
Position Control of an Omnidirectional Mobile Robot

Jannik Abbenseth Nicolai Ommer
TU Darmstadt TU Darmstadt

Abstract

Moving robots in the RoboCup Small Size
League with fast reaction and low latency
is crucial for the overall performance of a
team. A good movement control is impor-
tant to overcome the frictions of the wheels
of the omnidirectional robots. Because mod-
eling the friction is quite complex, we applied
a learning algorithm based on Relative En-
tropy Policy Search for learning an optimal
movement policy. Experiments in the sim-
ulation and with a real robot show that we
are able to learn a policy that leads us to a
desired target state.

1 Introduction

The Small Size League is the fastest league at the
RoboCup with real robots, because the robots are
small and build for omnidirectional fast movement.
The challenge of this league in comparison to other
leagues is a smart gameplay among the six robots in
each team. It is important for the robots to move fast
and precise, because scoring possibilities can be closed
fast by defending robots. Kicking the ball must be one
fluent movement, regardless of the current position.

Moving fast and precise depends on the model that is
used to generate motor torques. Calculating a model
analytically is complex because of different frictions,
so we want to learn the model instead. The learning
algorithm should find an optimal policy for a given
distance to a target position and orientation.

We want to use Relative Entropy Policy Search
(REPS) for learning the policy because of its fast con-
vergence and limited loss of information.

Preliminary work. Under review by AISTATS 2012. Do
not distribute.

Figure 1: Two robots from Tigers Mannheim. The left
robot has a colored pattern attached that is used to
track the robots position, orientation and id.

2 Robot Design and Limitations

The robots that we are focusing on are from Tigers
Mannheim1, a RoboCup Small Size League team, and
are shown in figure 1. The robots have a circular base
with four symmetrically attached and powered wheels
as shown in figure 2. Each wheel has small cross-wheels
which enable the robot to move in any direction re-
gardless of the current orientation. The drawback of
this setup is a hard to model friction that occurs be-
tween the wheels and the ground.

The robots are controlled by an external computer that
makes all decisions and continuously sends commands
to all six robots. Both robots and computer receive
global positions from an independent vision computer
that tracks all objects in the field with cameras, at-
tached over the field. The robots have colored patterns
on the top as can be seen in figure 1. This means that
robots know their global field position and can merge
this information with their inertial sensors. With the
global position, the robot can be controlled by only
sending it a target position and orientation. This will
reduce latencies, because positions on the robot are
more current. Figure 3 shows this high level informa-

1http://www.tigers-mannheim.de

Manuscript under review by AISTATS 2012

Figure 2: Left: A robots ground base with all four
wheels visible. Right: The robot version that is used
at the RoboCup 2014 in Brasil.

Figure 3: Data control flow in the RoboCup Small Size
League. An external vision computer processes cam-
era images and sends positions and orientations of all
robots and the ball to both teams. Tigers Mannheim
also send the positions to the robots via a basestation
to reduce latencies.

tion flow from cameras to robot, while figure 4 shows
the information flow within the robot and the possible
input commands.

The robots only move on a plane 2D surface and they
can move in any direction regardless of the current ori-
entation. Additionally, they can rotate around their
center. Robots can thus simply be controlled with
Cartesian velocity ẋ and ẏ, namely the position on
the field, and rotation θ̇. Wheel velocities can be cal-
culated from Cartesian velocities with a simple matrix
multiplication as proposed in [1].

Positions and velocities are considered as the state in
the learning problem. As we want to be independent of
the global position, we use delta positions that indicate
the distance to the desired position and rotation in the
robot frame. This is visualized in figure 5. It leads us
to the state vector

(∆x,∆y,∆θ, ẋ, ẏ, θ̇)T (1)

Figure 4: Information flow on the robot. The robot
receives global positions from vision computer and
merges it with local sensor data. It accepts velocities,
positions and splines as input from the external soft-
ware. The current approach is to use a PD-controller
in the Movement Controller with the TargetPosition.

Figure 5: Visualization of the delta positions of x, y
and θ and the different frames, global and local to the
robot.

The policy that we want to optimize is

ϕ((∆x,∆y,∆θ, ẋ, ẏ, θ̇)T) = (ẋd, ẏd, θ̇d)
T (2)

where ẋd,ẏd and θ̇d are the desired velocities that are
passed to the low level controllers on the robot after
they were translated to wheel velocities as mentioned
above.

