wheel is disconnected.

new observations. Thus, the model will indeed slowly adapt, but the adaptation
speed cannot be easily influenced.

Next, the previously learned models were reused, but the motor has been en-
abled again allowing for straight forward movements without any compensation.
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Fig. 7. Robot trajectory when right rear wheel is reconnected after a compensation model
has been learned with disconnected wheel.

In the first iteration all controllers performing an expected overcompensation
(Figure 7). While LWPR can adapt to this new situation after the first iteration
quickly, SOGP converges only slowly back to a zero compensation policy. As result
LWPR shows clearly a better adaption capability.

4.3 RoboCup Rescue Tracked Robot

The second used robot platform for experiments is a tracked robot from the RoboCup
Robot Rescue League by Team Hector [15]. This nonholonomic platform is based on
a tracked differential drive and cannot move sidewards, which is why lateral drifts
have devastating influence on locomotion performance. Furthermore, the rubber
chains cause downhill sliding on inclined terrain during movements, no matter
which orientation the robot has.

The robot world pose is estimated using Hector Slam [16] and the data from
the integrated IMU is added to the input state of our adaptive compensation feed-
forward controller as discussed in Section 3. All compensating actions become de-
pendent on the robot’s three-axis-orientation, especially roll and pitch.
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Rotation on a Ramp Movements on even terrain can be executed precisely
by the existing controllers, but the discussed slippage on inclined terrain is an
interesting application for the presented controller. In the following experiment the
robot should perform a full 360◦ rotation on a ramp. An ideal system would just
rotate in place and stop exactly on its initial position (see Figure 8(a)).

(a) Initial Pose (b) No Comp. (c) LWPR (d) SOGP

Fig. 8. 360◦ Rotation on a ramp using LWPR and SOGP after three iterations.

But the real robot system slides downhill ending off the ramp (see Figure 8(b)).
Both approaches, LWPR and SOGP, cannot prevent sliding downwards at all but
reduce it as illustrated in Figure 8. Only LWPR was even able to stabilize the
rotatory velocity resulting in nearly zero orientation offset after each iteration.
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Fig. 9. Velocity plot during the 360◦ rotation on a ramp with LWPR compensation.

The plots in Figure 9(a) illustrates how the robot is sliding downhill, observable
as non-zero velocities in transverse plane depending on current robot orientation.
The LWPR controller is able to reduce successfully deviations by adapting the
speed of each single track indirectly. In Figure 9(b) the compensating actions are
plotted in magenta demonstrating how the LWPR predictor does influence the track
speeds by predicting appropriate compensating actions. This adaptive behavior can
be watched in the video at https://youtu.be/cW20_JsZCzg.

All compensating actions are predicted reasonably based on motion errors ob-
served previously. However, velocity deviations in lateral direction cannot be com-
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pensated directly due to nonholonomic constraints. Thus, the LWPR and SOGP
feedforward controllers are able to reduce but not nullify sliding downhill the ramp.

5 Results

We have demonstrated that our proposed adaptive feedforward controller is able to
compensate non-modeled disturbance online. All used learning approaches can run
using state of the art consumer computer hardware in control rates beyond 1kHz.

The versatility of the proposed controller is achieved by the commonly used
velocity interfaces. Although it has been used as robot base velocity controller
throughout this work, it can be considered as generic velocity controller which
would even work on motor level. But it should be noted that velocity estimation
accuracy is crucial for training the learner effectively.

While the SSL robot showed undesirable motion errors, the proposed controller
is able to improve the movement accuracy significantly. Especially the robot orien-
tation is suffering from major deviations depending on multidimensional input but
could be stabilized as well by the implemented control policy.

While all three learning methods showed improvements in simulation, exper-
iments with the real robot revealed that RLS uses too simplistic models for real
world application. A simulated malfunction showed that SOGP suffers from its
sample based model and was not able to adapt as quickly as LWPR does.

We applied the proposed framework to a tracked robot with completely different
locomotion capabilities in order to demonstrate the versatile usability. Although the
tracked robot performs less smooth movements, has a less accurate state estimation
than the SSL robot, and can only compensate sagittal and rotational motions, the
proposed controller could be applied here as well.

In order to compensate slippage on a ramp, the roll and pitch angles from
IMU have been used as additional input values. The experiments showed that
sagittal and rotational velocity tracking has been improved significantly and even
sliding downhill on the ramp could be compensated by 50%. The remaining downhill
movement cannot be compensated due to nonholonomic constraints.

All experiments have been performed under controlled conditions. As soon as
there are non-consistent external influences that cannot be captured as input state
for the learner such as changing traction, the adaptive feedforward controller may
infer wrong, but the model will be adapted continuously. In such scenarios, the for-
getting factor of LWPR is a crucial mechanism to control adaptation speed towards
structural and environmental changes. However, the experiments demonstrated the
high adaptation rate of the LWPR controller making it suitable for real hardware.

6 Conclusion

In this paper, an adaptive compensation feedforward controller framework based
on a compensation model has been presented that can be used in conjunction with
any existing motion model. While commonly used motion learning approaches are
dependent on training the whole robot motion model, the presented compensation
controller can be deployed without any pre-training.

A selection of different learning approaches has been analyzed for their capabil-
ity as adaptive compensation feedforward controller. Only LWPR proved to comply
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with required computational speed, prediction accuracy, and model adaptability
during the experiments. The proposed controller is able to compensate unmod-
eled disturbances such as robot decalibration or slippage. It can even improve the
system’s fault tolerance against hardware malfunctions due to online adaptability.

The framework has been applied to two very different robot systems across the
RoboCup Leagues. Although those robots are underlying distinct mobility chal-
lenges, the controller was able to improve locomotion performance for each system.
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