The currently implemented approach is a PD-
controller for each action with manually tuned param-
eters which are not optimal and result in overshooting
and overcontrol. The aim of a learned policy is to be
more precise while still staying fast and stable.

3 Optimal Policy using REPS

Our learning problem is a typical problem for Rein-
forcement Learning methods. For every state action
pair it is possible to compute a reward value. Rein-
forcement Learning Methods allow us to learn a pol-
icy from random distributed state samples. Further-
more, by adding additional constraints to the basic
Reinforcement Learning equations we can learn a se-
quence of actions instead of just one action for each

Manuscript under review by AISTATS 2012

state. In the following section we will describe the Re-
inforcement Learning method we used for our solution
of the problem and how we generalize for states that
have not been covered during the learning process.

3.1 Relative Entropy Policy Search (REPS)

Compared to other Reinforcement Learning Methods
the advantages of REPS are a fast convergence and
limited loss of information.The limited loss of infor-
mation acts as an upper bound on the policy update.
The knowledge presented in the previous policy is not
rejected for the succeeding policy, but is still present.
This upper bound on the policy update is acquired by
not only maximizing the reward but also limiting the
relative entropy between two succeeding policies π(a)
and q(a) for the bandit case[3].

The basic equations for policy search problems are
given in (3). For limiting the relative entropy and
thereby the policy update a new constraint (4) is in-
troduced.

max
π

J(π) =
∑
a

π(a)Ra, (3)

s.t. 1 =
∑
a

π(a),

ε ≥
∑
a

π(a) log
π(a)

q(a)
(4)

The given equations (3) and (4) only apply for prob-
lems where the system is always in the same state, or
the state does not matter for the performance.

For our problem the reward of an action determined
by the policy depends not only on the action itself,
but also on the rewards for all future state and actions
the robot will encounter. Therefore REPS maximizes
the expected reward for p(s, a) = µπ(s)π(a|s). To ac-
complish this infinite horizon for the reward the state
distribution µπ(s) must follow the steady state con-
straint. Therefore the probability to be in one state
has to be the same as the probability to be in any other
state and get to this specific state. This is expressed
in (8). This limitation leads to consistency over the
state distribution and the fourth constraint for REPS.
Furthermore the policy to optimize is now given by
π(a|s), the transition probability by P (s′|s, a) and the
equations for REPS are thereby extended to (5), (6),
(7) and (8).

max
p

J(p) =
∑
s,a

p(s, a)Ras , (5)

s.t. 1 =
∑
s,a

p(s, a), (6)

ε ≥
∑
s,a

p(s, a) log
p(s, a)

q(s, a)
, (7)

∀s′ : µπ(s′) =
∑
s,a

µπ(s)π(a|s)P (s′|s, a) (8)

The values for p(s, a) which are the result of REPS
can be interpreted as a weighting on how good it is to
execute action a in state s.

As shown in [5] the equations (5), (6), (7) and (8) for
REPS for the infinite horizon case can be transcribed
in a Lagrangian optimization problem

p(si, ai) ∝ q(si, ai) exp

(
h(si, ai)

η

)
(9)

with

h(si, ai) = Ras + Es′i [V (s′i)|si, ai]− V (si) (10)

Where the Lagrangian parameters V (s) and η can be
retrieved by minimizing the dual function (11).

g(η, V) = η log

(
1

n

n∑
i=1

exp

(
h(si, ai)

η

))
+ ηε (11)

Equation (8) implies, that we need one Lagrangian
parameter for each s which we assume is computed by

V (s) =
∑
i

αik(si, s) (12)

where k(·, ·) is a valid kernel to compute the features
of s′.

The expectation Es′i [V (s′i)|si, ai] can be written as∑
i

(αiEs′ [k(si, s
′)|s, a]) (13)

by substituting V (s′). The parameters which can be
retrieved by (11) are α and η.

3.2 Model Learner

To calculate the expectation Es′ [k(si, s
′)|s, a] we need

some transition model of the robot. This model can-
not be created analytically due to unknown physical
parameters of the robot. Nevertheless a reasonable
model to predict the outcome of a given state and ac-
tion can be learned. The model needs to predict the

Manuscript under review by AISTATS 2012

outcome state s′ given an input state s and an action
a. The prediction has to be suitable for all possible
combinations of s and a, regardless if the combination
was explored or not. In our case the model function
is computed by a ridge kernel regression[4]. An ad-
vantage of kernel ridge regression over linear ridge re-
gression is that we don’t need to know the features
ϕ(s′) and ψ(s, a) explicitly, but it is sufficient to know
some basic properties of the model. In our case we
assume the model to be continuous and thereby re-
gression with a large number of Gaussian features will
be able to approximate the real model. Ridge kernel
regression uses the fact that every inner product of
features ϕ(x)Tϕ(x) can be computed by a valid kernel
k(x, y), where we assume k(·, ·) to be a Gaussian kernel
due to the continuity assumption. Another advantage
of kernel ridge regression is its complexity, which is de-
termined by the number of given data points instead of
the number of features. The mapping of an input x to
an output y is computed by (14), where yi = k(si, s

′),
xi = k1(si, s)k2(ai, a) andKsa|ij = k1(si, sj)k2(ai, aj).

yi = y(Ksa + λI)−1x (14)

3.3 Gaussian Process Policy

REPS does not provide a continues policy, but only
provides a weighting of samples from a state-action
distribution, which can not be used directly to con-
trol a robot. The distribution may be sparse for some
states or actions and would not perform well there, so
we need to create a policy out of the distribution that
generalizes to missing data.

We decided to use a Gaussian Process policy for our
algorithm. GPs are non-parametric and thus does
not need predetermined model complexity. We do not
know the friction model and expect it to be non-linear,
so the GP will support us with its flexibility.
We need to control three actions. x and y are probably
not too much correlated, but the rotation θ may have
some influences on the other two actions, especially
with higher velocities.

The existing implementation of the GP policy in the
used framework is capable of dealing with multiple ac-
tions. However, using a single GP also means to have
the same kernel parameters, especially exploration rate
and bandwidth, for all actions, because the variance
only depends on the kernel and the input data. In
order to have independent exploration rates for each
action, we created a multidimensional GP that wraps
the original GP, but splits up the problem into inde-
pendent GPs for each action and merges the results.
This is shown in figure 6.

A Gaussian Process is defined by a mean and covari-
ance function. The covariance function can be defined

Figure 6: High level overview of the multiple indepen-
dent Gaussian Process classes. The Multi-GP Policy
class splits the policy up into independent single GP
polices that output a single action, but get all states as
input. The Multi-GP Learner class wraps single learn-
ers, so that all GP policies can be learned individually.

as k(xi, xj) = 〈xi, xj〉 = Kij . It can be an arbitrary
kernel, so for x, y, ẋ, ẏ and θ̇ we use an exponential
quadratic kernel as defined in (15).

KexpQuad = k(x, x′) = θ0 exp

(
−θ1

2
||x− x′||2

)
(15)

It uses two parameters that are to be learned. θ0 can
be seen as a scaling and θ1 as inverse of the standard
deviation σ. Instead of σ it is more intuitive to deal
with a bandwidth, so in our case θ1 = 1

bw2 .

The orientation θ is periodic, thus a periodic kernel is
used for this part of the state, as defined in (16).

Kperiodic = k(x, x′) = σ2 exp
−2 sin2

(
π|x−x′|

p

)
l2

(16)

It uses a fixed period of p = 2π. Scale σ and bandwidth
l can be learned in this case. The five exponential
quadratic kernels and the periodic kernel are combined
by a simple product kernel (17)

Kproduct = k(x, y, x′, y′) = kx(x, x′)ky(y, y′) (17)

4 Kernel experiments

For the task of playing robot soccer it is important to
achieve a high precision of the final position, while
having a large radius of action. With exponential
quadratic kernels neither the precision nor the gener-
alization were sufficient. As figure 7 shows the policy
does not fit the data well and its values decrease to
zero the larger the distance to the target gets.

Manuscript under review by AISTATS 2012

864

policy x,xd -> action, color=sigma

20-2

x

-4-6-8

0

-0.5

-1

-1.5

-2

0.5

1

1.5

2

a
c
ti
o

n

Figure 7: Policy depending on x and ẋ. The samples
are shown by circles with varying diameter show the
weights computed by REPS.

The activation of an exponential quadratic kernel as
presented in (15) depends on the bandwidth bw and
the distance between the two points x and x′. To de-
crease the distance of the point on which the robot
settles to the target position and thereby increase the
precision of the learned policy, more and narrower ba-
sis functions are needed around the target position. To
get narrower basis functions one can easily decrease bw
and to increase the number of basis functions one can
increase the number of feature points for the policy.
Both of these trivial solutions are not feasible in our
case. Due to the fact that the bandwidth smooths the
policy to be good for points other than the feature
points, decreasing bw would lead to bad generaliza-
tion. Furthermore one cannot use more feature points
to compute the policy, because the policy has to be
computed for each robot in real-time. Increasing the
number of feature points leads to a higher dimensional
matrixK and thereby to increased computation times.
To solve this we came up with and evaluated two dis-
tinct solutions.

4.1 Projecting the linear state dimensions

One way to tackle the problem of increasing the preci-
sion while maintaining generality is to use some prior
knowledge of the system and thinking of the problem
in polar coordinates where each state is presented by
a distance to the target d =

√
∆x2 + ∆y2 and a direc-

tion we can assume fixed. The robots have a limited
maximum velocity and we can assume that if there is a
distance dcutoff where the maximum action is perfect,
for every distance d ≥ dcutoff the maximum action is
perfect as well. So all states where d ≥ dcutoff can
be treated the same. All other states however are still
different concerning the action to choose. To imple-
ment this knowledge we proposed a projection of the
position dimension by x̃ = θ0 tanh(θ1x). The simi-
larity of two states for our problem is presented by

||x̃1− x̃2||2. For two nearby unprojected states we can
see that the projected value and thereby the similarity
is inverse proportional to the gradient of the projec-
tion function. To keep the intuition of the bandwidth
for exponential quadratic kernels in the area around
the target, the gradient of the projection function has
to be 1 in this area. It can be proven that this prop-
erty is achieved by setting θ1 = θ−10 and thereby our
projection function gets

x̃ = θ0 tanh(θ−10 x) (18)

Projection with (18) results in squashing the nonlinear
state dimensions in an interval of (−θ0, θ0).

Computing the kernel activation of an exponential
quadratic kernel for a projected state and project the
activation back to the real state we can see that the
activation gets narrower the closer the state is to the
target.

Projecting the states leads to a good generalization far
from the target position, while keeping the number of
feature points needed and the narrow activation close
to 000.

4.2 Adding a linear part

Another approach is to decompose the policy in one
subpolicy for generalization and one subpolicy to in-
crease precision. For our task we propose a linear pol-
icy

Klin = k(x, x′) = σ2
v(x)(x′) + σ2

b (19)

for generalization and a Gaussian policy for precision.
To learn these two policies the data is first fitted by a
plane and then only the differences between the data
and the plane are modeled by Gaussian processes.

The final policy is computed by adding (19) and (15):

Ksum = Klin +KexpQuad (20)

σv represents a prior on the steepness of the kernel
activation function, whereas σb is a prior on the offset.

A resulting policy is shown in figure 8. The policy fits
the data better and for states far from the target where
there is no data some reasonable action is computed.

5 Evaluation

For evaluation we first used a simple simulation in
Matlab. It is described in the first section. Later we
went to a physical simulator that transparently simu-
lates the real system and finally we executed the whole
system on the real system.

Manuscript under review by AISTATS 2012

10864

policy x,xd -> action, color=sigma

20

x

-2-4-6-8-10

-5

0

10

-8

-6

-4

-2

0

2

4

6

8

5

x
d

a
c
ti
o

n

Figure 8: Policy composed of a linear and an exponen-
tial quadratic part depending on x and ẋ. The samples
are shown by circles with varying diameter show the
weights computed by REPS. The surface color indi-
cates the standard deviation of the policy.

5.1 Matlab Simulation

We implemented a simulation for simple and fast eval-
uation of the learning methods. It uses a simplified
model for the dynamics of the robots. To simulate the
masses and inertias we decided to damp the actions re-
sulting by the policy. A manually defined damping fac-
tor kp reduces the occurring simulated accelerations.
Each element kpii damps the i-th action to consider
different values for the mass and the inertia.

This results to (21).ẋẏ
θ̇

 =

ẋẏ
θ̇

+ kp

ẋdẏd
θ̇d

−
ẋẏ
θ̇

 (21)

The first step of the position update is to calculate
the new position vector in a straight forward way pre-
sented in (22).xy

θ

 =

xy
θ

+ dt

ẋẏ
θ̇

 (22)

Thereafter the resulting values for x and y have to
be updated according to the occurred rotation of the
robot. This could be avoided by defining the state
as positions and velocities of the robot represented in
the target frame, which leads to increased difficulties
in the first position update step due to the fact that
the actions finally have to be presented in the robot
frame, which is why we chose to represent the target
in the robot frame. The second position update step
is basically a rotation of the position vector around
the rotated angle as displayed in (23) and visualized
in figure 9.(

x
y

)
=

(
cos(∆θ) − sin(∆θ)
sin(∆θ) cos(∆θ)

)(
x
y

)
(23)

Figure 9: Schematics of robot in target frame in the
left column and target in robot frame in the right col-
umn before a rotational action in the first and after
the action in the second line

The simulation was implemented in Matlab and inte-
grated into the policysearchtoolbox as provided by the
IAS2.

5.2 Real Robots

While we keep all the code for learning a policy in Mat-
lab, we needed an interface to the software controlling
the robot. As explained in section 2, all robots are
connected to a central software running on an exter-
nal computer. The software is roughly based on an
STP model[6] where we have a skill that implements
the Gaussian policy and a role (tactic) for performing
sampling.

Matlab will start the learning process and write a con-
troller file with the definition of the policy and infor-
mation on how to sample to shared memory. Then it
will wait until it detects a resulting file created by the
controlling software. The policy trainer role will read
the controller file and create a skill with a new Gaus-
sian policy controller. The skill will use the variance of
the Gaussian process for exploration, which would be
switched off if it should be executed outside of learning.
The sampling process will generate random positions
on the field and send the robot to this state. With a
certain reset probability it will cancel the rollout and
start a new one by generating a new point. When the

2http://www.ias.tu-darmstadt.de/

Manuscript under review by AISTATS 2012

iteration
0 5 10 15 20

re
w

a
rd

-16000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0
mean rewards over all trials

ExpQuad, not opt.

Squashed, not opt.

Squashed+linear, not opt.

ExpQuad+linear, not opt.

Figure 10: The mean reward over multiple trials with
different initial random seeds for sampling for differ-
ent evaluation configurations: exponential quadratic
vs. linear state projection (squashing) and addition
of these to the linear kernel. For all evaluations op-
timization of scale and bandwidth was disabled, only
λ was optimized. Optimization lead to unstable and
worse results.

robot reaches the field border, the rollout will also be
reset and the robot is send to the center of the field
with the default controller. This will be done for a
given number of rollouts. States, next states and ac-
tions will be captured with a certain dt and stored in
shared memory afterwards so that Matlab can proceed
with the iteration.

5.3 Results from Evaluations

We evaluated the proposed changes mainly with the
simulation and multiple trials with different initial ran-
dom seeds to get a more reliable result. The best
configuration was also evaluated on the robot. The
sampling process takes much longer, so we only veri-
fied that the real system behaves similar to the sim-
ulation. Results showed that we receive comparable
results with the real robot.

Figure 10 shows the rewards for evaluations with
the standard exponential quadratic kernel and the
squashed exponential quadratic kernel as well as both
kernels in combination with a linear kernel. Each re-
ward value is calculated by evaluating 100 rollouts that
are independent from the training data and by sum-
ming up the rewards for each state/action pair. The
rewards were additionally averaged over 6 trials with
different initial random seeds. The figure shows that
our proposed squashed kernel converges faster and re-
sults in an overall better final reward. The linear part
that is added to the kernel will also increase the perfor-
mance, especially for the standard exponential kernel.

Exp
Q
ua

d,
 n

ot
 o

pt
.

Exp
Q
ua

d,
 o

pt
.

Squ
as

he
d,

 n
ot

 o
pt

.

Squ
as

he
d,

 o
pt

.

Squ
as

he
d+

lin
ea

r,
no

t o
pt

.

Squ
as

he
d+

lin
ea

r,
op

t.

Exp
Q
ua

d+
lin

ea
r,

no
t o

pt
.

Exp
Q
ua

d+
lin

ea
r,

op
t.

o
ff

s
e

t
[m

]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Offset and variance

Figure 11: The plot shows the offset from the con-
verged robot position after executing the policy to the
actual target position for different learning configu-
rations. The error bars indicate the 95% confidence
interval. Learning with exponential quadratic kernels
and optimizing the hyperparameters (scale and band-
width) leads to an offset of around 2.6m.

While the reward is a common indicator for the per-
formance of the learning method, it does not reflect
the actual performance of the system in terms of op-
timality and precision. We were very interested in the
precision of the policy, because as described in the first
part of this paper, precision is important for robots in
the RoboCup. Figure 11 therefore shows the final off-
set, which is the distance from the target position to
the final position that the simulation converged to af-
ter executing the learned policy. The robot was not
able to precisely reach the target state, regardless of
the time. The figure shows the mean offset that results
from simulated rollouts with random initial state and
using policies from different trials. The error bars in-
dicate the 95% confidence. The results correlate with
the rewards. Using the squashed kernel results in the
lowest mean offset followed by the combination with a
linear kernel. The hyperparameter optimization that
we used turned to be unstable for our purpose. It reg-
ularly results in large scales or bandwidth, resulting in
policies that do not generalize well to new data.

One important topic with kernel policies is the hyper-
parameter optimization. The exponential quadratic
kernel has a bandwidth and a scale as described in
section 3.3. Additionally, we use a parameter for regu-
larization λ. This parameter will increase the variance
of the kernel at locations where we have less data. This
is important to be able to explore in a larger range dur-
ing the sample process. We want λ to be high in the
beginning of the learning process and have it decreased

Manuscript under review by AISTATS 2012

iteration

0 5 10 15 20 25 30

la
m

b
d
a

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
lambda of policy hyperparameter

trial 1

trial 2

trial 3

Figure 12: The typical development of the lambda hy-
perparameter over iterations.

to near zero over iterations. Figure 12 shows a typi-
cal development of this parameter. While it decreases
over iterations as expected, it does not converge to zero
though. This is an issue that we could not solve yet. It
prevents us from getting more precise in a reasonable
amount of iterations, because the global exploration
rate is too high.

6 Conclusion and Future Work

Our learning method gives us a smooth movement pol-
icy for 2 dimensions. We learn a policy from a 4-
dimensional state input to a 2-dimensional action out-
put and the robot will approximately reach its target
state. The rewards over iterations suggest that REPS
works well in optimization the reward. However,
comparisons with a hand-tuned linear PD-controller
showed that the policy is not optimal yet, both in
terms of the final offset as well as the overall execution
time.

We proposed different methods to deal with these is-
sues and could achieve some improvements. Both, the
squashing kernel and the additional linear part im-
prove the reward. We still see potential optimizations,
though. The Gaussian policy generalizes well over the
whole state space, but it should also fit more to the
data near zero. The divergence from the data points
will result in a large exploration rate for the next it-
eration. In order to get more precise, the exploration
rate should decrease to a near zero value over itera-
tions, but in our case it converges too early.

Executing the Gaussian policy on the robot through
the central software worked without issues. The dt of
the control cycle should not be too high to avoid ex-
cessive computation. Unfortunately, this will probably
also influence the precision of the robot. If a Gaussian

policy would be used productively for all robots, it
could be considered to move the matrix operations to
a GPU. The large matrices will be constant, so only
few data transfers would be necessary. Implementing
a Gaussian policy directly on the robot will most likely
fail because of slow microprocessors on the robots.

Acknowledgement

We would like to thank Herke van Hoof for his patient
help in understanding the topic and solving bugs in
the used framework.

References

[1] R. Rojas and A. Gloye Förster. Holonomic Con-
trol of a robot with an omnidirectional drive.
BöttcherIT Verlag, 2006.

[2] G. Neumann Some Notes on Relative Entropy Pol-
icy Search.

[3] J. Peters and K. Muelling and Y. Altun. Relative
Entropy Policy Search. Proceedings of the Twenty-
Fourth National Conference on Artificial Intel-
ligence (AAAI), Physically Grounded AI Track,
2010.

[4] M. Welling. Kernel ridge Regression Department of
Computer Science, University of Toronto, Canada.

[5] H. van Hoof and J. Peters and G. Neumann Learn-
ing of Non-Parametric Control Policies with High-
Dimensional State Features Proceedings of the In-
ternational Conference on Artificial Intelligence
and Statistics (AISTATS), 2015.

[6] B. Browning and J. Bruce and M. Bowling and
M. Veloso STP: Skills, Tactics and Plays for Multi-
Robot Control in Adversarial Environments IEEE
Journal of Control and Systems Engineering, 2004.

[7] D. Duvenaud The Kernel Cookbook: Advice on Co-
variance functions http://mlg.eng.cam.ac.uk/
duvenaud/cookbook/index.html

http://mlg.eng.cam.ac.uk/duvenaud/cookbook/index.html
http://mlg.eng.cam.ac.uk/duvenaud/cookbook/index.html

	Introduction
	Robot Design and Limitations
	Optimal Policy using REPS
	REPS
	Model Learner
	Gaussian Process Policy

	Kernel experiments
	Projecting the linear state dimensions
	Adding a linear part

	Evaluation
	Matlab Simulation
	Real Robots
	Results from Evaluations

	Conclusion and Future Work

